Theory of Computation
COMP3630/COMP6363

Prerequisites: COMP1140 and COMP 1600 (Foundations of Computing)

Textbook: Introduction to Automata Theory, Languages and Computation
 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman [HMU].

Course assumes one knows:

- Sets, functions, relations
- Mathematical induction
- Any other background material related to Chapter 1 of HMU.
The First Half of the Course...

Covered by **Badri Vellambi**
badri.vellambi@anu.edu.au

Models of Computation and Languages:

- Automata and Regular Languages [1.5 weeks]

- Pushdown Automata and Context-free Languages [1.5 weeks]

- Turing Machines and Recursively Enumerable Languages [1.5 weeks]

Computational Problems:

- Decidability, Undecidability, and Intractable Problems [1.5 weeks]
• Deterministic Finite Automaton

• Nondeterministic Finite Automaton

• NFA with ε-transitions

• An Equivalence among the above three.

Reading (from HMU): All of Chapter 2.
Preliminary Concepts

- **Alphabet** Σ: A finite set of **symbols**

 E.g., $\Sigma = \{0, 1\}$ (binary alphabet)

 $\Sigma = \{a, b, \ldots, z\}$ (Roman alphabet)

- **String** (or **word**) is a finite sequence of symbols

 - Usually represented without commas, e.g., 0011 instead of $(0, 0, 1, 1)$

- **Concatenation** of strings x and y is the string $xy = x$ followed by y

 ϵ is the identity element for concatenation, i.e., $\epsilon x = x \epsilon = x$.

 Concatenation of sets of strings: $AB = \{ab : a \in A, b \in B\}$

 Concatenation of the same set: $A^2 = AA; A^3 = (AA)A$, etc

- **Kleene * or closure operator**: $\Sigma^* = \{\epsilon\} \cup \Sigma \cup \Sigma^2 \cup \Sigma^3 \cdots$ denotes the set of all strings.

- A **(formal) language** is a subset of Σ^*.
Deterministic Finite Automaton

Informally:

- The device consisting of: (a) input tape; (b) reading head; and (c) finite control (Finite-state machine)
- The input is read from left to right
- Each read operation changes the internal state of the FSM
- Input is accepted/rejected based on the final state after reading all symbols
A DFA $A = (Q, \Sigma, \delta, q_0, F)$

- Q: A finite set (of internal states)
- Σ: The alphabet corresponding to the input
- $\delta: Q \times \Sigma \rightarrow Q$ (Transition Function)
 [If present state is $q \in Q$, and $a \in \Sigma$ is read, the DFA moves to $\delta(q, a)$.
- q_0: The (unique) starting state of the DFA (prior to any reading). ($q_0 \in Q$)
- $F \subset Q$ is the set of final (or accepting) states

Transition Table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_2</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_1</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_1</td>
</tr>
</tbody>
</table>

$F = \{q_1\}$
$\delta(q_0, 0) = q_2$
$\delta(q_0, 1) = q_0$

Transition Diagram:

- Remark: Each state has exactly one outgoing edge labelled by a symbol.
The language $L(A)$ accepted by a DFA $A = (Q, \Sigma, \delta, q_0, F)$ is:

The set of all input strings that move the state of the DFA from q_0 to a state in F

This is formalized via the extended transition function $\hat{\delta} : Q \times \Sigma^* \rightarrow Q$:

- **Basis:**
 1) $\hat{\delta}(q, \epsilon) = q$ [No state change]
 2) $\hat{\delta}(q, s) = \delta(q, s)$

- **Induction:**
 3) if $\hat{\delta}(q, w) = p$, then $\hat{\delta}(q, ws) = \delta(p, s)$.

$L(A) :=$ all strings that take q_0 to some final state

$$= \{w \in \Sigma^* : \hat{\delta}(q_0, w) \in F\}.$$

In other words,

(a) $\epsilon \in L(A) \iff q_0 \in F$

(b) For $k > 0$,

$$w = s_1s_2 \cdots s_k \in L(A) \iff q_0 \xrightarrow{s_1} P_1 \xrightarrow{s_2} P_2 \cdots \xrightarrow{s_k} P_k \in F$$
An Example

Is 00 accepted by A?
- Need to determine $\delta(q_0, 00)$

$$
\begin{array}{c}
q_0 \\
\rightarrow \\
0 \\
q_2 \\
\rightarrow \\
0 \\
q_2 \\
\notin F
\end{array}
$$

Thus, 00 is not accepted by A

Is 001 accepted by A?

$$
\begin{array}{c}
q_0 \\
\rightarrow \\
0 \\
q_2 \\
\rightarrow \\
0 \\
q_2 \\
\rightarrow \\
1 \\
q_1 \\
\notin F
\end{array}
$$

Thus, 001 is accepted by A.

- The only way one can reach q_1 from q_0 is if the string contains 01.
- $L(A)$ is the set of strings containing 01.

Remark 1: In general, each string corresponds to a unique path of states.

Remark 2: The converse isn’t true. For example, 0010 and 0011 have the same sequence of states.
Limitations of DFAs

- Can all languages be accepted by DFAs?
- DFAs have a finite number of states (and hence finite memory).
- Given a DFA, there is always a long pattern it cannot ‘remember’ or ‘track’

 e.g., $L = \{0^n1^n : n \in \mathbb{N}\}$ cannot be accepted by any DFA.

- Can generalize DFAs in one of many ways:
 - Allow transitions to multiple states at each symbol reading.
 - Allow transitions without reading any symbol
 - Allow the device to have an additional tape to store symbols
 - Allow the device to edit the input tape
 - Allow bidirectional head movement
Non-deterministic Finite Automaton (NFA)

- Allow transitions to multiple states at each symbol reading.
 - Multiple transitions allows the device to:
 - (a) clone itself, traverse through and consider all possible parallel outcomes.
 - (b) hypothesize/guess multiple eventualities concerning its input.
 - Seems bizarre, but aids the implication of describing the automaton.

- Formally, let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA, where:

 $\delta : Q \times \Sigma \rightarrow 2^Q$ [Transition Function]

Remark 3: $\delta(q, s)$ can be a set with two or more states, or even be empty!

Remark 4: If $\delta(\cdot, \cdot)$ is a singleton for all argument pairs, then NFA is a DFA.
[So every DFA is an NFA, by definition!]
Language Accepted by an NFA

- This is formalized via the **extended** transition function $\hat{\delta} : Q \times \Sigma^* \rightarrow 2^Q$:

 Basis:
 1) $\hat{\delta}(q, \epsilon) = \{q\}$
 2) $\hat{\delta}(q, s) = \delta(q, s)$

 Induction:
 3) $\hat{\delta}(q, ws) = \bigcup_{i=1}^k \delta(p_i, s)$

 $\hat{\delta}(q, w) = \{p_1, \ldots, p_k\}$
 $\hat{\delta}(q, w) = \emptyset$

 $s_1 \in \Sigma, w \in \Sigma^*$

\[L(A) := \{w \in \Sigma^* : \hat{\delta}(q_0, w) \cap F \neq \emptyset\} \]

In other words,

(a) $\epsilon \in L(A) \iff q_0 \in F$

(b) For $k > 0$,

$w = s_1 s_2 \cdots s_k \in L(A) \iff q_0 \rightarrow P_1 \rightarrow P_2 \rightarrow \cdots \rightarrow P_k \in F$, where $s_1, s_2, \ldots, s_k \in \Sigma$.

11
An Example

- \(L(A) = \{ w : \text{penultimate symbol in } w \text{ is a 1} \} \).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_0)</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_2)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>* (q_2)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\hat{\delta}(q_0, 00) = \{ q_0 \} \quad q_0 \xrightarrow{0} q_0 \xrightarrow{0} q_0 \\
\hat{\delta}(q_0, 01) = \{ q_0, q_1 \} \quad q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \quad q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_0 \\
\hat{\delta}(q_0, 10) = \{ q_0, q_2 \} \quad q_0 \xrightarrow{1} q_0 \xrightarrow{0} q_0 \quad q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \\
\hat{\delta}(q_0, 100) = \{ q_0 \} \quad q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_0 \xrightarrow{0} q_0 \\
\]

- An input can move the state from \(q_0 \) to \(q_2 \) only if it ends in 10 or 11.
- Each time the NFA reads a 1 (in state \(q_0 \)) it considers two parallel possibilities:

 (a) the 1 is the penultimate symbol.

 [These paths die if the 1 is not actually the penultimate symbol]

 (b) the 1 is not the penultimate symbol.
Is Non-determinism Better?

Non-determinism was introduced to increase the computational power.

So is there a language L that is accepted by an NDA, but not by any DFA?

Theorem 1: Every Language L that is accepted by an NFA is also accepted by some DFA.
Proof of Theorem 1

1) Let \(N = (Q_N, \Sigma, \delta_N, q_0, F_N) \) generate the given language \(L \)

Idea: Devise a DFA \(D \) such that at any time instant the state of the DFA is the set of all states that NFA \(N \) can be in.

2) Define DFA \(D = (Q_D, \Sigma, \delta_D, q_{D,0}, F_D) \) from \(N \) using the following **subset construction:**

\[
Q_D = 2^{Q_N} \quad q_{D,0} = \{q_0\} \quad F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}
\]

Example:

3) Hence,

\[
\epsilon \in L(N) \iff q_0 \in F \\
\iff \{q_0\} \in F_D \iff \epsilon \in L(D)
\]
Proof of Theorem 1

4) To define $\delta_D(P, s)$ for each $P \subseteq Q$ and $s \in \Sigma$:

- Assume NFA N is simultaneously in all states of P
- Let P' be the states to which N can transition from states in P upon reading s
- Set $\delta_D(P, s) := P' = \bigcup_{p \in P} \delta_N(p, s)$.

5) Induction step:

Basis: Let $s \in \Sigma$

$$\hat{\delta}_N(q_0, s) \overset{def}{=} \delta_N(q_0, s) = \bigcup_{p \in \{q_0\}} \delta_N(p, s) \overset{def}{=} \delta_D(\{q_0\}, s) \overset{def}{=} \hat{\delta}_D(\{q_0\}, s)$$

Induction: Let $\hat{\delta}_N(q_0, w) = \hat{\delta}_D(\{q_0\}, w)$ for $w \in \Sigma^* \setminus \{\epsilon\}$

$$\hat{\delta}_N(q_0, ws) \overset{def}{=} \bigcup_{p \in \hat{\delta}_N(q_0, w)} \delta_N(q_0, s) \overset{ind}{=} \bigcup_{p \in \hat{\delta}_D(\{q_0\}, w)} \delta_N(q_0, s) \overset{def}{=} \delta_D(\hat{\delta}_D(\{q_0\}, w), s) \overset{def}{=} \hat{\delta}_D(\{q_0\}, ws)$$

6) Thus, $\hat{\delta}_N(q_0, \cdot) = \hat{\delta}_D(\{q_0\}, \cdot)$, and hence the languages have to be identical.

[QED]
Comments about Subset construction

- Generally, the DFA constructed using subset construction has 2^n states
 ($n =$ number of states in the NFA)

- Not all states are reachable! (see example below)

- The state corresponding to the empty set is never a final state.
ε-Transitions

- State transitions occur without reading any symbols.

- An ε-Nondeterministic Finite Automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where:

\[
Q, \Sigma, q_0, \text{ and } F \text{ are as in an NFA}
\]

\[
\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q
\]

Example:

Without reading any input symbols, the state of the ε-NFA can transition

- From \(q_0\) to \(q_1, q_4, q_2\), or \(q_3\).
- From \(q_2\) to \(q_3\).
- From \(q_1\) to \(q_2\), or \(q_3\).
- From \(q_5\) to \(q_6\).
Language accepted by an ε-NFA

• ε-closure of a state

$\text{ECLOSE}(q) =$ all states that are reachable from q by ε-transitions alone.

$$
\begin{align*}
\text{ECLOSE}(q_0) &= \{q_0, q_1, q_4, q_2, q_3\} \\
\text{ECLOSE}(q_1) &= \{q_1, q_2, q_3\} \\
\text{ECLOSE}(q_2) &= \{q_2, q_3\} \\
\text{ECLOSE}(q_3) &= \{q_3\} \\
\text{ECLOSE}(q_4) &= \{q_4\} \\
\text{ECLOSE}(q_5) &= \{q_5, q_6\} \\
\text{ECLOSE}(q_6) &= \{q_6\}
\end{align*}
$$
Language accepted by an \(\varepsilon \)-NFA

Given \(\varepsilon \)-NFA \(N = (Q, \Sigma, \delta, q_0, F) \)

- **extended** transition function \(\hat{\delta} : Q \times \Sigma^* \rightarrow 2^Q \) by

\[
\hat{\delta}(q, \varepsilon) = \text{ECLOSE}(q)
\]

Basis:

1) \(\hat{\delta}(q, \varepsilon) = \text{ECLOSE}(q) \)

\[
q \xrightarrow{\varepsilon} q_1 \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} q' \quad \varepsilon = \varepsilon^2 = \varepsilon^3 = \cdots
\]

2) \(\hat{\delta}(q, s) = \bigcup_{p \in \text{ECLOSE}(q)} \left(\bigcup_{p' \in \delta(p, s)} \text{ECLOSE}(p') \right) \)

\[
q \xrightarrow{\varepsilon} q_1 \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} q' \xrightarrow{s} p' \xrightarrow{\varepsilon} p_1 \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} p
\]

\[
[s = \underbrace{\varepsilon \cdots \varepsilon}_{\text{finitely many}} s \underbrace{\varepsilon \cdots \varepsilon}_{\text{finitely many}}]
\]

Induction:

3) \(\hat{\delta}(q, ws) = \bigcup_{p \in \delta(q, w)} \left(\bigcup_{p' \in \delta(p, s)} \text{ECLOSE}(p') \right) \)

\[
\hat{\delta}(q, ws)
\]

\[
q \xrightarrow{w} \xrightarrow{s} \xrightarrow{\varepsilon} q
\]

\[
\delta(q, w)
\]

\[
\delta(q, ws)
\]

- \(w \in L(N) \) if and only if \(\hat{\delta}(q_0, w) \cap F \neq \emptyset \)
Language accepted by an ε-NFA

- $w \in L(N)$ if and only if $\hat{\delta}(q_0, w) \cap F \neq \emptyset$

In other words,

(a) $\varepsilon \in L(N) \iff \text{ECLOSE}(q_0) \cap F \neq \emptyset$

\[
\begin{align*}
q_0 & \xrightarrow{\varepsilon} p_1 \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} p_r \in F
\end{align*}
\]

(b) For $k > 0$,

$w = s_1s_2 \cdots s_k \in L(A) \iff$

\[
\begin{align*}
q_0 & \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} \xrightarrow{\varepsilon} p_1 \\
p_1 & \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} \xrightarrow{\varepsilon} p_2 \\
p_{k-1} & \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} \xrightarrow{\varepsilon} p_k \\
p_k & \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} q_F \in F
\end{align*}
\]
Are ε-NFAs Better?

Theorem 2: Every Language L that is accepted by an ε-NFA is also accepted by some DFA.

Proof: Given L that is accepted by some ε-NFA, we must find an NFA that accepts L.

[NFA to DFA conversion can be done as in Theorem 1].

Let ε-NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ accept L.

Let us devise NFA $N' = (Q_{N'}, \Sigma, \delta_{N'}, q'_0, F_{N'})$ as follows:

- $Q_{N'} = Q_N$, $q'_0 = q_0$, $F_{N'} = \{q \in Q_N : \text{ECLOSE}(q) \cap F_N \neq \emptyset\}$

$$\delta_{N'} : Q_{N'} \times \Sigma \rightarrow 2^{Q_{N'}}$$

defined by:

$$\delta_{N'}(q, s) = \bigcup_{p \in \text{ECLOSE}(q)} \delta(p, s)$$

N:

$$q \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} p \xrightarrow{s} p'$$

N : q can transition to p' after a few ε-transitions, and a single read of $s \in \Sigma$.

\Downarrow

N':

$$q \xrightarrow{s} p'$$

N': q can transition to p' after reading s.

21
(Proof continued) [Handwavy, but can be formalized!]

\[N : \]

\[s_1 \ldots s_k \text{ is accepted by } \epsilon\text{-NFA } N \]

\[\uparrow \]

\[q_0 \xrightarrow{\epsilon} \epsilon \xrightarrow{\epsilon} \ldots \xrightarrow{\epsilon} s_1 \xrightarrow{p_1} p_1 \]

\[\vdots \]

\[p_{k-1} \xrightarrow{\epsilon} \epsilon \xrightarrow{\epsilon} \ldots \xrightarrow{\epsilon} s_k \xrightarrow{p_k} p_k \]

\[p_k \xrightarrow{\epsilon} \epsilon \xrightarrow{\epsilon} \ldots \xrightarrow{\epsilon} q_F \in F \]

\[ECLOSE(p_k) \cap F_N \neq \emptyset \]

\[N' : \]

\[s_1 \ldots s_k \text{ is accepted by NFA } N' \]

\[\uparrow \]

\[q \xrightarrow{s_1} p_1 \xrightarrow{s_2} p_2 \]

\[\vdots \]

\[p_k \xrightarrow{s_k} p_k \]

\[[QED] \]
To Summarize...

- Nondeterminism and ϵ-transitions do not offer computational benefits

\[
\text{Languages accepted by DFAs} \quad = \quad \text{Languages accepted by NFAs} \quad = \quad \text{Languages accepted by ϵ-NFAs}
\]