1 Preamble
This document gives a brief description of the administrative arrangements for COMP8320 in 2011. Further details are given on the course web page:

http://cs.anu.edu.au/student/comp8320/

2 Course Staff
The coordinator and main lecturer is Peter Strazdins. His office is CSIT N219 and his phone is 6125 5140.

Office hours will be made available from the course Web Page. Please contact the lecturer by email if you would like to make an appointment outside of office hours.

3 Assumed Knowledge and Abilities
The assumed knowledge for this course is having done the equivalent of an introductory course on computer architecture and operating systems (e.g. COMP2300), a course on concurrency (e.g. COMP2310), and some intermediate programming and data structure courses (e.g. COMP2100).

Furthermore, as it is an advanced postgraduate-level course, it is also assumed that the student has sufficient intellectual development to read and understand relevant research-level articles, and the technical development to pick up state-of-the-art tools and languages (where ‘state-of-the-art’ may mean ‘bleeding edge’!). Finally, it is assumed that the student has the initiative and independent thinking to guide their own learning and have the ability to independently solve technical and intellectual problems.

_Students not meeting these requirements should seriously consider whether to continue with the course!_

4 Textbooks and Reading Materials
There are no specific texts for this course. Some books are listed from the course web page; these should be regarded as references. Some are available from the bookshop or library short-loan.

There will be readings of research papers given for every module. Where these are not available on-line, hardcopies will be distributed in the lecture preceding the tutorial where they will be discussed.

5 Lectures
There will be ten 2-hour lectures on Monday mornings, beginning in week 1. See the course web page for the schedule.

6 Tutorial/Laboratory Sessions
There will be 7-8 supervised combined tutorial/laboratory sessions, each of 2 hours duration on Wednesday afternoons of selected weeks. See the course web page for the schedule.
7 Proposed Assessment Scheme

The proposed assessment scheme is as follows. It will be discussed with students in lectures of weeks 1 and 2.

1. Assignments: 50%, three, according to the following table:

<table>
<thead>
<tr>
<th>#</th>
<th>theme</th>
<th>weight</th>
<th>week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T2</td>
<td>20%</td>
<td>2 6</td>
</tr>
<tr>
<td>2</td>
<td>GPU</td>
<td>15%</td>
<td>6 8</td>
</tr>
<tr>
<td>3</td>
<td>SCC</td>
<td>15%</td>
<td>9 12</td>
</tr>
</tbody>
</table>

These will contain a significant programming component, plus a report answering specific questions, such as analysis of program performance. Assignment 3 may have a reading component with a possibly reduced programming component.

2. Final Examination 50%

The examination will include topics from Project themes. One A4 page of notes (both sides, printed or hand written) is permitted; a calculator is not permitted.