COMP4630: λ-Calculus

4. Standardisation

Michael Norrish
Michael.Norrish@nicta.com.au

Canberra Research Lab., NICTA

Semester 2, 2015

NICTA
Last Time

Confluence
- The property that divergent evaluations can rejoin one another

Proof
- Diamond properties
- Uses parallel reduction (\(\Rightarrow\beta\)); and
- Many inductions

Consequences
- Soundness of \(\lambda\)
- (With an analogous proof) Soundness of \(\lambda\eta\)
- Incompleteness of \(\lambda\)
- (See end of lecture 2)
Today

Introduction

Head Reduction
 Weak Head Reduction

The Proof
 Failing Approaches
 The Right Approach
 Consequences

Conclusion
Objective

From last time, we know that a term M has at most one normal form.

Unfortunately, we also know that not all evaluation strategies will lead to that normal form.

▶ This is **not** inconsistent with confluence.
▶ Why?
Evaluation Strategies

An evaluation strategy is basically a way of answering the question:

Where (i.e., in which sub-term) should I do my next reduction?

Or:

Where should I do the next bit of work?

Some languages (e.g., Java) do not allow for choices to be made at all. They specify a precise evaluation order. Why would they do that?
Evaluation Strategy #1: Applicative Order

Evaluate everything from the bottom up.

- I.e., in \((\lambda v. M) \ N\) work will start with \(M\), passing to \(N\) and performing the top-level \(\beta\)-reduction last

A function’s arguments (and the function itself) will be evaluated before the argument is passed to the function.

Also known as strict evaluation.

(Used in Fortran, C, Pascal, Ada, SML, Java . . .)

Causes \((\lambda x. y) \ \Omega\) to go into an infinite loop.
Evaluation Strategy #2: Normal Order

Evaluate top-down, left-to-right.

- With \((\lambda v. M) \; N\), start by performing the \(\beta\)-reduction, producing \(M[v := N]\)
- Find the top-most, left-most \(\beta\)-redex and reduce it.
- Keep going

This strategy is behind the lazy evaluation of languages like Haskell.

Normal order evaluation will always terminate with a normal form if a term has one. (Proof to come...
Evaluation Strategy Trade-offs

An evaluation strategy might

1. be guaranteed to find normal forms; or
2. aim to perform the least number of β-reductions

Naïvely,

- normal order reduction does 1;
- applicative order “sort of” achieves 2, but gives up on 1

(In fact, optimal reduction is very difficult to get right.)
Proving Normal Order Evaluation

Our focus is in showing that normal order evaluation is guaranteed to find normal forms.

► (That’s why it’s called normal order...)

Here are the rules:

\[(\lambda v. M) N \rightarrow_n M[v := N]\]

\[M \rightarrow_n M' \quad \text{(\(\lambda v. M\)) \rightarrow_n (\lambda v. M')}\]

\[M \rightarrow_n M' \quad M \text{ not an abstraction}\]

\[MN \rightarrow_n M'N\]

\[N \rightarrow_n N' \quad M \text{ not an abstraction}\]

\[M \text{ in } \beta\text{-nf}\]

\[MN \rightarrow_n MN'\]
Head Reduction

We can divide normal order reduction into two different sorts of reduction.
First, normal order reduction:

\[
(\lambda v. M) N \rightarrow_n M[v := N] \quad \frac{M \rightarrow_n M'}{\lambda v. M \rightarrow_n \lambda v. M'}
\]

\[
\frac{M \rightarrow_n M'}{M \text{ not an abstraction}}
\[
\frac{M \rightarrow_n M' \quad M \text{ not an abstraction}}{M N \rightarrow_n M' N}
\]

\[
\frac{N \rightarrow_n N'}{M \text{ not an abstraction}}
\[
\frac{M \text{ in } \beta\text{-nf}}{M N \rightarrow_n M N'}
\]
Head Reduction

We can divide normal order reduction into two different sorts of reduction.

Then, **head reduction**:

\[
\begin{align*}
(\lambda v. M) \, N & \rightarrow_h M[v := N] \\
\lambda v. M & \rightarrow_h (\lambda v. M')
\end{align*}
\]

\[
\begin{align*}
M & \rightarrow_h M' \quad M \text{ not an abstraction} \\
M \, N & \rightarrow_h M' \, N
\end{align*}
\]

\[
\begin{align*}
N & \rightarrow_h N' \quad M \text{ not an abstraction} \\
M & \text{ in } \beta\text{-nf} \\
M \, N & \not\rightarrow_h M \, N'
\end{align*}
\]

When head reducing, you never reduce to the right of an application.
Hence, Head Normal Forms

Head Normal Form is a reasonable stopping place.

Rules again:

\[
\frac{(\lambda v. M) \ N}{\text{h}} \rightarrow M[v := N]
\]

\[
\frac{M \rightarrow \ M'}{\text{h}}
\]

\[
\frac{M \text{ not an abstraction}}{\text{h}}
\]

\[
\frac{M \ N}{\text{h}} \rightarrow M' \ N
\]

Examples:

- \(v \) is in hnf
- \((\lambda v. v) \) is in hnf
- \((\lambda w. v (\lambda u. M) \ N) \) is in hnf
- \((\lambda w z. v ((\lambda u. M) \ N)) \) is in hnf
Head Normal Forms, Generally

If term M is in hnf, then it will look like:

$$(\lambda \vec{v}. u \, M_1 \cdots M_n)$$

The vector \vec{v} may be empty, u may be free or bound, and the number of extra arguments, n, may be 0.

Once a term is in hnf, its top-level structure can’t change.
After Head Reductions

Once a term is in hnf, its top-level structure can’t change.

Any further reductions (of any sort) inside

$$(\lambda \vec{v}. \ u \ M_1 \cdots M_n)$$

will be reductions within an M_i.

Each argument will evolve independently, and the number of arguments can’t change.

These are internal reductions \xrightarrow{i}.

- If the term is $(\lambda \vec{v}. (\lambda u. M) \ N_1 \ N_2 \cdots)$ (not in hnf) and M reduces, then that is an internal reduction too
- All reductions are either head or internal
Normal Order Reduction Splits in Two

The last rule of normal order reduction (which we deleted to get head reduction):

\[
\frac{N \rightharpoonup_n N' \quad M \text{ not an abstraction} \quad M \text{ in } \beta\text{-nf}}{MN \rightharpoonup_n MN'}
\]

If \(M \rightharpoonup_n^* N \), and the reductions aren’t all head, then there must be a first head normal form \(P \), such that

\[
M \xrightarrow{h}^* P \xrightarrow{i}^* N
\]

We want to show the same sort of split for arbitrary \(\beta \)-reduction (\(\rightharpoonup^*_\beta \))
Interlude: Weak Head Reduction

Thanks to:

\[
\begin{align*}
M & \xrightarrow{h} M' \\
(\lambda v. M) & \xrightarrow{h} (\lambda v. M')
\end{align*}
\]

head reduction proceeds inside function bodies.

If you take this rule out, you get weak head reduction.

Weak head normal forms are

- head normal forms, or
- abstractions.

Weak head reduction is used in implementations of functional programming languages.
Basic Strategy

We want to know that, if by some path:

$$M \xrightarrow{\beta}^* N$$

with N a normal form, then normal order reduction will take M to N too.

Will do this by showing a more general result.

That for any N, if $M \xrightarrow{\beta}^* N$, then there exists a P such that

$$M \xrightarrow{h}^* P \xrightarrow{i}^* N$$
We Want to Commute Steps

If we had

\[\text{M} \ni \text{N} \ni \text{P} \]

we'd like to know that there was a \(\text{N}' \) we could get to via head reduction, and from which we could make internal reductions to get to \(\text{P} \) (maybe with multiple steps?).

Maybe this would allow head and internal steps to be "bubble-sorted" so that all head steps came first.
We Want to Commute Steps

If we had

\[M \]
\[N \]
\[N' \]
\[P \]

we’d like to know that there was a \(N' \) that we could get to via head reduction, and from which we could make internal reductions to get to \(P \).
We Want to Commute Steps

If we had

\[
\begin{align*}
N & \quad M \\
\downarrow h & \quad \downarrow h' \\
N' & \quad P \\
\end{align*}
\]

we’d like to know that there was a \(N' \) that we could get to via head reduction, and from which we could make internal reductions to get to \(P \) (maybe with multiple steps?).
We Want to Commute Steps

If we had

we’d like to know that there was a \(N' \) that we could get to via head reduction, and from which we could make internal reductions to get to \(P \) (maybe with multiple steps?).

Maybe this would allow head and internal steps to be “bubble-sorted” so that all head steps came first.
But Direct Commuting is Hard

Commuting does require multiple steps:

\[(\lambda x. f x x) \ ((\lambda y. y z) \ u)\]

This example requires multiple (2) internal reductions.
But Direct Commuting is Hard

Commuting does require multiple steps:

\[
(\lambda u. (\lambda v. v \ u \ z) \ f) \ N
\]

\[
(\lambda u. f \ u \ z) \ N
\] \[\text{h} \]
\[
f \ N \ z
\]

\[
(\lambda v. v \ N \ z) \ f
\] \[\text{h} \]
\[
f \ N \ z
\]

This example requires multiple head reductions (and no internals).
Commuting with Multiple Steps Isn’t Good Enough

This is a theorem:

\[M \xrightarrow{i} N \xrightarrow{h} P \]

\[\implies \exists N'. M \xrightarrow{h,*} N' \xrightarrow{i,*} P \]

But it’s not good enough.

Our examples show us that we can have

\[i h \rightarrow h i^2 \]

\[i h \rightarrow h^2 \]
The Bubble-Sort That Never Ends

Our examples show us that we can have

\[ih \rightarrow hi^2 \]
\[ih \rightarrow h^2 \]

Start with a reduction sequence \(ihihi \):

\[ihihi \rightarrow hi^3hi \]
\[\rightarrow hi^2h^2i \]
\[\rightarrow hihi^2hi \]
\[\rightarrow \ldots \]

This is not progress: we still have two head reductions that haven’t been “sorted” to the start of the sequence.
A Better Lemma

Though commuting internal and head reductions can result in multiple internal reductions, the latter are all parallel (write \rightarrow^i).

So, prove instead:

If a internal parallel reduction is followed by a head reduction,
A Better Lemma

Though commuting internal and head reductions can result in multiple internal reductions, the latter are all parallel (write \(\Rightarrow^i \)).

So, prove instead:

If a internal parallel reduction is followed by a head reduction, there is an alternative route where head reductions come first, and there is one internal parallel reduction afterwards.
Proof in More Detail

Have

\[M \xrightarrow{i} P \xrightarrow{h} N \]

As \(P \) head-reduces it is \((\lambda \vec{v}. (\lambda u. P_0) P_1 P_2 \cdots P_n) \), with \(n \geq 1 \)

And \(M \) is of form \((\lambda \vec{v}. (\lambda u. M_0) M_1 M_2 \cdots M_n) \), with \(M_i \xrightarrow{\beta} P_i \)
Proof in More Detail

Have

\[M \overset{i}{\Rightarrow} P \overset{h}{\Rightarrow} N \]

As \(P \) head-reduces it is \((\lambda \vec{v}. (\lambda u. P_0) P_1 P_2 \cdots P_n)\), with \(n \geq 1 \)

And \(M \) is of form \((\lambda \vec{v}. (\lambda u. M_0) M_1 M_2 \cdots M_n)\), with \(M_i \overset{\beta}{\Rightarrow} P_i \)

So

\[M \overset{h}{\Rightarrow} (\lambda \vec{v}. M_0[u := M_1] M_2 \cdots M_n) \]
Proof in More Detail

Have

\[M \xrightarrow{i} P \xrightarrow{h} N \]

As \(P \) head-reduces it is \((\lambda \bar{v}. (\lambda u. P_0) P_1 P_2 \cdots P_n) \), with \(n \geq 1 \)

And \(M \) is of form \((\lambda \bar{v}. (\lambda u. M_0) M_1 M_2 \cdots M_n) \), with \(M_i \xrightarrow{\beta} P_i \)

So

\[M \xrightarrow{h} (\lambda \bar{v}. M_0[u := M_1] M_2 \cdots M_n) \]

\[\xrightarrow{\beta} N \]

Last transition is \(\xrightarrow{\beta} \), not \(\xrightarrow{i} \) because \(M_0 \)'s reduction may be at top level, making it head.

A little more work is still required

(decomposing \(\xrightarrow{\beta} \) into head and internal parts).
The Last Big Lemma

If $M \xrightarrow{\beta} N$, then there are M_i such that

$$M \xrightarrow{h} M_1 \xrightarrow{h} M_2 \cdots \xrightarrow{h} M_n \xrightarrow{i} N$$

and each

$$M_i \xrightarrow{\beta} N$$

This gives:
Putting the Lemmas Together

Proving: $M \xrightarrow{\beta}^* N \implies \exists P. M \xrightarrow{h}^* P \xrightarrow{i}^* N$

Have $M \xrightarrow{\beta}^* N$, and so also $M \xrightarrow{\beta}^* N$.

(Base case of zero steps trivial.)
Putting the Lemmas Together

Proving: \(M \xrightarrow{\beta}^* N \implies \exists P. \ M \xrightarrow{h}^* P \xrightarrow{i}^* N \)

Have \(M \xrightarrow{\beta}^* N \), and so also \(M \xrightarrow{\beta}^* N \).

So, assume \(M \xrightarrow{\beta} M' \xrightarrow{\beta}^* N \).
Putting the Lemmas Together

Proving: $M \xrightarrow{\beta}^* N \implies \exists P. M \xrightarrow{h}^* P \xrightarrow{i}^* N$

Have $M \xrightarrow{\beta}^* N$, and so also $M \xrightarrow{\beta}^* N$.

So, assume $M \xrightarrow{\beta} M' \xrightarrow{\beta}^* N$.

By Last Big Lemma, also have P_1 s.t. $M \xrightarrow{h}^* P_1 \xrightarrow{i} M'$
Putting the Lemmas Together

Proving: \(M \xrightarrow{\beta}^* N \implies \exists P. M \xrightarrow{h}^* P \xrightarrow{i}^* N \)

Have \(M \xrightarrow{\beta}^* N \), and so also \(M \implies \beta N \).

So, assume \(M \implies \beta M' \implies \beta N \).

By Last Big Lemma, also have \(P_1 \) s.t. \(M \xrightarrow{h}^* P_1 \xrightarrow{i} M' \)

By inductive hypothesis, have \(P_2 \) s.t. \(M' \xrightarrow{h}^* P_2 \xrightarrow{i} N \)

I.e.,

\[
M \xrightarrow{h}^* P_1 \xrightarrow{i} M' \xrightarrow{h}^* P_2 \xrightarrow{i} N
\]

The Proof

The Right Approach
Putting the Lemmas Together

Proving: \(M \xrightarrow{\beta}^* N \implies \exists P. M \xrightarrow{h}^* P \xrightarrow{i}^* N \)

Have \(M \xrightarrow{\beta}^* N \), and so also \(M \xrightarrow{\beta}^* N \).

So, assume \(M \xrightarrow{\beta} M' \xrightarrow{\beta}^* N \).

By Last Big Lemma, also have \(P_1 \) s.t. \(M \xrightarrow{h}^* P_1 \xrightarrow{i} M' \)

By inductive hypothesis, have \(P_2 \) s.t. \(M' \xrightarrow{h}^* P_2 \xrightarrow{i}^* N \)

I.e.,
\[
M \xrightarrow{h}^* P_1 \xrightarrow{i} M' \xrightarrow{h}^* P_2 \xrightarrow{i}^* N
\]

Now, we can “bubble” head reductions after \(M' \) up over the \(\xrightarrow{i} \), using the Better Lemma.
Consequences: Standardisation

Have shown: $M \xrightarrow{\beta}^* N \implies \exists P. M \xrightarrow{h}^* P \xrightarrow{i}^* N$

It’s obviously possible to order the internal reductions so that they occur left-to-right.

- By induction.
 The internal terms within N are all smaller than N itself, so the internal reductions within each N_i can themselves be sorted appropriately.

Gives **Standardisation**:

If $M \xrightarrow{\beta}^* N$ is possible, then N can be reached from M in a “standard” way (doing reductions in left to right order)
Recall that normal order evaluation is a “standard” evaluation strategy that does all possible reductions.
Recall that normal order evaluation is a “standard” evaluation strategy that does all possible reductions.

If M can reduce to N, a β-normal form, then there is a standard reduction that does the same.
Recall that normal order evaluation is a “standard” evaluation strategy that does all possible reductions.

If M can reduce to N, a β-normal form, then there is a standard reduction that does the same.

If a standard reduction terminates in a β-normal form, it has done all possible reductions.
Recall that normal order evaluation is a “standard” evaluation strategy that does all possible reductions.

If M can reduce to N, a β-normal form, then there is a standard reduction that does the same.

If a standard reduction terminates in a β-normal form, it has done all possible reductions.

And so that standard reduction was a normal order reduction.
Recall that normal order evaluation is a “standard” evaluation strategy that does all possible reductions.

If M can reduce to N, a β-normal form, then there is a standard reduction that does the same.

If a standard reduction terminates in a β-normal form, it has done all possible reductions.

And so that standard reduction was a normal order reduction.

So, normal order evaluation finds normal forms if they exist.
Summary

An involved proof.

Lesson #1: The λ-calculus is a plausible programming language
- there is an algorithm for turning λ-terms into values
- (when those terms have values at all)

Lesson #2: Evaluation Orders are a Design Question
- Do you want to guarantee as much termination as possible?
 - Use normal order
- Or, do you want more speed, and unnecessary non-terminations?
 - Use applicative order (like C, Java etc)

Next time: adding plausibility.
Numbers, Pairs and Lists for the λ-calculus.