OpenSPARC Slide-Cast

In 12 Chapters
Presented by OpenSPARC designers, developers, and programmers
• to guide users as they develop their own OpenSPARC designs and
• to assist professors as they teach the next generation.

This material is made available under Creative Commons Attribution-Share 3.0 United States License
Chapter Four

OPENSPARC T2 OVERVIEW

Denis Sheahan
Distinguished Engineer
Niagara Architecture Group
Sun Microsystems
Agenda

• Chip overview
• SPARC core
 > Execution Units
 > Power
 > RAS
• Crossbar
• L2
• Summary
OpenSPARC T2 Chip Goals

• Double throughput versus OpenSPARC T1
 > Doubling cores versus increasing threads per core
 > Utilization of execution units
• Improve throughput / watt
• Improve single-thread performance
• Improve floating-point performance
• Maintain SPARC binary compatibility
UltraSPARC T2 Overview

- 8 SPARC cores, 8 threads each, 64 threads total
- Shared 4MB L2, 8 banks, 16 way associative
- Four dual-channel FBDIMM memory controllers
- Full 8x9 crossbar connects cores to L2 banks / SIU and vice versa
- SIU connects I/O to memory
UltraSPARC® T2 Processor: True System On a Chip

- Up to 8 cores @ 1.2 /1.4GHz
- Up to 64 threads per CPU
- Huge Memory Capacity
 - Up to 512GB memory
 - Up to 64 Fully Buffered Dimms
- High Memory Bandwidth
 - 2.5x memory BW = 60+GB/S
- 8x FPUs, 1 fully pipelined floating point unit/core
- 4MB L2$ (8 banks) 16 way
- Security co-processor / core
 - DES, 3DES, AES, RC4, SHA1, SHA256, MD5, RSA to 2048 key, ECC,CRC32

Power 60 – 123W

2x 10GE Ethernet

x8 @2.5GHz
UltraSPARC® T2 Processor: True System On a Chip

- Up to 8 cores @ 1.2 /1.4GHz
- Up to 64 threads per CPU
- Huge Memory Capacity
 - Up to 512GB memory
 - Up to 64 Fully Buffered Dimms
- High Memory Bandwidth
 - 2.5x memory BW = 60+GB/S
- 8x FPUs, 1 fully pipelined floating point unit/core
- 4MB L2$ (8 banks) 16 way
- Security co-processor / core
 - DES, 3DES, AES, RC4, SHA1, SHA256, MD5, RSA to 2048 key, ECC,CRC32

Power 60 – 123W

2x 10GE Ethernet x8 @2.5GHz
UltraSPARC T2 Architecture
A true system on a chip

- Up to 8 SPARC cores @ 1.0–1.4 GHz
 > Up to 64 total threads
 > 4-MB, 16-way, 8-bank L2$
- 1 floating-point unit per core
- 1 SPU (crypto) per core
- FB-DIMM 1.0 support
- 8-lane PCI Express 1.0 bus interface
- 2 x 1/10 Gb on-chip Ethernet
- Power: < 95 W (nominal)
UltraSPARC T2 “Zero Cost” Security

- One crypto unit integrated per core (eight total)
- Supports the ten most common ciphers and secure hashing functions
- Composed of two independent sub-units that operate in parallel
 > Modular Arithmetic Unit
 > Cipher/Hash Unit
Integrated Multithreaded 10 GbE

• Dual, multithreaded, 10 GbE (XAUI)
 > Up to 4X the performance of current network interface cards
 > 16 Rx and Tx DMA channels for virtualization

• Limited classification
 > Classified at layer 2, 3 and 4 into Rx DMA buffer to match the flow

• Benefits
 > Eliminates network I/O bottlenecks
 > Enables faster network access
Integrated Floating Point Unit

- Each UltraSPARC T2 core has its own Floating Point Unit
- Fully-pipelined (except divide/sqrt)
 > Divide/sqrt in parallel with add or multiply operations of other threads
- Full VIS 2.0 implementation
- FPU performs integer multiply, divide, population count
UltraSPARC T2: 7 World Records
Built on a heritage of network throughput

• Standard performance benchmarks
 > SPECint_Rate2006 (single chip)
 > SPECfp_Rate2006 (single chip)
 > Web Performance: SPECweb2005
 > Unix Java VM (single socket): SPECjbb2005
 > Java App Server: SPECjAppServer2004 (dual node)
 > Unix ERP Platform: Single-socket SAP SD-2 Tier
 > OLTP Platform: Database Tier SPECjAppServer2004 Dual Node Result
OpenSPARC T1 to T2 Core Changes

- Increase threads from 4 to 8 in each core
- Increase execution units from 1 to 2 in each core
- Floating-point and Graphics Unit in each core
- New pipe stage: pick
 > Choose 2 threads out of 8 to execute each cycle
- Instruction buffers after L1 instruction cache for each thread
- Increase set associativity of L1 instruction cache to 8
- Increase size of fully associative DTLB from 64 to 128 entries
- Hardware tablewalk for ITLB and DTLB misses
- Speculate branches not taken
OpenSPARC T1 to T2 Chip Changes

- Increase L2 banks from 4 to 8
 - 15 percent performance loss with only 4 banks and 64 threads
- FBDIMM memory interface replaces DDR2
 - Saves pins
 - Improved bandwidth
 - 42 GB/sec read
 - 21 GB/sec write
 - Improved capacity (512 GB)
- RAS changes (to match T1 FIT rate)
SPARC Core Block Diagram

- **IFU – Instruction Fetch Unit**
 - 16 KB I$, 32B lines, 8-way SA
 - 64-entry fully-associative ITLB
- **EXU0/1 – Integer Execution Units**
 - 4 threads share each unit
 - Executes one instruction/cycle
- **LSU – Load/Store Unit**
 - 8KB D$, 16B lines, 4-way SA
 - 128-entry fully-associative DTLB
- **FGU – Floating-Point and Graphics Unit**
- **TLU – Trap Logic Unit**
 - Updates machine state, handles exceptions and interrupts
- **MMU – Memory Management Unit**
 - Hardware tablewalk (HWTW)
 - 8KB, 64KB, 4MB, 256MB pages
- **Gasket arbitrates between the core units for the crossbar interface**
SPARC Core Pipeline

- 8 stage integer pipeline

- 3 cycle load-use penalty
 - Memory (data address translation, access tag/data array)
 - Bypass (late way select, data formatting, data forwarding)

- 12 stage floating-point pipeline

- 6 cycle latency for dependent FP instructions
- Longer pipeline for divide/sqrt
Integer and Load/Store Pipeline

IFU
F
C

TG0
IB0
1
2
3

P
D
E
M
B
W

TG1
IB4
5
6
7

P
D
E
M
B
W

LSU
Threaded Execution and Thread Groups
Instruction Fetch

- Instruction cache and fetch shared between the eight threads
- Fetch up to four instructions per cycle
 - Each thread in ready or wait state
 - Wait state caused by:
 - TLB miss
 - cache miss
 - instruction buffer full
 - Least-recently fetched among ready threads
 - One instruction buffer/thread
- Branches assumed to be not-taken; 5-cycle penalty if taken
 - T1 switched threads if branch or load fetched
- Limited I$ miss prefetching
- Pick and Decode decoupled from Fetch by the instruction buffer
Instruction Pick and Decode

- Threads divided into two groups of four threads each
- One instruction from each thread group picked each cycle
 - Least-recently picked within a thread group among ready threads
 - Wait states: dependency, D$ miss, DTLB miss, divide/sqrt, ...
 - Gives priority to nonspeculative threads (e.g. no load)
- Decode resolves conflicts
 - Each thread group picks independently of the other
 - Both thread groups pick load/store or FGU instructions
- Independent instructions after loads
Execution Unit

- Executes integer operations and some graphics operations
- Generates addresses for loads and stores
- Adder / logic unit, shifter
- Each EXU contains state for four threads
 > Integer register file (IRF)
 > 8 register windows per thread
 > 4 global levels per thread
 > Window or global level change requires multiple cycles (but pipelined)
 > Register window management logic (RML)
Load Store Unit

- One load or store per cycle
- Store-through
- D$ allocates on load misses, updates on store hits
- Load Miss Queue (LMQ) supports one pending load miss per thread
- Store buffer (STB) contains 8 stores per thread
 > Stores to same L2 cache line are pipelined to L2
- Arbiter for crossbar between load misses and stores
 > Fairness between threads, loads, and stores
Floating-point and Graphics Unit

- Fully pipelined (except divide/sqrt)
 - Divide/sqrt in parallel with add or multiply operations of other threads
- FGU performs integer multiply, divide, population count
- FGU predicts exceptions in Fx1 stage
Memory Management Unit

• Hardware tablewalk of up to 4 translation storage buffers (TSBs) (a.k.a page tables)
 > Each TSB supports one page size

• Three search modes:
 > Sequential – search TSBs in order
 > Burst – search TSBs in parallel
 > Prediction – use VA to predict TSB to search
 > Two-bit predictor orders first two TSB searches

• Up to 8 pending misses
 > ITLB or DTLB miss per thread
Core Power Management

- Minimal speculation
 - Next sequential I$ line prefetch
 - Predict branches not-taken
 - Predict loads hit in D$
 - Pick independent instructions after loads
 - Hardware tablewalk search control

- Extensive clock gating
 - Datapath
 - Control blocks
 - Arrays

- External power throttling
 - Add stall cycles at decode stage
Core Reliability and Serviceability

- Extensive RAS features
 - Parity-protection on I$, D$ tags and data, ITLB, DTLB CAM and data, store buffer address
 - ECC on integer RF, floating-point RF, store buffer data, trap stack, other internal arrays

- Combination of hardware and software correction flows
 - Hardware re-fetch for I$, D$
 - ECC inside the core is corrected by software
Crossbar

- Two complementary, non-blocking, pipelined switches
 - PCX – processor to cache
 - CPX – cache to processor
- 8 load/store requests and 8 data returns can be done at the same time
- Arbitration for a target is required
- Priority given to oldest requestor to maintain fairness and order
- Three cycle arbitration protocol
 - Request, arbitrate, and grant
- Supports 8 byte writes from a core to a bank
- Supports 16 byte reads from a bank to core
L2 Cache

- 4 MB L2 cache
 - 16 way set associative
 - 8 L2 banks
 - 64 byte line size
 - T1: 3 MB, 12 ways, 4 banks
- L2 cache is write-back, write-allocate
 - L1 data cache is write-thru
- Support for partial stores
- L2 cache manages coherency
 - Maintains directories for all 16 L1 caches
- 16 byte data transfers to the cores
Summary

• >2x throughput and throughput/watt vs. OpenSPARC T1
• Greatly improved floating-point performance
• Significantly improved integer performance
OpenSPARC Slide-Cast

In 12 Chapters
Presented by OpenSPARC designers, developers, and programmers

• to guide users as they develop their own OpenSPARC designs and
• to assist professors as they teach the next generation.

This material is made available under Creative Commons Attribution-Share 3.0 United States License