
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Oct 17, 2023

1



Section 26

Add-On
Program Algebras:

Floyd-Hoare Logic meets Regular Expressions

2



Motivation

• CCS and other process algebra yield algebraic expressions, e.g.

a.b.nil + c.nil

• they also give rise to algebraic (semantic) equalities, e.g.

a.nil + a.nil = a.nil

• but how does algebra relate to Hoare triples

3



Beyond Floyd-Hoare Logic

some ‘optimisations’ are not possible within Floyd-Hoare logic

{P} if b then c else c {Q}
{P} c {Q}

(trivially) unprovable in Floyd-Hoare logic

4



Trace Model – Intuition

a program can be interpreted as set of program runs/traces

sets of traces s0c1s1c2 . . . sn−1cn1sn

A ⊆ Σ× (Act× Σ)∗

non-deterministic choice A ∪B
sequential composition AB = {asb | xs ∈ A ∧ sb ∈ B}
iteration A∗ =

⋃
n≥0 = A0 ∪A1 ∪A2 . . .

skip 1 = Σ (all traces of length 0)
fail/abort 0 = ∅

5



Guarded Commands – Intuition

a program can be interpreted as set of guarded commands

sets of guarded strings α0c1α1c2 . . . αn−1cn1αn

(α, β, . . . Boolean expressions)

non-deterministic choice A ∪B
sequential composition AB = {aαb | xα ∈ A ∧ αb ∈ B}
iteration A∗ =

⋃
n≥0 = A0 ∪A1 ∪A2 . . .

skip 1 = {all Boolean expressions}
fail/abort 0 = ∅

6



Properties

• associativity: a(bc) = (ab)c

• neutrality: 1a = a = a1

• distributivity: (a+ b)c = ac+ bc
a(b+ c) = ab+ ac (?)

• absorption: 0a = 0 = a0

• iteration: (ab)∗a = a(ba)∗

7



Regular expressions

we know these rules from regular expressions, finite automata and
formal languages

8



Kleene Algebra (KA)

is the algebra of regular expressions
(traces/guarded commands without ‘states’)

Examples
• ab+ ba
{ab, ba}

• (ab)∗a = a(ba)∗

{a, aba, ababa, . . . }

• (a+ b)∗ = (a∗b)∗a∗

{all strings over a,b}

9



Regular Sets – Intuition

regular sets over Σ

non-deterministic choice (+, |) A ∪B
sequential composition AB = {ab | x ∈ A ∧ b ∈ B}
iteration A∗ =

⋃
n≥0 = A0 ∪A1 ∪A2 . . .

neutral 1 = {ε}
(language containing the empty word)

empty language 0 = ∅

10



Axioms of Kleene Algebra

A Kleene algebra is a structure (K,+, ·, 0, 1,∗ ) such that
• K is an idempotent semiring under +, ·, 0, 1

(a+ b) + c = a+ (b+ c) (a, ·b) · c = a · (b · c)
a+ b = b+ a a · 1 = 1 · a = a
a+ a = a a · 0 = 0 · a = 0
a+ 0 = a

a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

• a∗b = least x such that b+ ax ≤ x

• ba∗ = least x such that b+ xa ≤ x

x ≤ y ⇔ x+ y = y
multiplication symbol is omitted

11



Characterising Iteration
• complete semiring/quantales (suprema exist)

a∗ = Σn≥0 a
n

supremum with respect to ≤

• Horn axiomatisation
▶ a∗b = least x such that b+ ax ≤ x:

1 + aa∗ ≤ a∗
b+ ax ≤ x ⇒ a∗b ≤ x

▶ ba∗ = least x such that b+ xa ≤ x:

1 + a∗a ≤ a∗
b+ ax ≤ x ⇒ ba∗ ≤ x

12



Models & Properties

regular expressions, traces and guarded strings form Kleene algebras

abstract laws: (ab)∗a ≤ a(ba)∗

(proof is a simple exercise)

applies to all models

guarded strings/commands have more structure (assertions)

13



Kleene Algebra with Tests (KAT)

A Kleene algebra with tests is a structure (K,B,+, ·,∗ ,¬, 0, 1), such that
• (K,+, ·,∗ , 0, 1) is a Kleene algebra
• (B,+, ·,¬, 0, 1) is a Boolean algebra
• B ⊆ K

• a, b, c, . . . range over K
• p, q, r, . . . range over B

14



Kleene Algebra with Tests (KAT)

+, ·, 0, 1 serve double duty
• applied to programs, denote choice, composition, fail, and skip, resp.
• applied to tests, denote disjunction, conjunction, falsity, and truth,

resp.
• these usages do not conflict

pq = p ∧ q p+ q = p ∨ q

15



Models

• Trace models
K: sets of traces s0c1s1c2 . . . sn−1cn1sn
B: sets of traces of length 0

• Language-theoretic models K: sets of guarded strings
α0c1α1c2 . . . αn−1cn1

αn

B: atoms of a finite free Boolean algebra

16



Modelling Programs
[Fischer & Ladner 79]

• a ; b = ab

• if p then a else c = pa+ ¬pc
• while p do c = (pc)∗¬p

17



Floyd-Hoare Logic vs KAT

Theorem
KAT subsumes propositional Floyd-Hoare logic (PHL)
(Floyd-Hoare logic without assignment rule)

{p} c {q} modeled by pc = pcq (or pc¬q = 0, or pc¬q ≤ 0)

18



Floyd-Hoare logic

{p} a {q} {q} b {r}
{p} ab {r} pa¬q = 0 ∧ qb¬r = 0 =⇒ pab¬r = 0

{p ∧ r} a {q} {p ∧ ¬r} b {q}
{p} if r then a else b {q} pra¬q = 0 ∧ p¬rb¬q = 0 =⇒ p(ra+ ¬rb)¬q = 0

{p ∧ r} a {p}
{p} while r do a {¬r ∧ p} pra¬p = 0 =⇒ p(ap)∗¬(¬rp) = 0

19



Crucial Theorems

Theorem
These are all theorems of KAT
(proof is an exercise)

Theorem (Completeness Theorem)
All valid rules of the form

{p1} c1 {q1} . . . {pn} cn {qn}
{p} c {q}

are derivable in KAT (not so in PDL)

20



Advantages of Kleene Algebra

• unifying approach
• equational reasoning + Horn clauses

some decidability & automation
• but, missing out assignment rule of Floyd-Hoare logic

21



Other Applications of KA(T)
There are more applications

• automata and formal languages
▶ regular expressions

• relational algebra
• program logic and verification

▶ dynamic Logic
▶ program analysis
▶ optimisation

• design and analysis of algorithms
▶ shortest paths
▶ connectivity

• others
▶ hybrid systems
▶ . . .

22



Rely-Guarantee Reasoning
Hoare triple

{p} c {q} ⇔ pc¬q = 0

But what about {P,R} c {G,Q}?

{p, aR} c {bG, q} ⇔ {p} aR ∥ c {q} ∧ c ≤ bG

⇔ p(aR ∥ c)¬q = 0 ∧ c ≤ bG

needs algebra featuring parallel (we have seen one)
• R ∥ (S + T ) = R ∥ S +R ∥ T
• R ∥ (S · T ) = (R ∥ S) · (R ∥ T )
• R ∥ (S ∥ T ) = (R ∥ S) ∥ (R ∥ T )

23



Rely-Guarantee Reasoning
Hoare triple

{p} c {q} ⇔ pc¬q = 0

But what about {P,R} c {G,Q}?

{p, aR} c {bG, q} ⇔ {p} aR ∥ c {q} ∧ c ≤ bG

⇔ p(aR ∥ c)¬q = 0 ∧ c ≤ bG

needs algebra featuring parallel (we have seen one)
• R ∥ (S + T ) = R ∥ S +R ∥ T
• R ∥ (S · T ) = (R ∥ S) · (R ∥ T )
• R ∥ (S ∥ T ) = (R ∥ S) ∥ (R ∥ T )

24


	Add-On Program Algebras: Floyd-Hoare Logic meets Regular Expressions

