Symbolic Execution
for Automated Repair

Prof. Abhik Roychoudhury

National University of Singapore

abhik@comp.nus.edu.sg

ISSISP Summer School 2018

p—d

Recap: Use of Symbolic Execution
/ Breeution Bxcention \

Bug Finding - |

- Concolic execution: supporting real executions A x
[Directed Automated Random Testing] = oot | Crmun ecenso

- Symbolic execution tree construction e.g. KLEE / \

[Modeling system environment]

- ™
Mutated files v N
@ Yes P yd No \\
~ -
- Grey-box fuzz testing for systematic path —

\\\
\

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

I‘EE‘{

Test suite

exploration inspired by concolic execution - U= 200

- AFLFast
= 2R Y K

Input Queue

Recap: Use of Symbolic Execution

Reachability Analysis

Reachability of a location in the program

Traverse the symbolic execution tree using

search strategies e.g. KATCH ‘ /

Mutated fiu)

Encode it as an optimization

3 Bis
LS

7]
-~
w
c
=
o

problem inside the genetic search
of grey-box fuzzing AFLGo

-

ISSISP Summer School 2018

In the absence of formal specifications,
analyze the buggy program and its artifacts
such as execution traces via various heuristics
to glean a specification about how it can pass
tests and what could have gone wrong!

ISSISP Summer School 2018

Bug Fixing

Most software has many bugs.

Security-related bugs should be fixed before they are exploited by malicious
users.

Oftentimes, bugs are not fixed even a few months after they were reported.
E.g. Bug 18665 of glibc

Reported and responded on July 2015

Patched on Feb 2016

CVSS score: 8.1/ 10 (buffer overflow)

“Thanks for the bug report. Do you have a test case that triggers this
scenario? Do you have a patch or suggested fix?”

0
i
S
N
E
<

Q
n

~

()]

g

g

=)
N
ol
AN
[t}
n
AN
[t}

Background

- Why debugging is hard?
- Huge search space ? OR ...

- What would make debugging easy?
- Specification Inference

- Ideas 1n debugging which lead to automated fixing
- Using implicit specification inference.

0
—
o]
N
S
<
Q
n
~
(D]
g
z
i)
N
[a W
o))
—
)]
o))
—

A quote from many years ago

“Even today, debugging remains very much of an art. Much of the
computer science community has largely ignored the debugging
problem..... over 50 percent of the problems resulted from the time
and space chasm between symptom and root cause or inadequate

debugging tools.”

Hailpern & Santhanam, IBM Systems Journal, 41(1),
2002

Any progress in 2002 — 2018?

0
i
S
N
E
<

Q
n

~

()]

g

g

=)
N
ol
AN
[t}
n
AN
[t}

How can symbolic execution help?

Instrument
mmmn- Program =@

\ 4

Dynamic Slice =
criterion” Bug Report

OK Unexpected, debug it

0
i
S
N
r—
g
<
Q
N
P~
Q
g
g
5
n
A
0
2
%)
5]
2

Statistical Fault localization

Buggy

Program N

Fault

Localizata
on
. Ranked list of
Test Suite [suspicious
statements

Assign scores to program statements based on their
occurrence 1n passing / failing tests. Correlation
equals causation!

fail(s) .
allfail An example of scoring

scheme [Tarantula]

Score(s) =

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

fail(s) n pass(s)
allfail allpass

Trace Comparison based Debugging

@fnl Run Pool) +—| Testing

~

Change
Failing Input

Generate Choose

~ -/
S
\

Compare Execution

!

As Diagnostics

Q0
i
S
A
E
<

Q
N

~

(<))

Z

S

=
N
Ay
2
—
N
2
—

A moment’s note for the students

- You have — buggy program, failing tests

- You do not have specification of intended behavior, try to discover

- [What the program is supposed to do]

- Compare this to software model checking
* You have formal specification of intended behavior (temporal logic property)
* You have the buggy program

* You do not have failing tests (counter-examples), try to discover.

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

What 1s the intended behavior?

Only in the programmer’s mind?

Assertions capturing programmer’s intent at each statement
Too much overhead on programmer: almost as much work as a proof

Source of Information

Name of Symbolic
Technique

Internal inconsistency

Cause Clue Clauses

[PLDI 11]
Error Invariants [FM 12]

Passing Tests

Angelic Debugging
[ICSE 11]

Previous version / Golden
1mplementation

Regression Debugging
[FSE09, FSE10, FSE11]

0
i
S
N
E
<

Q
n

~

()]

g

g

=)
N
ol
AN
[t}
n
AN
[t}

Example

Input: a, 1ndex

1. base = a;
2. sentinel = base;
3. offset = index;

4. address = base + offset;

5. output address, sentinel

" Test 2)
<a, iIndex==9>

assert sentinel <=
address

' l _assert address < a + 10,

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

M &

95
NUS

National University

CCC : General 1dea

Input: a, index

1. base =
2. sentinel = base;
3. offset = index; address
/\ 4. address = base + /\ <a+10 == false

offset;
assert sentinel <=
address

Failing input A Program formula A Observed Output == false

Cause Clue Clauses, Jose and Majumdar, PLDI 2011.

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
A~
AN
p—
AN
AN
p—f

e &

95
NUS

National University
of Singapore

CCC: General 1dea

Input: a, index

1. base = a;
2. sentinel = base;
3. offset = index; address
/\ 4. address = base + <a+10 —_ false

offset;
assert sentinel <=
address

base == a A sentinel == base

constraint

index== 10] N A offset == index A address | A :id:liels: == false 5
== base + offset A sentinel < 2

n

address s

Hard : Hard E
Soft constraint constraint >

First 1iteration

Hard
Hard Soft constraint constraint
constraint - \
hdex—— 10] A base == _a_/\‘ sentinel == base A | address |__ falso
A offset == index A address <a+10
== base + offset A sentinel <
\address)

Running Partial MAXSAT, we get base == a as a soft constraint that can be
removed.

Corresponds to the fix: SRR Ets
. base = o

sentinel = base;

offset = index;
address = base + offset;

Q0
—
S
N
E
£
Q
N
~
Q
g
2
=}
N
output address, sentinel =
D
)]
—

Moving further

Hard
Hard . Hard & Soft constraints constraint
constraint v — -
ase == a A sentinel == bas
{ndex— 10] A A offset == index A address id:f_elsg == false

== base + offset A sentinel <
address

We mark base == a as hard now, and run Partial MaxSAT again, to get
offset == index.

Corresponds to the fix: SRR Ets

base = a;

sentinel = base;

offset = index ;

address = base + offset;
The clause . output address, sentinel

sentinel==base does
not help (or hurt)

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

e &

%
Fix determines fault NUS

Input: a, index
base = a;
sentinel = base;
offset = index;
address = base + offset;

output address, sentinel ()ﬂiby;one
error

Input: a, index
base =
sentinel = base;
offset = index ;
address = base + offset;
output address, sentinel

Input: a, index
base = H
sentinel = base;
offset = index;
address = base + offset;
output address, sentinel

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=
N
A
AN
p—
AN
AN
p—f

Specification discovery?

- Find statements that cause inconsistency 1n the failing execution
- Removal of that inconsistency makes the error go away
* Minimal inconsistency > cause
-+ Starting point for repair
- Simple specification discovery
- Removing statement S causes error to disappear
* Do not know what S should have been!

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Angelic Debugging

Suggy
Program

Debugging
Trlthee e
test t

Candidate
defect
locations

Define possible defect locations by 1identifying expressions
which can fix the fault!

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

Angelic Debugging, ICSE 2011 Ack: Satish Chandra (Facebook)

Input: a, index

.
14

sentinel = base;

assert

. offset = index;
/\ . address = base +
offset;
assert sentinel <=
address

address —= false
<a+ 10

base = a 1s a valid fix location.

. N %

index==10 | A Gase == "7 A sentinel ==basq . | address < =
A offset == index A address a+10 e

== base + offset A sentinel 5

<= address =

\ _/ g

N

Z

AN

7

Note: Does not suggest the repaired statement base =a — 1.

Fix failing tests, ...

Input: a, index

base = a;
sentinel = base;
assert
<a, index == 10> /\ . address = base + address == false
offset; <a+ 10

assert sentinel <=
address

base == a A sentinel == base A | address <
A offset == ?? A address == a+ 10
base + offset A sentinel <=

index== 10] A

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
A~
AN
p—
AN
AN
p—f

offset = index 1s another valid fix location.

M &

95
NUS

National University
of Singapore

..., and do not break passing tests

Input: a, index

1. base =
sentinel = base;

2.
<a, index == 1> JMll .. address = base + sentinel == a
offset;

5. output address,
sentinel

Input: a, index Input: a, index
base = a;
sentinel = base; . sentinel = base;

offset = index;
address = base + . address = base +

offset;
output address,
sentinel

offset;
output address,
sentinel

OK!!

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=
N
A
AN
p—
AN
AN
p—f

Specification discovery?

- Passing tests tell us which expressions are “inflexible”
- The better your test suite 1s, the more you know!

- Therefore, the bug must be in one of the flexible expressions

- Limitations
- Assumption of 1-fixable
+ Quality of filtering depends on the goodness of test suite
+ Subject to implementation of the symbolic analysis

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Retrospective

Debugging — some milestones
- Manual era: prints and breakpoints
- Statistical fault localization [e.g. Tarantula]
- Dynamic slicing [e.g. JSlice]
* Trace comparison and delta debugging
 Look for workarounds — how to avoid the error?
- Symbolic techniques
- Replace repeated experimentation with constraint solving.
* Discover and (partially) infer intended semantics by symbolic analysis

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

- The Future: repair (hints)

Syntactic Program
Repair

26

Automated Program Repair

Buggy

Program
Patched

Program

Correctness
Criterion

- [OLD] Large search space of candidate patches for general-purpose repair
tools.

- [INEW] Weak description of intended behavior / correctness criterion e.g. tests

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

- [FUTURE] Patch suggestions and Interactive Repair

Research Issues in Program Repair

[OLD] Large search space of candidate patches for general-purpose repair tools.
->. What should I use?
-> Which search frameworks could we use?

-> Syntactic Program Repair

INEW] Weak description of intended behavior / correctness criterion e.g. tests
-> Quverfitting of a patch candidate to tests?
-> Extract specification from test executions to reduce overfitting.

->. Do so, while still navigating the search space

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

-> Semantic Program Repair

Division of Labor

Syntactic Program Repair Semantic Program Repair

number

1. Where to fix, which line? 1. Where to fix, which line(s)?

2. Generate patches in the candidate 2. What values should be returned by
line those lines, e.g. <inp ==1, ret== 0>
3. Validate the candidate patches 3. What are the expressions which

against correctness criterion. will return such values?

e &

95
NUS

National University
of Singapore

0
—
o
N
S
<
[3)
n
~
(D]
g
g
=]
N
[a W
o))
—
)]
o))
—

GenProg — repair via search
(Ack: Clcure Le Goues)

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

INPUT

‘
S———
vam -
» -e

Ack: Claire Le Goues (CMU)

EVALUATE FITNESS

-

DISCARD

ACCEPT

|

MUTATE

OUTPUT

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
ol
AN
[t}
AN
AN
[t}

> gcd(4,2)
2

gcd (1071,1029)
21

gcd(0,55)

55\\\

VvV V.V V V V V

(looping forever)

1 void gcd(int a, int b) {

if (a ==
printf
}
while (b
if (a
a =
else
b =
}

0) {
(ll%d"’ b);

> 0) {
> b)

a — b;

b — a;

printf(“%d”, a);

return;

Ack: Claire Le Goues (CMU)

Q0
—
S
AN
—
g
<
Q
N
~
=
2
=
=)
N
ol
N
—
9D
N
—

printf (b)

Q0
—
S
(A
—
g
<
Q
N
~
2
=
=)
=
N
Ay
AN
—
)]
AN
p—

Ack: Claire Le Goues (CMU)

printf (b)
An edit is:

* Insert statement X
return after statement Y

* Replace statement X
with statement Y

(00)
—
(@)
(]
—
o
(@]
<
O
N
~
(eD)
&
E
=
N
A
N
]
N
)
]

* Delete statement X

Ack: Claire Le Goues (CMU)

Over-fitting 1n Repair
Avoid generating programs like

if (inputl) return outputl
else if (input2) return output2
else if (input3) return output3

ARTIFACTS
(symbolic
formulae)

Repaired
Vulnerable Pepall‘e
rogram
program

Generalize beyond the provided tests using symbolic reasoning.

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
A
AN
p—
AN
AN
p—f

Comparison

Syntactic Program Repair Semantic Program Repair

Semantics-based Schematic
for tin Tests {

generate repair constraint W,

Syntax-based Schematic
for e 1n Search-space{
Validate e against Tests

J
Synthesize e from AW

4 o N — ~

1. Where to fix, which line? 1. Where to fix, which line(s)? 3

£

2. Generate patches in the candidate 2. What values should be returned by Ugg

line those lines, e.g. <inp ==1, ret== 0> %

3. Validate the candidate patches 3. What are the expressions which)
against correctness criterion. will return such values?

2N J

State-of-the-art

Code Buggy
corpus program

Fault
localization

Machine

learning

Model of Generate repair Passing & Extract
patches candidate failing tests constraints

Validate repair Synthesize code via
candidate constraint solving

Learning-aided repair Heuristic repair Constraint-based repair

Ack: Figure by Le Goues(CMU), Pradel (Darmstadt), Roychoudhury (NUS)

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
ol
AN
[t}
AN
AN
[t}

//1 int triangle(int a, int b, int c¢) {

2 if (@a<=0] b<=0 1] c<=0) Correct fix

3 return INVALID; (@a==b || b==c || a==

4 1if (a == b && b == ¢)

5 return EQUILATERAL;

6 if [(a == || b !'= ¢)|// bug!

7 return ISOSCELES; Traverse all mutations of line 6, and check

8 return SCALENE;

9 } Hard to generate correct fix since a==c
K / never appears elsewhere in the program.

um-m OR

INVALID pass
2 1 1 1 EQUILATERAL pass e
Generate the constraint 5
’ 22 5 (ISOSCGBLES 0 pass 15 2. 9)0(2,3,2) Af(3,2,21(2,3,9) :
£
g
3 2 ISOSCELES fail And get the solution %
ISOSCELES fail Z
: fla,b,c)=(a == Db || b == ¢ || a== c) a
SCALENES fail

Semantic Program
Repair

Prof. Abhik Roychoudhury

National University of Singapore

ISSISP Summer School 2018

39

Challenge 1: Search Space Explosion

Buggy program Test
scanf (“sd”, &x); P(l)—— 1
int t =|x - 1; Failing test

if (£t > 0) printf (“17);
else printf (Y0”);

Huge search space of candidate patches
X — 2
Xx-— 1 ——7 x + 1

x —1

0
—
o
N
S
<
[3)
n
~
(D]
g
g
=]
N
[a W
o))
—
)]
o))
—

Challenge 2: Overfitting

Buggy program Test
scanf (“sd”, &x); P(l)—— 1
int t =|x - 1; Failing test

if (£t > 0) printf (“17);
else printf (Y0”);

Huge space of plausible patches
x —1 1

Xx-— 1 — X

Xx— 1 — x + 1

0
—
o]
N
S
<
Q
n
~
(D]
g
z
i)
N
[a W
o))
—
)]
o))
—

Specification Inference

Test input
Program
Concrete Execution
Concrete Output: e
values Value-set or Constraint 8
o
=
. N
Symbolic >
execution £
PR
[a W
o))
o
2

Expected output of
program

What 1t should have been

Concrete test input

/ \C’Oncrete Execution \

var= x+b-c; Buggy Program

Symbolic Execution with x as the
only unknown

Path conditions,
k Output Expressions /

o0
—
S
A
—
g
<
Q
N
~
<}
g
g
=3
N
ol
N
—
N
N
—

What 1t should have been

Concrete test input t

/ \C’Oncrete Execution \

var = X Buggy
Program

o0]
Ao
S
(A
—
S
<
Q
N
~
()]
g
g
=)
N
Ay
N
—_
N
N2
—

4 N
v (pcj A out; == expected_out(t))
j € Paths
A
f t) ==
N © Y

™\ . .
k [f)=X | Repair constraint /

Example

int is upward(int inhibit, int up sep, int down sep) { \\\
int bias;
if (inhibit)
bias = down sep; // bias= up sep + 100

else bias = up sep ;
if (bias > down sep)
return 1;

else return 0O;

——

/

inhibit | up_sep down_sep | Observed | Expected | Result
output Output
0 100 0 0

e oo e oo)

o0]
Ao
S
(A
r—
S
<
Q
N
~
()]
g
g
5
N
A
0
2
%)
5]
22

1 pass
1 11 110 0 1 fail
0 100 50 1 1 pass
1 -20 60 0 1 fail
0 0 10 0 0 pass

Example

Inhibit==1 up_sep == 11 | down_sep == 110

f(#¥hhibit, up_sep, down sep) // X

Symbolic Execution

V4 K
Ve ™\ /v (pc; A out; == expected_out(t))\
(X>110A1==1) : < Paths : ! -
v
) A .
f(1,11,110) == f(t) ==
- Y A8 /

Repair constraint

o0
—
]
A
o
S
=
Q
n
~
a
=
g
5
N
A
0
=
w0
0
=

What 1t should have been

Inhibit | up_sep down_sep

=1 =11 == 110

4 \ R

bias = f(inhibit, up sep, down sep)

/ \ Symbolic Execution

£(1,11,110) > 110 V X

Q0
—
S
AN
—
S
<
Q
N
B~
o5y
g
g
=
N
A
N
J—
9D
N
]

Fix the suspect

Accumulated constraints
« f(1,11, 110)> 110 A
« (1,0,100) < 100 A

Find a f satisfying this constraint
- By fixing the set of operators appearing in f

Candidate methods

+ Search over the space of expressions
+ Program synthesis with fixed set of operators

« More efficient!!

Generated fix
* £(inhibit,up sep,down_sep) = up_sep + 100

0
—
S
(]
E
<

Q
n

~

()]

:

=

=)
N
A
AN
—
N
AN
—

Function synthesis

Repair Constraint:
- Instead of solving f(1,11,110) > 110 A £(1,0,100) < 100
A £(1,-20,60) > 60

- Select primitive components to be used by the synthesized program
based on complexity

- Look for a program that uses only these primitive components and
satisfy the repair constraint

- Done via another constraint solving problem — pgm. synthesis

- Solving the repair constraint is the key, not how it is solved

- Enumerate expressions over a given set of components / operators
- Enforce axioms of the operators
- If candidate repair contains a constant, solve using SMT

0
—
o
N
S
<
[3)
n
~
(D]
g
g
=]
N
[a W
o))
—
)]
o))
—

Patch as minimal change

Synthesi
tests Debugging DSE YU

Failing tests

Conjure a function
which represents
minimal change to

buggy program.

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

Example

if () SemFix
1f ()

out =10;
else

out = 20;
else

out = 30;
return out;

Test cases:
all possible
orderings of x,y,z

DirectFix

if ()
if ()
out =10;
else
out = 20;
else
out = 30;
return out;

ISSISP Summer School 2018

No fault localization
ﬂlt foo(int x, int y){ \

if (x > y)
y=y+1;

else
y=y-—-1;

return y + 2;

}

Qest: {20(0,0) == 3? /

X=0Ay=0Aresult=3

VAN —
(if x1>y1) then 2=yl + Delse 32=y1—-1) | UNSAT

A
(result =y2 + 2)

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

)

Constraint = Whole Program

-~

~

X=0Ay=0Aresult =3

\)

(1if (x1>yl) then (y2=yl1+1)else (y2=y1-1)

A = UNSAT

N\

(result = y2 + 2)

-

(1f x1>=yl)then (y2=yl+ 1)else (y2=y1-1) \
A
(result =y2 + 2)

)

/\

Xx=0Ay=0Aresult =3 = SAT /

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Need Concise Constraints

MaxSMT solver
Failing tests ~
Minimized
Mutations
for
Repair
/
‘ MaxSMT solver
Concise

Semantics Signature

Failing tests

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

Angelic Values

Syntax-based Schematic Semantics-based Schematic
for tin Tests {

for e in SearchSpace{ . :
generate repair constraint W,

Validate e against Tests }
} Synthesize e from AW,

Instead of representing W,
as a SMT constraint represent it using values.

Value that is arbitrarily set during execution to a selected
expression and that makes the program pass.

Can be found by solving path condition of failing test case
(1,0):

0
—
o
N
S
<
[3)
n
~
(D]
g
g
=]
N
[a W
o))
—
)]
o))
—

pathcondition|a] A input = I A output = 0

Angelic Values

Buggy program Test
scanf (“sd”, &x); P(l)— 1
int t = o ;

4

if (B) printf(“17);
else printf (“0"7)

Extract value based specification

(o =2,0={x —>1}) B=true,c={x—>1,t—> 2}

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Angelic forest: Patch synthesis specification based on

Angelic values {{(Symbolic Variable name, Constant, State)} pyps Tests

Angelic Forest

Failing Test Angelic Paths

SAT

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Angelic forest: Patch synthesis specification based on

Angelic values {{(Symbolic Variable name, Constant, State)} pyns Tests

Angelic Forest

Failing Test Angelic Paths

o0]
Ao
S
(A
—
S
<
Q
N
~
()]
g
g
=
N
Ay
N
—
N
N2
—

UNSAT

Angelic forest: Patch synthesis specification based on

Angelic values {{Symbolic Variable name, Constant, State)} pysns 7ests

Angelix Implementation

Instrumented
Source

Debugger

Buggy Suspicious
Source Locations
Angelic Instrumented

Forest Source

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
A
AN
p—
AN
AN
p—f

Results
LoC

wireshark 2814K B Angelix
php 1046K N : B SPR
g7ip 491K —;fe % & g% ?3 B GenProg
gmp 145K < el = o

@)
libtiff 77K £ o

I N N

Angelix 18%
SPR 31 13 42%

0
i
S
N
r—
g
<
Q
N
P~
Q
g
g
5
n
A
0
2
%)
5]
2

Multiline Results

Defect Fixed
Expressions

Libtiff-4a24508-cc79c¢2b 2
Libtiff-829d8c4-036d7bb 2
CoreUtils-00743a1f-ec48bead 3
CoreUtils-1dd8a331-d461bfd2 2
CoreUtils-cbcef29b-a04ddb8d 3

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
ol
AN
[t}
AN
AN
[t}

some virtual private networks (VPNs).
K Source: heartbleed.com

@e Heartbleed Bug is a serious vulnerability in the popular \
OpenSSL cryptographic software library. This weakness allows
stealing the information protected, under normal conditions, by
the SSL/TLS encryption used to secure the Internet. SSL/TLS
provides communication security and privacy over the Internet

for applications such as web, email, instant messaging IM) and

/

/1 1f (hbtype == TLS1 HB REQUEST) {\

memcpy (bp, pl, payload);

}

Ot s W N

(a) The buggy part of the Heartbleed-
vulnerable OpenSSL

N

/

-

1
2
3
4

(b) A fix generated automatically

o

if (hbtype == TLS1 HB REQUEST
&& payload+ 18 <s->s3->rrec.length) {

~

/

-

return O;

}

1
2
3
4
5
6 }
7
8
9
10 return 0O;

if (1 + 2 + payload + 16 > s->s3->rrec.length)
if (hbtype == TLS1_HB_REQUEST) {

else if (hbtype == TLS1_HB_RESPONSE){

\ (¢c) The developer-provided repair

~

A

LX)

95
NUS

National University
of Singapore

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Research Issues in Program Repair

[OLD] Large search space of candidate patches for general-purpose repair tools.
->. What should I use?
-> Which search frameworks could we use?

-> Syntactic Program Repair

INEW] Weak description of intended behavior / correctness criterion e.g. tests

-> Quverfitting of a patch candidate to tests?

-> Extract specification from test executions to reduce overfitting.

->, Do so, while still navigating the search space

0
i
S
N
E
<

Q
n

~

()]

g

g

=)
N
ol
AN
[t}
n
AN
[t}

-> Semantic Program Repair

Spec. from reference 1mplementation
User-define condition: length = 3 & a[0] < a[1] < a[2]
g L

for (1=0; i€length; 1++) {
if (x ==a[i

W 3O Otk W

ug fix: x > a[m]

\(a) Correct linear search /

Verification condition «

(b) Buggy binary search

0
—
o
N
r—
S
<
[3)
n
~
(D]
£
g
=]
)]
[a W
o))
—
)]
o))
—

%xperiments on embedded Linux Busybo}

. /

SemGratt

Symbolic
analysis

Verification No

condition

v

Buggy program

Reference Candidate

program patch Counterexample

Buggy

program

Component
library

ISSISP Summer School 2018

SemGratt Results

GNU Coreutils

as reference c35545a Handle empty match
seq f7d1c59 Wrong output
sed 7666fal Wrong output
sort dled3e6 Wrong output
seq d86d20b Don’t accepts 0

3a9365e Handle s///

Linux Busyhox

as reference mkdir f7d1cb9 Segmentation fault
mkfifo cdb1682 Segmentation fault
mknod cdb1682 Segmentation fault
copy f3653f0 Failed to copy a file

mdbsum 739cf4de Segmentation fault
cut 6f374d7 Wrong output

Correct
Correct
Incorrect
Incorrect
Incorrect

Incorrect

Incorrect
Incorrect
Incorrect
Correct
Correct

Incorrect

Correct
Correct
Correct
Correct
Correct

Correct

Correct
Correct
Correct
Correct
Correct

Correct

0
i
S
N
r—
g
<
Q
N
P~
Q
g
g
5
n
A
0
2
%)
5]
2

GNU Coreutils Cut

GNU Coreutils wrongly interprets the command -b 2-,3- as -b 3- (extract input bytes
starting from the third byte):

echo -ne 1234 ' | cut -b 2-, 3-
34

instead of -b 2- (extract input bytes starting from the second byte):

echo -ne 1234 ' | cut -b 2-, 3-
234

Developer tests:

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

echo -ne 1234 ' | cut -b 2-, 3-
echo -ne 1234 ' | cut -b 3-,2-

GNU Coreutils cut

Automatic patch based on developer tests

i1f (! rhs specified) {
if (eol range start == || [eol_range start == 3)
eol range start = initial ;

field found = true ;

}

Developer patch
if (! rhs specified) {
if (eol range start == | | ﬁnitial < eol_range_startj

eol range start = initial ;
field found = true ;

}

Parameterized test to improve automated repair and apply SemGraft

echo -ne 1234 ' | cut -b o-,B-

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Recap: Comparison

Syntactic Program Repair Semantic Program Repair

Semantics-based Schematic
for tin Tests {
generate repair constraint W,

Syntax-based Schematic
for e 1n Search-space{

Validate e against Tests
j

§
Synthesize e from AW,

4 N N

2

1. Where to fix, which line? 1. Where to fix, which line(s)? *
£

2. Generate patches in the candidate 2. What values should be returned by U%
line those lines, e.g. <inp ==1, ret== 0> %

3. Validate the candidate patches 3. What are the expressions which)

\ against correctness criterion. J \ will return such values? J

Specification Inference

Test input
Program
Concrete Execution
Concrete Output: e
values Value-set or Constraint 8
o
=
. N
Symbolic >
execution £
PR
[a W
o))
o
2

Expected output of
program

Revisiting Program Synthesis

From input-output examples

Jp € P. /\ Ipls =0

(0.0)€T

where P 1s a set of well-formed programs to choose from (candidate patches)
T 1s a given set of tests

0
—
o]
N
S
<
Q
n
~
(D]
g
z
i)
N
[a W
o))
—
)]
o))
—

Program Repair involves solving for such program fragments from input-
output examples or input-output constraints, amounting to second order

reasoning.

Repair via 274 order reasoning

Concrete test input

/ \C'Oncrete Execution \

var = x// x=f(LiveVars), directly solve for f? | Buggy Program

Symbolic Execution with x as the
only unknown

Path conditions,
k Output Expressions /

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
ol
AN
[t}
AN
AN
[t}

First order Symbolic Execution

size t search (data , len , pred) {
B size t 1;

for (i = 0; i < len; i++){

1f (pred (data [1])) return 1;

}

return len;

}

int positive (int x) { return x > 0; }

Symbolic Inputs o, B,y

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

search ((int[]) {a,B,y}, 3, positive)

First order Symbolic Execution

//,size t search (data , len , pred) { \\\

a size t 1;

for (1 = 0; 1 < len; i++){
1f (pred (data [1])) return 1i;

}

return len;

}

\\\int positive (int x) { return x > 0; } 4//
Symbolic Execution results of search((int[]){a,B,y}, 3, positive) 5
Path Condition Input Output g
a >0 {1,0,0} 0 z
a <0AB>0 {0,1,0} 1 Z
a <0AB<O0 {0,0,1} 2
o <OAB<O0AY<O {0,0,0} 3

(Our) Second order reasoning

- Allow for existentially quantified second order variables.

- Restrict their interpretation to a language e.g. linear integer arithmetic

[Term =Var | Constant | Term + Term | Term — Term | Constant * Term}

- SAT
" p(0)>01rp(1)<0
- Satisfying solution p=Ax. 1 - x

- UNSAT
cp(0)>0Ap(1)<0Ap2)>0
- All functions in LIA are monotonic.

0
—
o]
N
S
<
Q
n
~
(D]
g
z
i)
N
[a W
o))
—
)]
o))
—

Second order Symbolic Execution

//éize_t search (data , len , pred) { <\\
size t 1i;
for (1 = 0; i < len; 1i++

) {
1f (pred (data [1])) return 1i;

}

return len;

\ /

Symbolic Execution results of search((int[]){0,1,2}, 3, p) ;§
Path Condition Jo, Output %
p(0) Ax. true 0 %
— p(O)A p(1) Ax. x>0 1 Z
— p(0O)A = p(1) A p(2) Ax. x> 1 2
— p(O)A = p(1) A— p(2) Ax. false 3

Syntactic Program Repair

144

scanf (“%d”, &x);

for(i = 0; i <10; i++){
int t =|x - 1if;
if (t > 0) printf(“17);
else printf (“0”);

Buggy Program:

Sample Test: P(5) —» “1110000000” expected

Generate and validate based repair tools:

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Enumerate and test P[x - i — x + i, P[x - i— x - 1], ...

First order Semantic Program Repair

144

scanf (“$d”, &x);

for(i = 0; i <10; i++){
int t = |o;
if (t > 0) printf(“17);
else printf (“0”);

Buggy Program:

Sample Test: P(5) —» “1110000000” expected

Synthesis Specification: de e Term. Vi 7; [o—>e] A output = expected

Background theory LIA

0
—
o]
N
S
<
Q
n
~
(D]
g
z
i)
N
[a W
o))
—
)]
o))
—

Second order Program Repair

scanf (“"s5d”, &x);

for(i = 0; i <10; i++){
int t =|p(1,x);
if (t > 0) printf(“17);
else printf (“0”);

Buggy Program:

Sample Test: P(5) - “1110000000” expected *

3 p. \/i m; A output = expected

Synthesis Specification:

Solve for p directly

Term = Var | Constant | Term + Term |

0
—
o]
N
S
<
Q
n
~
(D]
g
z
i)
N
[a W
o))
—
)]
o))
—

Term — Term | Constant * Term

(Old) Encoding for synthesis in 1%t order

IO1 =0
I I} Iit loo =1
/ / I / _
7 By, B2 B S 0 =2
(0]
R Ii2 Ii2 log = 3
0 1 2 3 4 lig =0
i} = 1
brange =\ (03/0;<C /\/\031:'{3<c) =
i€[1.C] JE[1.N]] 2
)]
Gcons = /\ loj # loj E’
ije[l Cliz) £
f '. Q-‘
Pacyc = /\ loj > /Ij,- z
ie[1.C]je[1.N] =

ije[1.Cl.ke[1..N]]

(Recap) Second order reasoning

- Allow for existentially quantified second order variables.

- Restrict their interpretation to a language e.g. linear integer
arithmetic

[Term =Var | Constant | Term + Term | Term — Term | Constant * Term}

- Example SAT

- p(0)>0Ap(1)<0
- Satisfying solution p=Ax. 1 —x

0
—
o]
N
S
<
Q
n
~
(D]
g
z
i)
N
[a W
o))
—
)]
o))
—

(New) Propositional Logic encoding

Node 1 L,
X1y 1= S{ X
Node 2 [| | Node 3 S?/\Sé/\sg — X—Y
1 p 3 4 1 3 4
So |S5 |So |Sp |S3 |S3 |S3 |S3 4, A1
X | Yll—l|+ X[yll—=||+ S{\Sp {X+ T}TETerm
[] [] [] []
Vnode = /\ S{ = out; = Fj(out;,,outj,....,out,)

J€[1.C]
Yohoice = exactlyOne(s! . s?,....s

0
—
o
N
S
<
[3)
n
~
(D]
g
g
=]
N
[a W
o))
—
)]
o))
—

e &

95
NUS

National University
of Singapore

Application 1n Repair: results

/ error severity(l); \
return;
}
// p(ent->fts_info, ent->fts_errno, prev_depth) . g0))
else if (ent->fts info == FTSSLNONE|) { ﬁ,«,ﬁ’ﬁ%' o)
: . _ ©
1f (symlink loop (ent->fts accpath)) (o) 39 gt & o aq,de? \)
. g .- =
Y(,":‘:»lﬂ == ?te (\Qfe‘q’ \\ 2 - ©) \)3
-7 o gl) pi® | 50
en® ,I*;ﬂ i‘:‘;) 00 8 3 A0
& L= ?i‘(ﬁ”e‘ J(’%;l Tﬂg\) 508~ T p) “t’vi - ‘i’(.‘-?”
findin GNU Coreutil P T ot 7 e T e gy A e (e e :
indin oreutils 2= (x < St 7 so = ;etf“i\) \\ (”o“ﬂ =
P3 (0 /7&16'“{0 4/,(’,:* T77 aep® o5 e‘ﬁt“,(&) E
PA T (@Y egst x @B gre¥-o 5% 20 E
05 /{\(keﬂ){’ >3 ée?'(,‘ﬂ £10 < ; N en® itﬁfer‘: S
- T _ =~
p6 " ((9F% L5150 ¢) (ent =Y M g
. P . ;i ,(',"? X“i = . f_(} . i(} (=i
2000 paths in traditional first PT (e gxe-" g0 = 6) gus D xe T £
. . . - &8>, o) - X -
order Symbolic Execution p;’g :fie;ﬂv‘? i,:'ﬂ,a)“;t,m \ Le‘f: oo e® g
o = \ (e® 7 ev 4 W’Wia ?ﬂﬂ ae?" =
0 (0 1 ?e v“"j ﬁa?‘“l pre" 1 (pr® "~ 2
g 1@ n0 32)
pas <

Comparison: 15t and 2¢ order logic

300 A
Time taken by second order symbolic
250 1 execution is independent of the
maximum number of paths explored.
— 200 -
]
\;ﬂ Q0
£ 2
= 150 1 3
Q
<
%
5
£
100 o £
—_— FO 5
2
SO/PSE 0
50 - / =
0 50 1000 1500 2000

—max-forks value

Other applications

- Modeling libraries for symbolic execution of application program.
* Do not manually provide libraries for symbolic analysis.

- Instead, they can be partially synthesized.

P(“4") N “4n;
/void main (int argc , char * argv [])\ P(“16") — “1" Tests

{
int a = atoi(argv [1]) ; \\\\\\\\‘
printf ("®&d\n", 16 / a); Second order

\} reasoning

4 N

void atoli sketch (char *arr []) {
int acc;
for (i = 0; 1 < strlen (arr); i++)

acc = p(acc , arr[i]); G —T T p=Axy.10x +v - 48

return acc;
J Use this p and symbolic execution

_ % to find crashing inputs e.g. “0”

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
ol
AN
[t}
AN
AN
[t}

Future work in Semantic Repair

Today Test-overfitting

Repair+test generation

Patch synthesis via ML

SemGraft ICSE’'18 . ® Applications
° -
® . Education p :
DirectFix ICSE'15 : ° Security
: >
Angelix ICSE'16 . Repairing termination Time
SE-ESOC FSE'18 - »
- o 9 .
F1X TOSEM'18 .] Classes of bugs

Y Space explosion
Library modelling

Beyond repair

LX)

95
NUS

National University
of Singapore

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Briefly:
Novel applications outside security

Use program repair in intelligent
tutoring systems to give the
students’ individual attention.

0
i
o
N
—
g
<
Q
n
~
()]
g
g
=)
N
ol
AN
[t}
AN
AN
[t}

Study in IIT-Kanpur (FSE17)

Application 1n Education

Intelligent tutoring

0
—
o
N
r—
=)
Q
<
O
N
P
)

ollecting stu
rograms

ISSISP Summ

Dataset Preparation

= Lab: Programming assignments

Lab

Prog Topic

Lab 3
Lab 4
Lab 5
Lab 6
Lab 7
Lab 8
Lab 9
Lab 10
Lab 11
Lab 12

63
117
32
79
71
33
438
53
55
60

Simple Expressions, printf, scanf
Conditionals

Loops, Nested Loops

Integer Arrays

Character Arrays (Strings) and Functions
Multi-dimensional Arrays (Matrices)
Recursion

Pointers

Algorithms (sorting, permutations, puzzles)
Structures (User-Defined data-types)

Almost Incorrect vs Almost Correct

Group I High failure rate [l Low failure rate

Almost
Correct

ojey J1eday

The fact that student programs are
often significantly incorrect makes it
difficult to fix those programs.

lab3 Lab4 Lab5 Lab6 Lab7 Lab8 Lab9 Lab10 Lab11 Lab12 Total

Tutoring # Bug Fixing

Good teaching is more a giving of
s right questions than a giving of right

P [l rvotional University

«79.«\‘:{ - Albers

Tailoring Repair Policy

partial
repair

P: # of passing
tests

F: # of failing
tests

Partial Repair: (all previously passing tests) + (at least one previously failing test)

Two-Step Repair

Test 1 Test 1 Test 1
Test 2 | " Test 2 " Test 2
Test 3 Test 3 Test 3
Test 4 Test 4 Test 4
Test 5 Test 5 Test 5
+1f (true) { +1f (B) {
+ S + S
+ } else { +} else {
S: S;

+ } + }

User Study: Graders — Time Taken

[Repair Not Provided I Repair Provided
800 _—

700 T T
600 T
500
400

43 buggy student submissions from dataset 222

 Across 8 unique problems 100 % ;! & E!
sy

P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8
37 TA graders volunteered for study ProblemID
- Each TA gets all 43 submissions to grade

Time Taken

« With repair hints for half the submissions

- Task: Grade the buggy program

- With marks on closeness to correct solution

Wrap up: Community Response

Angelix (angelix.10)— program repair tool based on symbolic execution:

The first constraint-based repair systems that scales to large programs;
Repaired Heartbleed vulnerability in OpenSSL;46 stars on GitHub, 16

forks, 6 contributors;
Used by researchers from over 80 institutions; Used in intelligent

tutoring system at II'T Kanpur.

program-repair.org community website:

~300 unique visitors per month;
~100 researchers subscribed;
Contributors from ~10 institutions.

The community is growing, please join and contribute!

0
i
S
N
E
<

Q
n

~

()]

g

=

i)
N
Ay
N
—
n
N
—

Relevant Research Results

Symbolic execution with second order existential constraints
Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, Abhik Roychoudhury
ACM Symposium on Foundations of Software Engineering (FSE) 2018.

Semantic Program Repair Using a Reference Implementation ()
Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, Abhik Roychoudhury
ACMI/IEEE 40th International Conference on Software Engineering (ICSE) 2018.

Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis ()
Sergey Mechtaev, Jooyong Yi, Abhik Roychoudhury
ACMI/IEEE International Conference on Software Engineering (ICSE) 2016.

DirectFix: Looking for Simple Program Repairs ()
Sergey Mechtaev, Jooyong Yi, Abhik Roychoudhury
ACMI/IEEE International Conference on Software Engineering (ICSE) 2015.

SemFix: Program Repair via Semantic Analysis ()
Hoang D.T. Nguyen, Dawei Qi, Abhik Roychoudhury, Satish Chandra
ACMI/IEEE International Conference on Software Engineering (ICSE) 2013.

0
i
S
N
E
<

Q
n

~

()]

g

g

=)
N
ol
AN
[t}
n
AN
[t}

http:/www.comp.nus.edu.sg/~abhik/projects/Repair/index.html

Singapore

[ACKNOWLEDGEMENT: National Cyber Security Research program from NRF J

Ack. to former students and grant

Marcel. Boehme, PhD. NUS 2014, Post-doc NUS -> Lecturer Monash
Van Thuan Pham, PhD. 2017
Sergey Mechtaev, PhD. 2018 -> Lecturer University College London

Shin Hwel Tan, PhD. 2018 -> Asst Prof, SUSTech, Shenzen. China

Jooyong Y1, past post-doc -> Asst Prof. Innopolis

ACKNOWLEDGEMENT: National Cyber Security Research program from NRF
Singapore and DSO National Labs

0
i
S
N
E
<

Q
N

~

()]

g

g

5
N
A
0
2
%)
5]
2

