anybody who …

… would like to see immediate real-world involvement in his/her work.

… would like to learn how to create predictable and fault-tolerant, complex systems.

… would like to know more about the usage of >95% of all processors.
This course will be given by

Uwe R. Zimmer

Tutoring and labs by

Benjamin Wang

Electronics design by

Mark Turner

[Burns2009]
Alan Burns and Andy Wellings
Real-Time Systems and Programming Languages
Addison Wesley, fourth edition, 2009

[Burns2007]
Alan Burns & Andy Wellings
Concurrent and Real-Time Programming in Ada
Cambridge University Press, 2007

[McCormick11]
McCormick, J. W., Singhoff, F., & Hugues, J.
Building Parallel, Embedded, and Real-Time Applications with Ada.

... plus specific references for each topic (all on the course site).
Topics

1. **Introduction & Real-time languages**
 1. Staking out the field
 2. Features (and non-features) of a real-time system
 3. Components of a real-time system
 4. Real-time languages
 - Ada
 - Esterel
 - Pearl
 - VHDL
 - Timed CSP
 - Real-time JAVA
 - POSIX

2. **Physical coupling**
 1. Physical values
 2. Introduction to sensors
 3. Frequently employed sensors

3. **Interfaces**
 1. Analogue signal chain in a digital system
 2. Analog-Digital converters
 3. Interface devices
 4. μ-controllers

4. **Time & Embodiment**
 1. What is time? / What is embodiment?
 2. Time: notion, delays, time-out
 3. Interfacing with time
 4. Specifying timing requirements
 5. Satisfying timing requirements

5. **Asynchronism**
6. **Synchronisation**
7. **Scheduling**
8. Resource control
9. Reliability & Fault-tolerance

Topics

1. **Introduction & Real-time languages**
 1. Staking out the field
 2. Features (and non-features) of a real-time system
 3. Components of a real-time system

2. **Physical coupling**
 1. Physical values
 2. Introduction to sensors
 3. Frequently employed sensors

3. **Interfaces**

4. **Time & Embodiment**
 1. What is time? / What is embodiment?
 2. Time: notion, delays, time-out
 3. Interfacing with time
 4. Specifying timing requirements
 5. Satisfying timing requirements

5. **Asynchronism**
6. **Synchronisation**
7. **Scheduling**
8. Resource control
9. Reliability & Fault-tolerance

Topics

1. **Introduction & Real-time languages**
2. **Physical coupling**
3. **Interfaces**
4. **Time & Embodiment**
 1. Analogue signal chain in a digital system
 2. Analog-Digital converters
 3. Interface devices
 4. μ-controllers

5. **Asynchronism**
6. **Synchronisation**
7. **Scheduling**
8. Resource control
9. Reliability & Fault-tolerance
1. Introduction & Real-time languages
 5.1. Interrupts, signals, exceptions
 5.2. Atomic Actions
 5.3. Asynchronous transfer of control
2. Physical coupling
3. Interfaces
4. Time & Embodiment
5. Asynchronism
6. Synchronisation
7. Scheduling
8. Resource control
9. Reliability & Fault-tolerance

7.1. Basic real-time scheduling
7.2. Real-world extensions
7.3. Language support
8. Resource control
9. Reliability & Fault-tolerance

1. Introduction & Real-time languages
6.1. Variable-based synchronization
6.2. Message-based synchronization
7. Scheduling
8. Resource control
9. Reliability & Fault-tolerance

6.1. Variable-based synchronization
6.2. Message-based synchronization
7. Scheduling
8. Resource control
9. Reliability & Fault-tolerance

8.1. Resource synchronization primitives
8.2. Resource reclaiming schemes
8.3. Real-time resource control
8. Resource control
9. Reliability & Fault-tolerance
Table of Contents

1. Introduction & Real-time Languages	9.1. Terminology
1.1. Features (and non-features)	3.4. Context handler sampling control / language requirements
1.2. Components of a real-time system	1.4. Asynchronous transfer of control / Interrupts in context
1.3. Real-time languages criteria	1.5. What is time? / What is embodiment?
1.4. Examples of actual real-time languages:	1.6. Thermoelement, thermocouple, thermistor, noise temperature measurement
2. Physical coupling	2.7. Earliest Deadline First (EDF)
2.1. Physical phenomena	2.8. Fixed Priority Scheduling (FPS) with Rate Monotonic (RM) Deadline Monotonic Priority Ordering (DM)
2.2. Measuring temperature	2.9. Aperiodic, sporadic, soft real-time tasks – Deadlines shorter than period –
2.3. Measuring range and relative speed	2.10. Earliest Deadline First (EDF)
2.4. Examples	2.11. Earliest Deadline First (EDF)
3.3. A/D Converters (flash, pipelined, Sigma-Delta)	3.15. Earliest Deadline First (EDF)
3.4. Examples	3.16. Earliest Deadline First (EDF)
4. Time & Space	4.1. What is time? / What is embodiment?
4.1. What is time? / What is embodiment?	4.2. Approach to different technologies
4.2. Approach to different technologies	4.3. Defining local time-dependent constraints – Access time, delay processes, double interaction
4.3. Defining global timing constraints	4.4. Satisfaction timing requirements – A/D, D/A, DAC, event counter implementations, zero recovery
4.4. Satisfaction timing requirements – A/D, D/A, DAC, event counter implementations, zero recovery	5.1. Communication
5.2. Exceptions	5.1.1. Asynchronous / Synchronous
5.3. Atomic Actions	5.1.2. Error Handling / Error Recovery
6. Synchronisation	5.1.3. Error Handling / Error Recovery
6.1. What is time, interval time	5.2.1. Reliability, fault tolerance
6.2. Asynchronism	5.2.2. Reliability, fault tolerance
7. Scheduling	5.2.3. Reliability, fault tolerance
7.1. Basic real-time scheduling	5.2.4. Reliability, fault tolerance
7.2. Real-time scheduling	5.2.5. Reliability, fault tolerance
7.3. Scheduling	5.3.2. Aperiodic, sporadic, soft real-time tasks – Deadlines shorter than period –
7.4. Aperiodic, sporadic, soft real-time tasks – Deadlines shorter than period –	5.3.3. Earliest Deadline First (EDF)
5.3.3. Earliest Deadline First (EDF)	5.4. Earliest Deadline First (EDF)
5.3.3. Earliest Deadline First (EDF)	5.4. Earliest Deadline First (EDF)
5.3.3. Earliest Deadline First (EDF)	5.4. Earliest Deadline First (EDF)

Topics

1. **Introduction & Real-time Languages**
 - Introduction and Real-time Languages
 - Real-time Languages Criteria
 - Examples of Actual Real-time Languages

2. **Physical Coupling**
 - Physical Phenomena
 - Measuring Temperature
 - Measuring Range and Relative Speed
 - Examples

3. **Converters & Interfaces**
 - Analogue Signal Chain in Digital Systems
 - Sampling, Holding, Quantisation, Oversampling
 - A/D Converters (Flash, Pipelined, Sigma-Delta)
 - Examples

4. **Time & Space**
 - What is Time? / What is Embodiment?
 - Approach to Different Technologies
 - Defining Local Time-Dependent Constraints
 - Satisfaction Timing Requirements

5. **Synchronisation**
 - Communication
 - Exceptions
 - Atomic Actions

6. **Scheduling**
 - Basic Real-Time Scheduling
 - Real-Time Scheduling
 - Aperiodic, Sporadic, Soft Real-Time Tasks – Deadlines Shorter than Period –

8. **Resource control**
 - Policies and policies issues to be considered

9. **Reliability & Fault-tolerance**
 - Introduction
 - Faults, Events, Failures – Reliability
 - Faults
 - Fault Avoidance, Removal, Prevention
 - Reliability
 - Reliability in Software Design
 - Reliability in Hardware
 - Reliability in Software Design
 - Reliability in Hardware
 - Reliability in Software Design