This lecture covers Chapter 6 of HMU: Pushdown Automata

- Pushdown Automata (PDA)
- Language accepted by a PDA
- Equivalence of CFGs and the languages accepted by PDAs
- Deterministic PDAs

Additional Reading: Chapter 6 of HMU.
Introduction to PDAs

- PDA ‘=’ ε-NFA + Stack (LIFO)
- At each instant, the PDA can choose to read a symbol or not.
- Transitions depend on a subset of: (a) the input symbol, if read; (b) present state; and (c) symbol atop the stack.
- At each instant, a transition can potentially induce some or all of the following: (a) change in state; (b) push a string or pop a symbol from the stack.
- Once the string is read, the PDA decides to accept/reject the input string.
- Note: The PDA can only read a symbol once (i.e., the reading head is unidirectional).
A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where

- Q is the (finite) set of internal states; Σ is the finite alphabet of input tape symbols; $q_0 \in Q$ is the (unique) start state; F is the set of final or accepting states of the PDA.
- Γ is the finite alphabet of stack symbols;
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$ (power set of $Q \times \Gamma^*$) such that $\delta(q, a, \gamma)$ is always a finite set of pairs $(q', \gamma') \in Q \times \Gamma^*$.
- $Z_0 \in \Gamma$ is the sole symbol atop the stack at the start; and

Convention: lower case symbols s, a, and b will denote input symbols; lower case symbols u, v, w will exclusively denote strings of input symbols; stack symbols are indicated by upper case letters (e.g., A, B, etc); strings of stack symbols are indicated by greek letters (e.g., α, β, etc);
A PDA Example

Transition Diagram Notation

Notation: The label $a, A/\gamma$ on the edge from a state q to q' indicates a possible transition from state q to state q' by reading the symbol a when the top of the stack contains the symbol A. This stack symbol is then replaced by the string γ.

$$(q', \gamma) \in \delta(q, a, A) \iff \begin{array}{c}
\begin{array}{c}
q \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
a, A/\gamma \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
q'
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
(Note: q' can be q itself)
\end{array}
\end{array}$$

PDA that accepts $L = \{ww^R : w \in \{0,1\}^*\}$

$\begin{array}{c}
\begin{array}{c}
q_0 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\epsilon, Z_0/Z_0 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
q_1 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\epsilon, 0/0 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\epsilon, 1/1 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\epsilon, Z_0/Z_0 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\epsilon, 1/0 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\epsilon, 1/1 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
0, 0/\epsilon \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
1, 1/\epsilon \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
0, Z_0/0Z_0 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
1, Z_0/1Z_0 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
0, 0/00 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
1, 0/10 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
0, 1/01 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
1, 1/11 \\
\rightarrow
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
q_2
\end{array}
\end{array}$$
Language Accepted by a PDA

Definitions

> The **Configuration** or **Instantaneous Description (ID)** of a PDA P is a triple $(q, w, \gamma) \in Q \times \Sigma^* \times \Gamma^*$ where:

(i) q is the state of the PDA;
(ii) w is the unread part of input string; and
(iii) γ is the stack contents from top to bottom.

> An ID tracks the trajectory/operation of the PDA as it reads the input string.

> One-step computation of a PDA is based on a single move/transition (change of IDs). Suppose $(q', \gamma) \in \delta(q, a, A)$. Then for any $w \in \Sigma^*$, $\alpha \in \Gamma^*$,

$$(q, aw, A\alpha) \vdash_P (q', w, \gamma\alpha), \quad \text{[one-step computation]}$$

> We denote (multi-step) computation by \vdash_P^*, which indicates zero, or any finite number of consecutive PDA transitions. We denote $\text{ID} \vdash_P^* \text{ID}'$ if there are k IDs $\text{ID}_1, \ldots, \text{ID}_k$ (for some $k \geq 2$) such that:

(i) $\text{ID}_1 = \text{ID}$ and $\text{ID}_k = \text{ID}'$, and
(ii) for each $i = 1, \ldots, k - 1$, either $\text{ID}_i = \text{ID}_{i+1}$ or $\text{ID}_i \vdash_P \text{ID}_{i+1}$.
Beware of PDAs and IDs!

Lemma 6.2.1

Let PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) be given. Let \(q, q' \in Q \), \(x, y, w \in \Sigma^* \), and \(\alpha, \beta, \gamma \in \Sigma^* \). Then the following hold.

\[
(q, x, \alpha) \xrightarrow[\text{P}]{} (q, y, \beta) \iff (q, xw, \alpha) \xrightarrow[\text{P}]{} (q, yw, \beta) \quad (1)
\]

\[
(q, x, \alpha) \xrightarrow[\text{P}]{} (q, y, \beta) \implies (q, x, \alpha\gamma) \xrightarrow[\text{P}]{} (q, y, \beta\gamma) \quad (2)
\]

Proof Idea

> The equivalence in (1) simply follows from the fact that reading the input is unidirectional. If you have just finished reading \(x \) or are yet to, then what follows \(x \) can simply not affect your past transitions/configurations.

> PDA transitions occur only when the stack is non-empty. If \((q, x, \alpha) \xrightarrow[\text{P}]{} (q, y, \beta)\), then the transitions that effect that ID change could have never emptied the stack (at any intermediate step). A simple proof based on induction (on the number of transitions/ID changes) along with the fact that the stack is never emptied completes the claim.
Language Accepted by PDAs

Definition

Given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, the language accepted by P by final states is

$$L(P) = \left\{ w \in \Sigma^* : (q_0, w, Z_0) \xrightarrow{\star}_P (q, \epsilon, \alpha) \text{ for some } q \in F, \alpha \in \Gamma^* \right\}.$$

The language accepted by P by empty stack is

$$N(P) = \left\{ w \in \Sigma^* : (q_0, w, Z_0) \xrightarrow{\star}_P (q, \epsilon, \epsilon) \text{ for some } q \in Q \right\}.$$

Can $L(P)$ and $N(P)$ be different?

> Pick a DFA A such that $L(A) \neq \emptyset$. Convert it to a PDA P by pushing each symbol that is read onto the stack, increasing the stack size each time a symbol is read. The PDA has never pops a stack symbol. For the derived PDA, $L(P) = L(A)$. However, $N(P) = \emptyset$.

> Which of the two definitions accepts 'more' languages?
Equivalence of the Two Notions of Language Acceptance

Theorem 6.2.2

Given PDA P, there exist PDAs P' and P'' such that $L(P) = N(P')$ and $N(P) = L(P'')$.

Proof of Existence of P''

- Introduce a new start state and a new final state with the transitions as indicated.
- The start state first replaces the stack symbol Z_0 by Z_0X_0.
- If and only if $w \in N(P)$ will the computation by P end with the stack containing precisely X_0.
- The PDA P'' then transitions to the final state popping X_0. Hence, $N(P) = L(P'')$.
Equivalence of the two Notions of Language Acceptance

Proof of Existence of P'

> Introduce a new start state and a special state with the transitions as indicated.

> The start state first replaces the stack symbol Z_0 by Z_0X_0.

> If and only if $w \in L(P)$ will the computation by P end in a final state with the stack containing (at least) X_0.

> The PDA P' then transitions to the special state and starts to pop stack symbols one at a time until the stack is empty. Hence, $L(P) = N(P')$.
Theorem 6.3.1

For every CFG G, there exists a PDA P such that $N(P) = L(G)$.

Proof

\triangleright Let $G = (V, T, P, S)$ be given.

\triangleright Construct PDA $P = (\{q_0\}, V, V \cup T, \delta, S, \{q_0\})$ with δ defined by

[Type 1] $\delta(q_0, a, a) = \{(q_0, \epsilon)\}$, whenever $a \in \Sigma$,

[Type 2] $\delta(q_0, \epsilon, A) = \{(q_0, \alpha) : A \longrightarrow \alpha$ is a production rule in $P\}$.

\triangleright This PDA mimics all possible leftmost derivations.

\triangleright We use induction to show that $L(G) = N(P)$.
Proof of 1-1 Correspondence between PDA Moves and Leftmost Derivations

Suppose $w \in T^*$ and $S \xrightarrow{LM}^* w$.

Let $w_i \in T^*$, $V_i \in V$, $\alpha_i \in (V \cup T)^*$.

Leftmost Derivation in Grammar G

- $S \xrightarrow{\gamma_1} w_2 V_2 \alpha_2$
- $V_2 \xrightarrow{\gamma_2} w_3 V_3 \alpha_3$
- $V_3 \xrightarrow{\gamma_3} w_4 V_4 \alpha_4$
- $V_4 \xrightarrow{\gamma_4} \ldots$
- $w_k = w$

Unread Part of Input Tape

- Stack
- Stack Symbols that have been popped

$A \setminus B :=$ The suffix of B in A
Theorem 6.3.2
For every PDA P, there exists a CFG G such that $L(G) = N(P)$.

Proof

- Given $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, we define $G = (V, T, P, S)$ that mimics the computations of P as follows.
 - $T = \Sigma$;
 - $V = \{S\} \cup \{[pXq] : p, q \in Q, X \in \Gamma\}$;
 Interpretation: Each variable $[pXq]$ will generate a terminal string w in G iff if w induces a move (in finite steps) from the state p to q popping X from the stack.
 - P contains only the following rules:
 - $S \rightarrow [q_0Z_0p]$ for all $p \in Q$.
 - Suppose that $(r, X_1 \cdots X_\ell) \in \delta(q, a, X)$. Then, for any states $p_1, \ldots, p_\ell \in Q$,
 $$[qXp_k] \rightarrow a[rX_1p_1][p_2X_2p_2] \cdots [p_{\ell-1}X_\ell p_\ell].$$
 Note that if $(r, \epsilon) \in \delta(q, a, X)$, then $[qXp_k] \rightarrow a$.

Proof of \((q, w, X) \vdash_P^* (p, \epsilon, \epsilon) \Rightarrow [qXp] \vdash_G^* w\). (Induction on \# of steps of computation)

- **Basis:** Let \(w \in N(P)\). Suppose there is a one-step computation \((q, w, X) \vdash_P (p, \epsilon, \epsilon)\). Then, \(w \in \Sigma \cup \{\epsilon\}\). Since \((p, \epsilon) \in \delta(q_0, w, X)\), \([q_0Xp] \rightarrow w\) is a production rule.

- **Induction:** Let \((q, w, X) \vdash_P^* (p, \epsilon, \epsilon)\). Let \(a\) be read in the first step of the computation, and let \(w = ax\). Then the following argument completes the proof.
CFGs and PDAs

Proof of $[qXp] \xrightarrow{\ast} w \Rightarrow (q, w, X) \xrightarrow{\ast} (p, \epsilon, \epsilon)$. (Induction on \# of steps of derivation)

Basis: Let $[qXp] \xrightarrow{\ast} w$ in one step. Then, $[qXp] \rightarrow w$ must be a production rule. Consequently, $(p, \epsilon) \in (q, w, X)$ and $(q, w, X) \xrightarrow{P} (p, \epsilon, \epsilon)$.

Induction: Let $[qXp] \xrightarrow{P} w$.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[qXp] \xrightarrow{LM} a[r_0Y_1] [r_1Y_2] \cdots [r_{k-1}Y_k p]$ $\xrightarrow{LM} w = aw_1 \cdots w_k$</td>
</tr>
<tr>
<td>2</td>
<td>Induc. for w_1 and w_2</td>
</tr>
<tr>
<td>3</td>
<td>Induc. for $(r_0, w_1, Y_1) \xrightarrow{P} (r_1, \epsilon, \epsilon)$ and $(r_1, w_2, Y_2) \xrightarrow{P} (r_2, \epsilon, \epsilon)$</td>
</tr>
<tr>
<td>4</td>
<td>$(r_0, Y_1 \cdots Y_k) \in \delta(q, a, X)$ $\iff (q, a, X) \xrightarrow{P} (r_0, \epsilon, Y_1 \cdots Y_k)$</td>
</tr>
<tr>
<td>5</td>
<td>Lemma 6.2.1</td>
</tr>
</tbody>
</table>
Deterministic PDAs (DPDAs)

> PDAs are (by definition) non-deterministic.
> Deterministic PDAs are defined to have no choice in their transitions.

Definition

A DPDA P is a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ such that for each $q \in Q$ and $X \in \Gamma$,

> $|\delta(q, a, X)| \leq 1$ for any $a \in \Sigma \cup \{\epsilon\}$,
 i.e., a configuration cannot transition to more than one configuration.

> $|\delta(q, a, X)| = 1$ for some $a \in \Sigma \Rightarrow \delta(q, \epsilon, X) = \emptyset$,
 i.e., both reading or not reading (a tape symbol) cannot lead to valid configurations.

> DPDAs have a computation power that is strictly better than DFAs

Example: $L(P) = N(P) = \{0^n1^n : n \geq 1\}$

> DPDAs have a computation power that is strictly worse than PDAs.
 (We will discuss this later)
Languages Accepted by DPDAs

- The two notions of acceptance (empty stack and final state) are not equivalent in the case of DPDAs.
- There are languages \(L \) such that \(L = L(P) \) for some DPDA \(P \), but there exists no \(P' \) such that \(L = N(P') \).

Theorem 6.4.1

Every regular language \(L \) is the language accepted by the final states of some DPDA.

Proof

Simply view the DFA accepting \(L \) as a DPDA (with the stack always containing \(Z_0 \)).

- The regular language \(L = \{0\}^* \) cannot equal \(N(P) \) for any DPDA \(P \).
 - Suppose DPDA \(P \) accepts \(L \) by emptying its stack. Since 0 is accepted, \(P \) eventually reaches a configuration \((p, \epsilon, \epsilon)\) for some state \(p \).

 Now, suppose that \(P \) is fed with the input 00. Since \(P \) is deterministic, \(P \) reads a 0 and eventually has to get to \((p, \epsilon, \epsilon)\). However, it hangs at this configuration and cannot read any further input symbols. Hence, \(P \) cannot accept 00.
Languages Accepted by DPDAs

> A language L is said to have the **prefix property** if no two distinct strings in the language are prefixes of one another.

Theorem 6.4.2

A language $L = N(P)$ for some DPDA P iff L has the prefix property and $L = L(P'')$ for some DPDA P''.

Proof

⇒ Let $L = N(P)$ for some DPDA P. Let w, ww' be in L with $w' \neq \epsilon$. Then $(q_0, w, Z_0) \xrightarrow{\ast} (p, \epsilon, \epsilon)$ for some $p \in Q$. The DPDA hangs at this state since the stack is empty. Hence, it cannot accept ww'. The fact that $L = L(P'')$ for some DPDA P'' follows from Theorem 6.2.2 since the construction yields a **deterministic** PDA.
Languages Accepted by DPDAs

Proof

\[\iff \text{Let DPDA } P'' \text{ be given. Let } w \in L(P''), (q_0, w, Z_0) \xrightarrow{*}_P (p, \epsilon, \gamma) \text{ for some } p \in F, \text{ and } \gamma \in \Gamma. \text{ Since } L(P'') \text{ satisfies the prefix property, it must be true that the configurations in-between } (q_0, w, Z_0) \text{ and } (p, \epsilon, \gamma) \text{ only pass through non-final states.} \]

\[\implies \text{Thus, redefining } \delta(p, a, X) = \emptyset \text{ for all } p \in Q, a \in \Sigma \text{ and } X \in \Gamma \text{ does not alter } L(P''). \]

\[\implies \text{Then, the construction of Theorem 6.2.2 yields a deterministic PDA } P' \text{ such that } N(P') = L(P'') = L. \]
DPDAs and Unambiguous Grammars

Theorem 6.4.3

If \(L = N(P) \) for some DPDA \(P \), then \(L \) has an unambiguous CFG.

Proof

> Let \(G \) be the CFG constructed in Theorem 6.3.2.

> Suppose \(G \) is ambiguous. Then, for some \(w \in L \) has 2 leftmost derivations.

> However, each derivation corresponds to a unique trajectory of configurations in \(P \) that also accepts \(w \) by emptying stack.

> Since \(P \) is deterministic, the trajectories, and hence, the derivations have to be identical. Hence, \(G \) is unambiguous.
Deterministic PDAs

DPDAs and unambiguous Grammars

Theorem 6.4.4

If \(L = L(P) \) for some DPDA \(P \), then \(L \) has an unambiguous CFG.

Proof

\(\triangleright \) Let $ be a symbol not in the alphabet of \(L \).

\(\triangleright \) Consider \(L' = \{ w$: \(w \in L \} \). Then, \(L' \) has the prefix property.

\(\triangleright \) By Theorem 6.4.2, there must exist a DPDA \(P' \) such that \(L' = N(P') \).

\(\triangleright \) By Theorem 6.4.3, \(L' \) has an unambiguous CFG \(G' = (V, T, P, S) \).

\(\triangleright \) Define CFG \(G = (V \cup \{\}$, \(T \setminus \{\}$, \(P \cup \{\$ \rightarrow \epsilon\}$, \(S) \).

\(\triangleright \) \(G \) generates \(L \).

\(\triangleright \) Suppose \(G \) is ambiguous. Then, for some \(w \in L \) has 2 leftmost derivations.

\(\triangleright \) The last steps in the two leftmost derivations of \(w \) must use the production \(\$ \rightarrow \epsilon \).

\(\triangleright \) Then, the portions of the two leftmost derivations without the last production step correspond to two leftmost derivations of \(w\$ \).

\(\triangleright \) Hence, \(G' \) must be unambiguous, which is a contradiction. Hence, \(G \) is also unambiguous.