
1 | ANU College of Engineering and Computer Science	 August 2019

PREDICTABLE TOKEN RINGS
Week 4 Laboratory for Real-Time and Embedded Systems

Uwe R. Zimmer

Pre-Laboratory Checklist

vv You have a working token ring structure with multiple tokens travelling in-
dependently and at different speeds from your previous lab work.

Objectives
The objective of this lab is to familiarize you with to the concept of predictability. In order to
move your previous structure closer to something which could qualify for a real-time system,
we need to look into a few aspects of your precious coding in more detail.

Interlude:  Predictable Token Rings

You already implemented a double token ring structure fol-
lowing the structure on the right. Token rings are often used in
environments where predictability is essential. The first observa-
tion which you can make is that there is never a congestion on
the network media (if you consider the links between the nodes
as physical connections). This is different to what you possibly
know from for instance Ethernet-based network systems with
more than two computers on the same physical link, or wireless
networks with many clients competing for access simultane-
ously. Yet not having to handle congestion is only one aspect of
a predictable communication system. The next step is to guar-
antee that tokens will spend a predictable amount of time in
each node. This is not a question of “how fast can you go” but
a question of “how close to the predicted time-span will every
node delay the token”.

Exercise 1:  Predictable Status Token

Assume that the computational effort to process the status token in each node is constant (and
simulate this accordingly). Take measurements how long a status token stays inside a network
node. You will need to explore the package Ada.Real_Time for this purpose. Your time measure-
ments at the moment are still bound by the precision and time glitches of the desktop operat-
ing system on which you are running these experiments - so don’t expect clock-cycle precise
readings at the moment. The goal of this first exercise is though that the status token delay

Node

Node

Node

Node

Node

Node

Node

Node

Status Token
(fast)

Data Token
(slow)

2 | ANU College of Engineering and Computer Science	 August 2019

should not be influenced by the processing of the data token. Proof this by varying the pro-
cessing times which you simulate for the data token and show that your time readings for the
processing of the status token does not change.

Assigning priorities

You may also want to start experimenting with Priorities in your design. Priorities can be as-
signed statically by adding a pragma Priority (<expression>) inside a task definition (usually
right after the line with the task name, but always before the according end statement). Thus a
very simple priority assignment could look like this:

with System; use System;

(…)

task Not_so_important is

 pragma Priority (Priority’First);

 (…) -- entries for this task come here

end Not_so_important;

(…)

task Pretty_important is

 pragma Priority (Priority’Last);

 (…) -- entries for this task come here

end Pretty_important;

(…)

Priorities can also be dynamic (changed at run-time). This is achieved with the methods de-
fined in Ada.Dynamic_Priorities. The package with its two, dead-giveaway-named procedures
Set_Priority and Get_Priority speaks for itself. (If you have not yet found out how to look
up standard packages, check Help -> GNAT Runtime inside your GPS environment.) Note the
default task assignment, which means that if you do not specify which task’s priority you want
to chance, you will change the priority of the task this call is being executed in.

Don’t be too worked up by the confusing concept that you can change priorities in a ‘Fixed Pri-
ority Scheduling’ environment. In cases where priorities can change at runtime, the method will
be referred to as ‘Priority Scheduling’. Dynamic priorities can be used to emulate any schedul-
ing method (e.g. if your environment has not already defined the scheduler which you need), as
they give you full control over the scheduling process. Certification processes usually ban its
usage though, and in fact dynamic priorities are forbidden in Ada-pre-defined, high-integrity
language subsets. In your assignment you will work close-to-hardware and using the Ada Ra-
venscar language profile (targeting high-integrity, real-time systems) which bans any dynamic
priorities.

At the moment you control options over your system are still limited by the underlying desktop
operating system and priorities are commonly disrespected there in two ways:

a.	Priorities are often interpreted in “bands”, which means that chang-
ing priorities by a single discrete step has often no effect.

b.	Priorities are often taken as hints rather than a mandate, which means that higher priority
tasks will usually gain access to the CPU more frequently, but cannot monopolize the CPU.

Both of these common effects vary widely between different operating systems and also be-
tween different versions of the same desktop operating system. So don’t put your expectation
up too high about the control which you have on your current setup. You will be provided with
fully controllable hardware later in the course.

3 | ANU College of Engineering and Computer Science	 August 2019

Hanging out for a bit

Tasks can also put themselves to sleep for a defined amount of time or until a specific absolute
time. In high-integrity systems only the latter will be allowed, so don’t become too attached
to the former. The Ada syntax for those statements is delay <relative-time-expression>
and delay until <absolute-time-expression> respectively. As you can judge from the
course title, you will be using those time related statements a lot later and in all possible
contexts, so don’t spend too much time on those here, but rather focus on basic schedul-
ing first. If you are already curious, then have a look at the package Ada.Real_Time. The
<absolute-time-expression> for the delay until statement is of type Time as defined there.
Note that the <relative-time-expression> is of type Duration (a subtype of Float) and is not
defined in Ada.Real_Time, yet conversion routines between the real-time-type Time_Span and
the general type Duration are provided there. Again, do not get too attached to the relative
delay statement as it is also banned in the Ravenscar language profile which you will be using
in your assignment. As we will learn, relative delay statements introduce drift-effect which are
usually highly unwelcome in real-time systems.

Switching between tasks on the same priority

Preempting tasks is a complex operation which should only be applied on a necessity basis in
a real-time system. In other words: the concept of “provide all tasks with a fair share of CPU
time just because if seems more fair” does not apply. Tasks will be only preempted based on
priorities.

Yet sometimes tasks themselves will know that they reached a lesser critical part of their com-
putation, and that it would be “all right” now to release the CPU if it could be made use of else-
where in the system. This leads ultimately to “cooperative scheduling” (a scheduling method
used in some high-integrity systems) which we will discuss later in the course as well.

A task may indicate that it is willing to be suspended if the CPU can be deployed for another,
same-priority task at the moment by the statement delay 0.0, or slightly less clumsy by calling
Yield from the package Ada.Dispatching. If there are currently more (or an equal number of)
CPU cores available then runnable, same-priority tasks, those calls have no effect. Otherwise
the current CPU core will be handed over to the next (in a first-in-first-out fashion) runnable
task on the same priority.

Experiment with the above

Remind yourself what the goal of this first exercise is and provide evidence to us that your
status token stays in each Node for a close-to-constant amount of time. Do this by submitting
your Token_Rings.zip file on the SubmissionApp under “Lab 4 Predictable Status Tokens“ for
code inspection by your colleagues and by us.

Exercise 2:  Fully predictable token ring

This is an advanced exercise which is only recommended for students who want to dig deeper
and want to explore the full options of how to implement such a network interface under real-
time constraints.

This exercise looks a little further ahead into the course and you will likely need to check out
asynchronous transfer of control statements to achieve satisfactory results here.

So far we did not assume anything about the processing times of the data token. We will keep
this assumption of a potentially varying and unpredictable time-span up, but require the pro-
cessing in each node to stick to predicted values regardless. This can be achieved by monitor-
ing the processing times for the data token which it is being processed and by potentially stop-
ping computations which would be violating deadlines. At the same time you may also want

http://cs.anu.edu.au/SubmissionApp

4 | ANU College of Engineering and Computer Science	 August 2019

to pad in additional delays for the case that the processing completed before the intended
predictable handling time.

To make it more convincing simulate the heavy processing inside the data processing task with
some CPU-cycle-consuming number crunching loop with some wide variations is duration
instead of a delay statement. This will require your code to actually stop a running job in mid-air
rather than shorten the delay-time of a blocked task.

This should result in your structure to become fully predictable even in the presence of a com-
putational task which cannot be predicted.

Submit your Token_Rings.zip file on the SubmissionApp under “Lab 4 Predictable Token Ring“
for code inspection by your colleagues and by us.

Make Sure You Logout
to Terminate Your Session!

http://cs.anu.edu.au/SubmissionApp

