In general tutorial sessions are to discuss the problems you faced during solving these exercises. Solutions will in general not be presented but discussed during these sessions.

Exercise 1 Gradiance – Compulsory! Hurdle!
Sign up to the course (if you haven’t already) on Gradiance with Class Token: 8DDCA614. Please log in and complete the assigned homework “Chapter 09: Undecidability”.

Exercise 2 Universal Turing Machine
Construct a Universal Turing Machine. That is, define a Turing machine \(U \) that takes as input a tuple \((M, x)\) where \(M \) is an encoding of a Turing machine \(M \) and \(x \) is a string such that \(U \) accepts if and only if \(x \in L(M) \).

(a) What is an adequate encoding for Turing machines?

(b) What Turing machine model do we need to use for \(U \)? How many tapes? How many symbols? Do we need nondeterminism?

(c) What Turing machine model do we use for the input machines \(M \)?

(d) Describe the program of \(U \) informally.

Exercise 3 Turing Reduction
Let \(L \) be a recursive enumerable language. Show that if \(L \) can be reduced to its complement, then \(L \) is decidable.