In general tutorial sessions are to discuss the problems you faced during solving these exercises. Solutions will in general not be presented but discussed during these sessions.

Exercise 1 Gradiance – Compulsory! Hurdle!

Sign up to the course (if you haven’t already) on Gradiance with Class Token: **8DDCA614**. Please log in and complete the assigned homework “Chapter 08: Turing Machines”.

Exercise 2 Turing Machine Design

Design Turing Machines for the following languages. (Using JFLAP is recommended.)

1. The set of strings with an equal number of 0’s and 1’s.
2. \(\{a^n b^n c^n \mid n \geq 1\} \)

Exercise 3 Turing-completeness

Compile a list of computation models that you know to be Turing-complete (able to simulate a deterministic single-tape Turing machines).

Exercise 4 TMs for partial functions

A function is called partial if it may be undefined for some arguments. A Turing machine \(M \) is said to compute a partial function \(f : \mathbb{N} \to \mathbb{N} \) if \(M \) halts on all inputs \(x \) for which \(f \) is defined and outputs \(f(x) \).

(a) Show how, given a TM that computes \(f \), you can construct a TM that accepts the graph of \(f \) as a language.

(b) Show how, given a TM that accepts the graph of \(f \), you can construct a TM that computes \(f \).