Exercise 1. Consider the following model $M = (W, R, V)$:

![Diagram of the model]

where all the propositional variables made true at a world are explicitly written in the circle related to the world. For example, we have that $M, w_1 \models p$ and $M, w_3 \models q$ while $\not W, w_4 \not \models q$ and $M, w_1 \not \models p$. Are the following statements true or false? In each case justify your answer.

1. $M, w_0 \models \Box \Diamond q$
2. $M, w_3 \models \Box \neg p$
3. $M, w_2 \models \Box \Diamond (p \land q)$
4. $M, w_0 \models \Box (p \lor q)$
5. $M, w_3 \models \Diamond (p \rightarrow q)$
6. $M \models \Box p \rightarrow p$
7. $M \models \Diamond (\Box p \rightarrow \Diamond (p \lor \neg \Box q))$
8. $(W, R) \models \Box p \rightarrow \Diamond p$
9. $(W, R) \models \Box p \rightarrow p$

Answer.

1. $M, w_0 \models \Box \Diamond q$ holds as we have that for every $v \in W$ if $w_0 R v$, then there is a $v' \in W$ such that $v R v_0$ and $M, v' \models q$. For w_3 we have that $w_3 R w_3$ and $M, w_3 \not \models q$, so $M, w_3 \models \Diamond q$. For w_2 we have that $w_2 R w_1$ and $M, w_1 \models q$, so $M, w_2 \models \Diamond q$. For w_1 we have that $w_1 R w_1$ and $M, w_1 \models q$, so $M, w_1 \models \Diamond q$. So we have that $M, w_0 \models \Box \Diamond q$ as there is no other point accessible from w_0.

2. $M, w_3 \not \models \Box \neg p$ as $w_3 R w_4$ and $M, w_4 \models p$, hence $M, w_4 \not \models \neg p$.

3. $M, w_2 \models \Box \Diamond (p \land q)$ holds. We have that $M, w_1 \models p \land q$ as well as $w_2 R w_1$, hence $M, w_2 \models \Diamond (p \land q)$. But as $w_1 R w_2$ we get $M, w_1 \models \Diamond \Diamond (p \land q)$. As w_1 is the only point accessible from w_2 we get $M, w_2 \models \Box \Diamond (p \land q)$.
4. $\mathcal{M}, w_0 \models \Box(p \lor q)$ holds. We have that $w_0 R w_1$ and $\mathcal{M}, w_1 \models p$ hence $\mathcal{M}, w_1 \models p \lor q$. We have that $w_0 R w_2$ and $\mathcal{M}, w_2 \models p$ hence $\mathcal{M}, w_2 \models p \lor q$. We have that $w_0 R w_3$ and $\mathcal{M}, w_3 \models q$ hence $\mathcal{M}, w_3 \models p \lor q$. As there is no other point accessible from w_0 we get $\mathcal{M}, w_0 \models \Box(p \lor q)$.

5. $\mathcal{M}, w_3 \models \Box(p \rightarrow q)$ as $w_3 R w_5$ and $\mathcal{M}, w_3 \models q$ hence $\mathcal{M}, w_3 \models p \rightarrow q$.

6. $\mathcal{M} \models \Box p \rightarrow p$ holds. To prove it we need to show that for every $w \in W$, if $\mathcal{M}, w \models \Box p$ then $\mathcal{M}, w \models p$. The only points that force $\Box p$ are w_1 and w_2, so it is sufficient to show that they also force p. But this is the case, so we can conclude that $\mathcal{M} \models \Box p \rightarrow p$.

7. $\mathcal{M} \models \Box(\Box p \rightarrow (\Box \lor \Box q))$ holds as every point that has a successor is such that if it forces $\Box p$ then it forces $\Box(\Box \lor \Box q)$. The only relevant points to consider are w_1, w_2 as they are the only ones to have one single successor which forces $\Box p$ (the other points force trivially $\Box(\Box p \rightarrow (\Box \lor \Box q))$ as they have a successor which does not satisfy $\Box p$). We have that $\mathcal{M}, w_1 \models p$, hence $\mathcal{M}, w_1 \models (\Box \lor \Box q)$ and thus $\mathcal{M}, w_1 \models \Box p \rightarrow (\Box \lor \Box q)$. Similarly we have $\mathcal{M}, w_2 \models p$, hence $\mathcal{M}, w_2 \models (\Box \lor \Box q)$ and thus $\mathcal{M}, w_2 \models \Box p \rightarrow (\Box \lor \Box q)$. So we can conclude from this that $\mathcal{M}, w_1 \models (\Box \lor \Box q)$ and $\mathcal{M}, w_2 \models (\Box \lor \Box q)$. Thus we get $\mathcal{M} \models (\Box \lor \Box q)$.

8. $(W, R) \models \Box p \rightarrow \Box p$ holds. Take any valuation V on (W, R). It can be checked that for every point $w \in W$, if $(W, R, V), w \models \Box p$ then $(W, R, V), w \models \Box p$. Let us show this for w_0. Assume that $(W, R, V), w_0 \models \Box p$. Then we know by definition that $(W, R, V), w_1 \models p$ as $w_0 R w_1$, hence $(W, R, V), w_0 \models \Box p$. A similar argument can be provided for all the other points in W.

9. $(W, R) \not\models \Box p \rightarrow p$. Consider the following valuation V such that for every $w \in W$ such that $w \neq w_0$, $V(w, p) = t$ and $V(w_0, p) = t$. We thus get that $(W, R, V), w_4 \models \Box p$ as $(W, R, V), w_0 \models p$, while $(W, R, V), w_1 \not\models p$. So $(W, R, V) \not\models \Box p \rightarrow p$ hence $(W, R) \not\models \Box p \rightarrow p$.

Exercise 2. For each of the following formulae determine if it is valid. If it is justify your claim. If it is not provide a countermodel and then determine if it is satisfiable. If it is provide a model. If it is not justify your claim.

1. $\Diamond(p \land q) \rightarrow (\Diamond p \land \Diamond q)$
2. $\Box(p \lor q) \rightarrow (\Box p \lor \Box q)$
3. $\Diamond(p \land \neg p)$
4. $\Diamond(p \land q) \leftrightarrow (\Box p \land \Box q)$
5. $(\neg\Diamond p \land \neg\Diamond \rightarrow p)$
6. $(\Box p \land \Box \neg p) \lor \Diamond \top$

Answer.

1. $\Diamond(p \land q) \rightarrow (\Diamond p \land \Diamond q)$ is valid. Let $\mathcal{M} = (W, R, V)$ be a model and $w \in W$. Assume that $\mathcal{M}, w \models \Diamond(p \land q)$. Then there is a $v \in W$ such that $w R v$ and $\mathcal{M}, v \models p \land q$, hence $\mathcal{M}, v \models p$ and $\mathcal{M}, v \models q$. Thus we have that there is a $v \in W$ such that $w R v$ and $\mathcal{M}, v \models p$, hence $\mathcal{M}, w \models \Diamond p$. Similarly there is a $v \in W$ such that $w R v$ and $\mathcal{M}, v \models q$, hence $\mathcal{M}, w \models \Diamond q$. So $\mathcal{M}, w \models \Diamond(p \land q)$, hence $\mathcal{M}, w \models \Diamond(p \land q) \rightarrow (\Diamond p \land \Diamond q)$. As w and \mathcal{M} are arbitrary we get that $\models \Diamond(p \land q) \rightarrow (\Diamond p \land \Diamond q)$.

2. $\Box(p \lor q) \rightarrow (\Box p \lor \Box q)$ is not valid. Consider the following model \mathcal{M}:
We have that $\mathcal{M}, w \models \Box(p \land q)$ but $\mathcal{M}, w \not\models \Box p \lor \Box q$. We neither have $\mathcal{M}, w \not\models \Box p$, as $w_0 R w_1$ and $\mathcal{M}, w_1 \not\models p$; nor $\mathcal{M}, w \not\models \Box q$, as $w_0 R w_2$ and $\mathcal{M}, w_2 \not\models q$. $\Box(p \land q) \rightarrow (\Box p \lor \Box q)$ is however satisfiable as shows the previous model: we have that $\mathcal{M}, w_1 \models \Box(p \lor q)$ and $\mathcal{M}, w_1 \models \Box p$ hence $\mathcal{M}, w_1 \models \Box p \lor \Box q$.

3. $\Diamond(p \land \neg p)$ is not valid. Consider the previous model \mathcal{M}. It is such that there is no $v \in W$ such that $w_1 R v$, so by definition $\mathcal{M}, w_1 \not\models \Diamond(p \land \neg p)$. It is not satisfiable either. Assume for contradiction that it is. Then there is a model $\mathcal{N} = (W, R, V)$ and a $w \in W$ such that $\mathcal{N}, w \models \Diamond(p \land \neg p)$. Thus there is a $v \in W$ such that $\mathcal{N}, v \models p \land \neg p$, hence $\mathcal{N}, v \models p$ and $\mathcal{N}, v \models \neg p$, i.e., $\mathcal{N}, v \not\models p$ but this is a contradiction.

4. $\Box(p \land q) \leftrightarrow (\Box p \land \Box q)$ is valid. Let $\mathcal{M} = (W, R, V)$ and $w \in W$. Assume that $\mathcal{M}, w \models \Box(p \land q)$. Let $v \in W$ such that $w R v$. As $\mathcal{M}, w \models \Box(p \land q)$ we get that $\mathcal{M}, v \models p \land q$ hence $\mathcal{M}, v \models p$ and $\mathcal{M}, v \models q$. As v is arbitrary we get that $\mathcal{M}, w \models \Box p \land \Box q$, hence $\mathcal{M}, w \models \Box(p \land q) \rightarrow (\Box p \land \Box q)$. Now assume that $\mathcal{M}, w \models \Box p \land \Box q$, hence $\mathcal{M}, w \models \Box p$ and $\mathcal{M}, w \models \Box q$. Let $v \in W$ such that $w R v$. As $\mathcal{M}, w \models \Box p$ we get $\mathcal{M}, v \models p$ and as $\mathcal{M}, w \models \Box q$ we get $\mathcal{M}, v \models q$. So $\mathcal{M}, v \models p \land q$. As v is arbitrary we get that $\mathcal{M}, w \models \Box(p \land q)$. So $\mathcal{M}, w \models (\Box p \land \Box q) \rightarrow (\Box p \land q)$. As \mathcal{M} and w are arbitrary we get that $\models (\Box p \land \Box q) \leftrightarrow (\Box p \land \Box q)$.

5. $(\neg \Box p \land \neg \Box \neg p)$ is not valid. Consider the following model \mathcal{M}':

```
\begin{tikzpicture}
  \node (w0) at (0,0) {$w_0$};
  \node (w1) at (1,0) {$w_1$};
  \node (w2) at (2,0) {$w_2$};
  \node (p) at (1,1) {$p$};
  \draw[->] (w0) -- (w1);
  \draw[->] (w1) -- (p);
  \draw[->] (p) -- (w2);
\end{tikzpicture}
```

We get that $\mathcal{M}', w_0 \models \neg \Box p$. This is the case as the only successor of w_0 is w_1 and $\mathcal{M}', w_1 \models p$, hence $\mathcal{M}', w_0 \not\models \Box p$. But $(\neg \Box p \land \neg \Box \neg p)$ is satisfiable as we have that $\mathcal{M}', w_1 \not\models \neg \Box p \land \neg \Box \neg p$. As it does not have any successor we directly get that $\mathcal{M}', w_1 \not\models \Box p$ and $\mathcal{M}', w_1 \not\models \Box \neg p$, hence $\mathcal{M}', w_1 \not\models \Box(p \land \neg p)$. We thus get $\mathcal{M}', w_1 \not\models \neg \Box p \land \neg \Box \neg p$.

6. $(\Box p \land \Box \neg p) \lor \Diamond T$ is valid. Let $\mathcal{M} = (W, R, V)$ and $w \in W$. If there is a $v \in W$ such that $w R v$ then $\mathcal{M}, v \models T$ by definition and thus $\mathcal{M}, w \models \Diamond T$, hence $\mathcal{M}, w \models (\Box p \land \Box \neg p) \lor \Diamond T$. If there is no such v then we get that $\mathcal{M}, w \models \Box p$ and $\mathcal{M}, w \models \Box \neg p$ and thus $\mathcal{M}, w \models (\Box p \land \Box \neg p)$ hence $\mathcal{M}, w \models (\Box p \land \Box \neg p) \lor \Diamond T$. In both cases we get that $\mathcal{M}, w \models (\Box p \land \Box \neg p) \lor \Diamond T$. As \mathcal{M} and w are arbitrary we get that $\models (\Box p \land \Box \neg p) \lor \Diamond T$.

Exercise 3. Let $\mathcal{M} = (W, R, V)$ be a Kripke model and ϕ a formula. Prove the following: if $\mathcal{M} \models \phi$, then for every $w \in W$ we have $\mathcal{M}, w \models \Diamond \neg \phi$ or $\mathcal{M}, w \models \Diamond \phi$.

Answer. Assume that $\mathcal{M} \models \phi$. Let $w \in W$. By $\mathcal{M} \models \phi$ we get that $\mathcal{M}, w \models \phi$. If there is no $v \in W$ such that $w R v$ then we get that $\mathcal{M}, w \models \Diamond \neg \phi$. If there is a $v \in W$ such that $w R v$ then we claim that $\mathcal{M}, v \models \Box \phi$. Let $u \in W$ such that $v R u$. Then by $\mathcal{M} \models \phi$ we get $\mathcal{M}, u \models \phi$. As u is arbitrary we get that $\mathcal{M}, v \models \Box \phi$. As w was arbitrary we get that for every $w \in W$ we have $\mathcal{M}, w \models \Diamond \neg \phi$ or $\mathcal{M}, w \models \Diamond \phi$.

Exercise 4. Show the following:

1. $\Box p \rightarrow p \models \neg p \rightarrow \Diamond \neg p$
2. $\Box p \rightarrow p, \Diamond \neg p \rightarrow \Box p \models \neg p \rightarrow \Diamond \neg p$
3. \(\Box p \to p \models \Diamond \Box p \to \Diamond p \)

Answer.

1. Let \(\mathcal{M} = (W, R, V) \) be a model, and assume that \(\mathcal{M} \models \Box p \to p \). We want to show that \(\mathcal{M} \models \neg \Box \neg p \to \Diamond \neg p \). Let \(w \in W \). Assume that \(\mathcal{M}, w \models \neg \Box p \). Then we have that \(\mathcal{M}, w \not
p \). As \(\mathcal{M} \models \Box p \to p \) we get \(\mathcal{M}, w \models \Diamond \Box p \to p \). But as \(\mathcal{M}, w \not
p \) we can deduce that \(\mathcal{M}, w \not
\Diamond p \) (otherwise we reach a contradiction).

By definition of the semantics we get that there is a \(v \in W \) such that \(wRv \) and \(\mathcal{M}, v \not
p \). So there is a \(v \in W \) such that \(wRv \) and \(\mathcal{M}, v \not
p \). Thus \(\mathcal{M}, w \not
\Diamond \neg p \). Consequently \(\mathcal{M}, w \models \neg \neg p \to \Diamond \neg p \). As \(w \) is arbitrary we get that \(\mathcal{M} \models \neg \neg p \to \Diamond \neg p \). As \(\mathcal{M} \) is arbitrary we get that \(\Diamond \Box p \to p \models \neg p \to \Diamond p \).

2. Let \(\mathcal{M} = (W, R, V) \) be a model, and assume that \(\mathcal{M} \models \Box p \to p \) and \(\mathcal{M} \models \Diamond \Diamond p \to \Box p \). We want to show that \(\mathcal{M} \models \neg \Box \neg p \to \Diamond \neg p \). Let \(w \in W \). Assume that \(\mathcal{M}, w \models \neg p \), hence \(\mathcal{M}, w \not
p \). As \(\mathcal{M} \models \Box p \to p \) we get \(\mathcal{M}, w \models \Box p \to p \). But as \(\mathcal{M}, w \not
p \) we can deduce that \(\mathcal{M}, w \not
\Diamond p \). And as \(\mathcal{M} \models \Box p \to p \) we get that \(\mathcal{M}, w \not
\Diamond \Diamond p \to \Box p \). But as \(\mathcal{M}, w \not
\Diamond p \) we can deduce that \(\mathcal{M}, w \not
\Diamond \Diamond p \). By definition of the semantics we have that for every \(v \in W \) such that \(wRv \), \(\mathcal{M}, v \not
\Diamond p \). This is equivalent to the following: for every \(v \in W \) such that \(wRv \), there is a \(u \in W \) such that \(vRu \) and \(\mathcal{M}, u \not
p \), i.e. \(\mathcal{M}, u \models \neg p \). So for every \(v \in W \) such that \(wRv \), \(\mathcal{M}, v \models \neg \neg p \). Thus \(\mathcal{M}, w \models \Diamond \Diamond \neg p \). Consequently \(\mathcal{M}, w \models \neg p \to \Diamond \Diamond \neg p \). As \(w \) is arbitrary we obtain \(\mathcal{M} \models \neg \Box \neg p \to \Diamond \neg p \). And as \(\mathcal{M} \) is arbitrary we get that \(\Diamond \Box p \to p \models \neg p \to \Diamond \Diamond \neg p \).

Exercise 5. Let \(\Gamma \) be a set of formulae. Show the following:

1. the canonical model \(\mathcal{M}_\Gamma \) based on the logic \(\mathbf{K}4 \) is transitive.

2. the canonical model \(\mathcal{M}_\Gamma \) based on the logic \(\mathbf{K}2 \) is weakly directed (HARD).

3. the canonical model \(\mathcal{M}_\Gamma \) based on the logic \(\mathbf{K}+\Box(\phi \to \Diamond \phi) \) is one-step reflexive, i.e. satisfies \(\forall w, v \in W_c (wRv \to vRv) \).

Answer.

1. Let \(\mathcal{M}_\Gamma = (W_c, R_c, V_c) \) be the canonical model for \(\Gamma \) based on the logic \(\mathbf{K}4 \).

We need to show that for every \(\Delta_1, \Delta_2, \Delta_3 \in W_c \), if \(\Delta_1 R_c \Delta_2 \) and \(\Delta_2 R_c \Delta_3 \) then \(\Delta_1 R_c \Delta_3 \). Let \(\Delta_1, \Delta_2, \Delta_3 \in W_c \), and assume that \(\Delta_1 R_c \Delta_2 \) and \(\Delta_2 R_c \Delta_3 \). We need to show that \(\Delta_1 R_c \Delta_3 \), i.e. that for every formula \(\phi \), if \(\Box \phi \in \Delta_1 \) then \(\phi \in \Delta_3 \). Let \(\phi \) be a formula and assume that \(\Box \phi \in \Delta_1 \). As \(\Box \psi \to \Box \Box \psi \) is an axiom of the logic under consideration we get that \(\Box \phi \to \Box \Box \phi \in \Delta_1 \). But we know that MCSs are closed under implication, so as \(\Box \phi \to \Box \Box \phi \in \Delta_1 \) and \(\Box \phi \in \Delta_1 \) we get that \(\Box \Box \phi \in \Delta_1 \). Moreover, as \(\Delta_1 R_c \Delta_2 \) we get by definition of \(R_c \) that \(\Box \phi \in \Delta_2 \). In turn, \(\Delta_2 R_c \Delta_3 \) implies that \(\phi \in \Delta_3 \). So we have that if \(\Box \phi \in \Delta_1 \) then \(\phi \in \Delta_3 \). As \(\phi \) is arbitrary we get that \(\Delta_1 R_c \Delta_3 \). As \(\Delta_1, \Delta_2, \Delta_3 \) are arbitrary we get that \(R_c \) is transitive.

2. (HARD) Let \(\mathcal{M}_\Gamma = (W_c, R_c, V_c) \) be the canonical model for \(\Gamma \) based on the logic \(\mathbf{K}2 \). We need to show that for every \(\Delta_1, \Delta_2, \Delta_3 \in W_c \), if \(\Delta_1 R_c \Delta_2 \) and \(\Delta_1 R_c \Delta_3 \)
then there is a $\Delta_1 \in W_c$ such that $\Delta_2 R_c \Delta_4$ and $\Delta_3 R_c \Delta_4$. Let $\Delta_1, \Delta_2, \Delta_3 \in W_c$ and assume that $\Delta_1 R_c \Delta_2$ and $\Delta_1 R_c \Delta_3$. Note that if we prove that $S = \{ \phi \mid \Box \phi \in \Delta_2 \cup \Delta_3 \}$ is consistent, then we can extend it to a MCS Δ containing Γ^* (as for every $\gamma \in \Gamma$, we have that $\Box \gamma \in \Delta_1$, essentially because $\Box \gamma \in \Gamma^*$ and $\Gamma^* \subseteq \Delta_i$ for $i \in \{2, 3\}$) is such that $\Delta_2 R_c \Delta$ and $\Delta_3 R_c \Delta$ as $S \subseteq \Delta$. So let us show that S is consistent. Assume for reductio that S is not consistent. Then there are $\phi_1, \ldots, \phi_n \in S$ such that $\vdash (\phi_1 \land \ldots \land \phi_n) \rightarrow \bot$. In fact we can assume that these formulas ϕ_1, \ldots, ϕ_n can be divided in ψ_1, \ldots, ψ_l such that $\Box \psi_1, \ldots, \Box \psi_l \in \Delta_2$ and χ_t, \ldots, χ_n such that $\Box \chi_t, \ldots, \Box \chi_n \in \Delta_3$ (assuming that ϕ_1, \ldots, ϕ_n are all in either Δ_2 or Δ_3 leads straightforwardly to a contradiction). So we have $\vdash (\psi_1 \land \ldots \land \psi_l \land \chi_t \land \ldots \land \chi_n) \rightarrow \bot$. We can deduce from this that $\vdash (\psi_1 \land \ldots \land \psi_l) \rightarrow \neg(\chi_t \land \ldots \land \chi_n)$ by CPL. Then we easily obtain by necessitation and then the axiom K that $\vdash \Box (\psi_1 \land \ldots \land \psi_l) \rightarrow \Box \neg(\chi_t \land \ldots \land \chi_n)$, i.e. $\vdash \Box (\psi_1 \land \ldots \land \psi_l) \rightarrow \neg \Box (\chi_t \land \ldots \land \chi_n)$. As we know that $\vdash (\Box \psi_1 \land \ldots \land \Box \psi_l) \rightarrow (\psi_1 \land \ldots \land \psi_l)$ holds in modal logic, we get that $\vdash (\Box \psi_1 \land \ldots \land \Box \psi_l) \rightarrow \Box \neg (\chi_t \land \ldots \land \chi_n)$. But then we also know that if $\vdash \rho_1 \rightarrow \rho_2$ then $\vdash \Box \rho_1 \rightarrow \Box \rho_2$ holds in modal logic, so we can obtain $\vdash \Box (\psi_1 \land \ldots \land \Box \psi_l) \rightarrow \neg \Box (\chi_t \land \ldots \land \chi_n)$, i.e. $\vdash \Box (\psi_1 \land \ldots \land \Box \psi_l) \rightarrow \neg \Box (\chi_t \land \ldots \land \chi_n)$.

Now we prove two things leading to a contradiction:

- $\neg \Box (\chi_t \land \ldots \land \chi_n) \in \Delta_1$: we know that $\Box \psi_1, \ldots, \Box \psi_l \in \Delta_2$ as it is a MCS (they are closed under conjunction) and $\Box \psi_1, \ldots, \Box \psi_l \in \Delta_2$. By Lemma 10 of the lecture notes (case for \Box) we get that $\Box (\Box \psi_1 \land \ldots \land \Box \psi_l) \in \Delta_1$ as $\Delta_1 R_c \Delta_2$. But then as Δ_1 is a MCS and thus closed under implication, and $\vdash (\Box \psi_1 \land \ldots \land \Box \psi_l) \rightarrow \neg \Box (\chi_t \land \ldots \land \chi_n)$, we get that $\neg \Box (\chi_t \land \ldots \land \chi_n) \in \Delta_1$.

- $\Box (\chi_t \land \ldots \land \chi_n) \in \Delta_1$: We also know that $\Box \chi_t, \ldots, \Box \chi_n \in \Delta_3$, hence $\Box \chi_t, \ldots, \Box \chi_n \in \Delta_3$, which implies that $\Box (\chi_t \land \ldots \land \chi_n) \in \Delta_3$. But then by Lemma 10 of the lecture notes again we get that $\Box (\chi_t \land \ldots \land \chi_n) \in \Delta_1$, as $\Delta_1 R_c \Delta_3$. Finally we know that $\Box \Box \rho \rightarrow \Box \rho$ is an axiom of the logic here, so we obtain as an instance $\vdash \Box \Box (\chi_t \land \ldots \land \chi_n) \rightarrow \Box (\chi_t \land \ldots \land \chi_n)$. So we have that $\Box \Box (\chi_t \land \ldots \land \chi_n) \rightarrow \Box (\chi_t \land \ldots \land \chi_n) \in \Delta_1$ and $\Box (\chi_t \land \ldots \land \chi_n) \in \Delta_1$ so $\Box \Box (\chi_t \land \ldots \land \chi_n) \in \Delta_1$.

We then reached our contradiction: we managed to obtain both $\Box \Box (\chi_t \land \ldots \land \chi_n) \in \Delta_1$ and $\neg \Box (\chi_t \land \ldots \land \chi_n) \in \Delta_1$ which is in contradiction with the consistency of Δ_1. Consequently our assumption according to which S is not consistent is contradictory. Then S is consistent. So by the Lindenbaum lemma it can be extended to a MCS Δ that is an extension of Γ^* (as all the $\gamma \in \Gamma^*$ are such that $\gamma \in S$). As Δ is an extension of S, which implies by construction of S that for every formula ϕ, if $\Box \phi \in \Delta_2$ or $\Box \phi \in \Delta_3$ then $\phi \in \Delta$, then we get that $\Delta_2 R_c \Delta$ and $\Delta_3 R_c \Delta$. Thus there is a Δ such that $\Delta_2 R_c \Delta$ and $\Delta_3 R_c \Delta$. Then, as $\Delta_1, \Delta_2, \Delta_3$ are arbitrary, we get that R_c is weakly directed.

3. Let $M_T = (W_c, R_c, V_c)$ be the canonical model for Γ based on the logic $K + \Box (p \rightarrow \Box p)$. We need to show that for every $\Delta_1, \Delta_2 \in W_c$, if $\Delta_1 R_c \Delta_2$ then $\Delta_2 R_c \Delta_1$. Let $\Delta_1, \Delta_2 \in W_c$. Assume that $\Delta_1 R_c \Delta_2$. We need to show that $\Delta_2 R_c \Delta_1$. Let ϕ be a formula and assume that $\Box \phi \in \Delta_2$. We need to show that $\phi \in \Delta_1$. Assume for reductio that $\phi \notin \Delta_2$. But then by maximality we get that $\neg \phi \in \Delta_2$. As we have the axiom $\Box (\phi \rightarrow \Box \phi)$ we can easily get that $\Box (\neg \phi \rightarrow \Box \neg \phi) \in \Delta_1$. But then by definition of R_c we get that $\neg \phi \rightarrow \Box \neg \phi \in \Delta_2$. And as $\neg \phi \in \Delta_2$ by assumption and MCSs are closed under implication, then we get $\Box \neg \phi \in \Delta_2$. From this we easily deduce that $\Box \neg \phi \in \Delta_2$, which is in contradiction with our assumption that $\Box \phi \in \Delta_2$. So we have that $\phi \in \Delta_1$. As ϕ is arbitrary we get that $\Delta_2 R_c \Delta_1$. And as Δ_1, Δ_2 are arbitrary we get that R_c is one-step reflexive.