
Symbolic Execution
for Automated Repair
Prof. Abhik Roychoudhury

National University of Singapore

abhik@comp.nus.edu.sg

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

1

Recap: Use of Symbolic Execution

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

2

Bug Finding

- Concolic execution: supporting real executions
[Directed Automated Random Testing]

- Symbolic execution tree construction e.g. KLEE
[Modeling system environment]

- Grey-box fuzz testing for systematic path
exploration inspired by concolic execution

AFLFast

Recap: Use of Symbolic Execution

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

3

Reachability Analysis

Reachability of a location in the program

- Traverse the symbolic execution tree using
search strategies e.g. KATCH

- Encode it as an optimization
problem inside the genetic search
of grey-box fuzzing AFLGo

Reflections on Symbolic Execution

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

4

In the absence of formal specifications,
analyze the buggy program and its artifacts
such as execution traces via various heuristics
to glean a specification about how it can pass
tests and what could have gone wrong!

Specification Inference (TODAY!)

(application: localization, repair)

Bug Fixing
� Most software has many bugs.
� Security-related bugs should be fixed before they are exploited by malicious

users.

� Oftentimes, bugs are not fixed even a few months after they were reported.
� E.g. Bug 18665 of glibc

� Reported and responded on July 2015
� Patched on Feb 2016

� CVSS score: 8.1 / 10 (buffer overflow)
� “Thanks for the bug report. Do you have a test case that triggers this

scenario? Do you have a patch or suggested fix?”

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

5

Background
• Why debugging is hard?
� Huge search space ? OR …

• What would make debugging easy?
� Specification Inference

• Ideas in debugging which lead to automated fixing
� Using implicit specification inference.

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

6

A quote from many years ago
“Even today, debugging remains very much of an art. Much of the

computer science community has largely ignored the debugging
problem….. over 50 percent of the problems resulted from the time
and space chasm between symptom and root cause or inadequate
debugging tools.”

Hailpern & Santhanam, IBM Systems Journal, 41(1),
2002

Any progress in 2002 – 2018?
How can symbolic execution help?

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

7

Dynamic slicing: a debugging aid

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

8

Program

Input

Exec. Trace

Output

OK Unexpected, debug it

Dynamic Slice =
Bug Reportcriterion

Debugging

Instrument

Statistical Fault localization

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

9

Buggy
Program

Test Suite

Fault
Localizati

on
Ranked list of
suspicious
statements

Assign scores to program statements based on their
occurrence in passing / failing tests. Correlation
equals causation!

Score(s) =

fail(s)
allfail

fail(s)
allfail

pass(s)
allpass+

An example of scoring
scheme [Tarantula]

Trace Comparison based Debugging

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

10

Compare Execution

Failing Run Successful Run

Difference As Diagnostics

Choose

Successful Run Pool

Difference Metric

Testing

Change
Failing InputGenerate

A moment’s note for the students
• You have – buggy program, failing tests

• You do not have specification of intended behavior, try to discover

• [What the program is supposed to do]

• Compare this to software model checking
� You have formal specification of intended behavior (temporal logic property)
� You have the buggy program

� You do not have failing tests (counter-examples), try to discover.

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

11

What is the intended behavior?

Source of Information Name of Symbolic
Technique

Internal inconsistency Cause Clue Clauses
[PLDI 11]
Error Invariants [FM 12]

Passing Tests Angelic Debugging
[ICSE 11]

Previous version / Golden
implementation

Regression Debugging
[FSE09, FSE10, FSE11]

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

12

Only in the programmer’s mind?
Assertions capturing programmer’s intent at each statement
Too much overhead on programmer: almost as much work as a proof

Example
Input: a, index

1. base = a;

2. sentinel = base;

3. offset = index;

4. address = base + offset;

5. output address, sentinel

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

13

Test 1
<a, index==10>
assert sentinel <=
address
assert address < a + 10

Test 2
<a, index==9>
assert sentinel <=
address
assert address < a + 10

CCC : General idea

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

14

Input: a, index
1. base = a;
2. sentinel = base;
3. offset = index;
4. address = base +

offset;
5. assert sentinel <=

address

<a, index == 10> Ù

Failing input Ù Program formula Ù Observed Output == false

Ù
address
< a + 10 == false

Cause Clue Clauses, Jose and Majumdar, PLDI 2011.

CCC: General idea

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

15

Input: a, index
1. base = a;
2. sentinel = base;
3. offset = index;
4. address = base +

offset;
5. assert sentinel <=

address

<a, index == 10> Ù Ù
address
< a + 10 == false

index== 10 Ù
base == a Ù sentinel == base
Ù offset == index Ù address
== base + offset Ù sentinel ≤
address

Ù address
< a + 10

== false

Hard
constraint Soft constraint

Hard
constraint

First iteration

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

16

index== 10 Ù base == a Ù sentinel == base
Ù offset == index Ù address
== base + offset Ù sentinel ≤
address

Ù address
< a + 10

== false

Hard
constraint

Soft constraint
Hard
constraint

Running Partial MAXSAT, we get base == a as a soft constraint that can be
removed.

Corresponds to the fix: Input: a, index
1. base = a - 1;
2. sentinel = base;
3. offset = index;
4. address = base + offset;
5. output address, sentinel

Moving further

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

17

index= 10 Ù
base == a Ù sentinel == base
Ù offset == index Ù address
== base + offset Ù sentinel ≤
address

Ù address
< a + 10

== false

Hard
constraint Hard & Soft constraints

Hard
constraint

We mark base == a as hard now, and run Partial MaxSAT again, to get
offset == index.

Corresponds to the fix: Input: a, index
1. base = a;
2. sentinel = base;
3. offset = index - 1;
4. address = base + offset;
5. output address, sentinelThe clause

sentinel==base does
not help (or hurt)

Fix determines fault

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

18

Input: a, index
1. base = a;
2. sentinel = base;
3. offset = index;
4. address = base + offset;
5. output address, sentinel

Input: a, index
1. base = a - 1;
2. sentinel = base;
3. offset = index;
4. address = base + offset;
5. output address, sentinel

Input: a, index
1. base = a;
2. sentinel = base;
3. offset = index - 1;
4. address = base + offset;
5. output address, sentinel

Off-by-one
error

Specification discovery?
• Find statements that cause inconsistency in the failing execution

� Removal of that inconsistency makes the error go away
� Minimal inconsistency à cause

� Starting point for repair
� Simple specification discovery

� Removing statement S causes error to disappear
� Do not know what S should have been!

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

19

Angelic Debugging

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

20

Buggy
Program

P

Failing
test t

Debugging
Method

P

Define possible defect locations by identifying expressions
which can fix the fault!

Candidate
defect

locations

Angelic Debugging, ICSE 2011 Ack: Satish Chandra (Facebook)

General idea – fix failing tests,…

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

21

Input: a, index
1. base = a;
2. sentinel = base;
3. offset = index;
4. address = base +

offset;
5. assert sentinel <=

address

<a, index == 10> Ù Ù
assert

address
< a + 10

== false

index== 10 Ù base == ?? Ù sentinel == base
Ù offset == index Ù address
== base + offset Ù sentinel
<= address

Ù address <
a + 10

base = a is a valid fix location.

Note: Does not suggest the repaired statement base = a – 1.

Fix failing tests, …

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

22

Input: a, index
1. base = a;
2. sentinel = base;
3. offset = index;
4. address = base +

offset;
5. assert sentinel <=

address

<a, index == 10> Ù Ù
assert

address
< a + 10

== false

index== 10 Ù base == a Ù sentinel == base
Ù offset == ?? Ù address ==
base + offset Ù sentinel <=
address

Ù address <
a + 10

offset = index is another valid fix location.

…, and do not break passing tests

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

23

Input: a, index
1. base = a;
2. sentinel = base;
3. offset = index;
4. address = base +

offset;
5. output address,
sentinel

<a, index == 1> Ù Ù
assert

sentinel == a

Input: a, index
1. base = ??;
2. sentinel = base;
3. offset = index;
4. address = base +

offset;
5. output address,

sentinel

Input: a, index
1. base = a;
2. sentinel = base;
3. offset = ??;
4. address = base +

offset;
5. output address,

sentinel

OK !!

NEW

Specification discovery?
• Passing tests tell us which expressions are “inflexible”

� The better your test suite is, the more you know!

• Therefore, the bug must be in one of the flexible expressions

• Limitations
� Assumption of 1-fixable
� Quality of filtering depends on the goodness of test suite
� Subject to implementation of the symbolic analysis

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

24

Retrospective
Debugging – some milestones

� Manual era: prints and breakpoints
� Statistical fault localization [e.g. Tarantula]
� Dynamic slicing [e.g. JSlice]
� Trace comparison and delta debugging

� Look for workarounds – how to avoid the error?
� Symbolic techniques

� Replace repeated experimentation with constraint solving.
� Discover and (partially) infer intended semantics by symbolic analysis

• The Future: repair (hints)

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

25

Syntactic Program
Repair

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

26

Automated Program Repair

• [OLD] Large search space of candidate patches for general-purpose repair
tools.

• [NEW] Weak description of intended behavior / correctness criterion e.g. tests

• [FUTURE] Patch suggestions and Interactive Repair IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

27

Research Issues in Program Repair
• [OLD] Large search space of candidate patches for general-purpose repair tools.
• ->. What should I use?
• -> Which search frameworks could we use?
• -> Syntactic Program Repair

• [NEW] Weak description of intended behavior / correctness criterion e.g. tests
• -> Overfitting of a patch candidate to tests?
• -> Extract specification from test executions to reduce overfitting.
• ->. Do so, while still navigating the search space
• -> Semantic Program Repair IS

SI
SP

 S
um

m
er

 S
ch

oo
l 2

01
8

28

Division of Labor
Syntactic Program Repair

1. Where to fix, which line?

2. Generate patches in the candidate
line

3. Validate the candidate patches
against correctness criterion.

Semantic Program Repair

1. Where to fix, which line(s)?

2. What values should be returned by
those lines, e.g. <inp ==1, ret== 0>

3. What are the expressions which
will return such values?

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

29

GenProg – repair via search
(Ack: Claire Le Goues)

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

30

RepairedBuggy

mutate

Gen 1 Gen 2 Gen N

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE 31

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

32

1 void gcd(int a, int b) {
2 if (a == 0) {
3 printf(“%d”, b);
4 }
5 while (b > 0) {
6 if (a > b)
7 a = a – b;
8 else
9 b = b – a;
10 }
11 printf(“%d”, a);
12 return;
13 }

> gcd(4,2)

> 2

>
> gcd(1071,1029)

> 21

>
> gcd(0,55)

> 55

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

(looping forever)

33

printf(b)

{block}

while
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b

{block}{block}

printf(a) return

b = b – a

Input:

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Ack: Claire Le Goues (CMU)

34

{block}

while
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b

{block}{block}

printf(a) return

b = b – a

Input:

An edit is:
• Insert statement X

after statement Y
• Replace statement X

with statement Y
• Delete statement X

return

printf(b)

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Ack: Claire Le Goues (CMU)

Over-fitting in Repair

35

Avoid generating programs like

if (input1) return output1
else if (input2) return output2
else if (input3) return output3
….

Vulnerable
program

Tests

Repaired
Program

Repair
System

ARTIFACTS
(symbolic
formulae)

Generalize beyond the provided tests using symbolic reasoning.

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Comparison
Syntactic Program Repair

1. Where to fix, which line?

2. Generate patches in the candidate
line

3. Validate the candidate patches
against correctness criterion.

Semantic Program Repair

1. Where to fix, which line(s)?

2. What values should be returned by
those lines, e.g. <inp ==1, ret== 0>

3. What are the expressions which
will return such values?

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

36

Syntax-based Schematic
for e in Search-space{

Validate e against Tests
}

Semantics-based Schematic
for t in Tests {

generate repair constraint Ψt
}
Synthesize e from ∧tΨt

State-of-the-art

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

37Ack: Figure by Le Goues(CMU), Pradel (Darmstadt), Roychoudhury (NUS)

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

38

1 int triangle(int a, int b, int c){
2 if (a <= 0 || b <= 0 || c <= 0)
3 return INVALID;
4 if (a == b && b == c)
5 return EQUILATERAL;
6 if (a == b || b != c) // bug!
7 return ISOSCELES;
8 return SCALENE;
9 }

Test id a b c oracle Pass
1 -1 -1 -1 INVALID pass
2 1 1 1 EQUILATERAL pass

3 2 2 3 ISOSCELES pass

4 2 3 2 ISOSCELES fail
5 3 2 2 ISOSCELES fail
6 2 3 4 SCALENES fail

Correct fix
(a == b || b == c || a== c)

Traverse all mutations of line 6, and check

Hard to generate correct fix since a==c
never appears elsewhere in the program.

OR

Generate the constraint

f(2,2,3)Ùf(2,3,2) Ùf(3,2,2)Ù¬f(2,3,4)

And get the solution

f(a,b,c) = (a == b || b == c || a== c)

Semantic Program
Repair
Prof. Abhik Roychoudhury

National University of Singapore

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

39

Challenge 1: Search Space Explosion
Buggy program Test
scanf(“%d”, &x); P(1) 1
int t = x – 1; Failing test
if (t > 0) printf(“1”);
else printf(“0”);

Huge search space of candidate patches
x –1 x – 2
x- 1 x + 1
…

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

40

Challenge 2: Overfitting

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

41

Buggy program Test
scanf(“%d”, &x); P(1) 1
int t = x – 1; Failing test
if (t > 0) printf(“1”);
else printf(“0”);

Huge space of plausible patches
x –1 1
x- 1 x
x- 1 x + 1
…

Specification Inference

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Test input

Concrete
values

Expected output of
program

Output:
Value-set or Constraint

Symbolic
execution

Program

Concrete Execution

42

What it should have been

43

Buggy Program

…

var = a + b – c;x

Concrete test input

Concrete Execution

Symbolic Execution with x as the
only unknown

Path conditions,
Output Expressions

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

What it should have been

44

Buggy
Program

…

var = x

Concrete test input t

Concrete Execution

Ú (pcj Ù outj == expected_out(t))

Ù

f(t) == X

j Î Paths

Repair constraintf(t) == X

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Example
1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

inhibit up_sep down_sep Observed
output

Expected
Output

Result

1 0 100 0 0 pass
1 11 110 0 1 fail
0 100 50 1 1 pass
1 -20 60 0 1 fail
0 0 10 0 0 pass 45

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Example

46

1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = f(inhibit, up_sep, down_sep) // X
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

Inhibit == 1 up_sep == 11 down_sep == 110

Symbolic Execution

Ú (pcj Ù outj == expected_out(t))

Ù

f(t) == X

j Î Paths

Repair constraint

((X >110 Ù 1 ==1)
Ú (X ≤ 110 Ù 0 == 1)

) Ù
f(1,11,110) == X

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

46

What it should have been

1 int is_upward(int inhibit, int up_sep, int
down_sep){

2 int bias;
3 if (inhibit)
4 bias = f(inhibit, up_sep, down_sep)
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

Inhibit
== 1

up_sep
== 11

down_sep
== 110

Symbolic Execution

f(1,11,110) > 110

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

47

Fix the suspect
• Accumulated constraints

� f(1,11, 110) > 110 Ù
� f(1,0,100) ≤ 100 Ù
� …

• Find a f satisfying this constraint
� By fixing the set of operators appearing in f

• Candidate methods
� Search over the space of expressions
� Program synthesis with fixed set of operators

� More efficient!!

• Generated fix
� f(inhibit,up_sep,down_sep) = up_sep + 100 IS

SI
SP

 S
um

m
er

 S
ch

oo
l 2

01
8

48

Function synthesis
• Instead of solving

• Select primitive components to be used by the synthesized program
based on complexity

• Look for a program that uses only these primitive components and
satisfy the repair constraint
� Done via another constraint solving problem – pgm. synthesis

• Solving the repair constraint is the key, not how it is solved

• Enumerate expressions over a given set of components / operators
� Enforce axioms of the operators
� If candidate repair contains a constant, solve using SMT

Repair Constraint:
f(1,11,110) > 110 Ù f(1,0,100) ≤ 100

Ù f(1,-20,60) > 60

49

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Patch as minimal change

50

Failing tests Debugging DSE Synthesis

Failing tests
MaxSMT solver

Conjure a function
which represents
minimal change to
buggy program. IS

SI
SP

 S
um

m
er

 S
ch

oo
l 2

01
8

Example

51

if (x > y)
if (x > z)

out =10;
else

out = 20;
else

out = 30;
return out; if (x >= y)

if (x >= z)
out =10;

else
out = 20;

else
out = 30;

return out;

if (x > y)
if (x > z)

out =10;
else

out = 20;
else

out = 30;
return ((x==y)? ((x==z)?10: 20)): out);

SemFix

DirectFix

Test cases:
all possible
orderings of x,y,z

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

No fault localization

52

int foo(int x, int y){
if (x > y)

y = y + 1;
else

y = y – 1;
return y + 2;

}

Test: foo(0,0) == 3?

x = 0 Ù y = 0 Ù result = 3

(if (x1 > y1) then (y2 = y1 + 1) else (y2 = y1 – 1)
Ù
(result = y2 + 2)

)

Ù =
UNSAT

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Constraint = Whole Program

53

53

x = 0 Ù y = 0 Ù result = 3

(if (x1 > y1) then (y2 = y1 + 1) else (y2 = y1 – 1)
Ù
(result = y2 + 2)

)

Ù = UNSAT

(if (x1 >= y1) then (y2 = y1 + 1) else (y2 = y1 – 1)
Ù
(result = y2 + 2)

)

Ù
x = 0 Ù y = 0 Ù result = 3 = SAT IS

SI
SP

 S
um

m
er

 S
ch

oo
l 2

01
8

Need Concise Constraints

54

Failing tests
MaxSMT solver

Minimized
Mutations
for
Repair

Failing tests DSE
Concise

Semantics Signature

MaxSMT solver

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Angelic Values

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

55

Syntax-based Schematic

for e in SearchSpace{
Validate e against Tests

}

Semantics-based Schematic

for t in Tests {
generate repair constraint Ψt

}
Synthesize e from ∧tΨt

Instead of representing Ψt
as a SMT constraint represent it using values.

Value that is arbitrarily set during execution to a selected
expression and that makes the program pass.
Can be found by solving path condition of failing test case
𝐼, 𝑂 :

𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝛼 ∧ 𝑖𝑛𝑝𝑢𝑡 = 𝐼 ∧ 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑂

Angelic Values

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

56

Buggy program Test
scanf(“%d”, &x); P(1) 1
int t = a ;
if (b) printf(“1”);
else printf(“0”);

Extract value based specification
áa = 2, s = { x ®1} ñ áb = true, s = { x ®1, t ® 2}ñ

Angelic forest: Patch synthesis specification based on

Angelic values {áSymbolic Variable name, Constant, State ñ} Paths,Tests

Angelic Forest

57

E1

E2

E3

Failing Test Angelic Paths

SAT

angelic1

angelic2

angelic3

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Angelic forest: Patch synthesis specification based on

Angelic values {áSymbolic Variable name, Constant, State ñ} Paths,Tests

Angelic Forest

58

E1

E2

E3

Failing Test Angelic Paths

UNSAT

angelic1

angelic2

angelic3

angelic1

angelic3

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Angelic forest: Patch synthesis specification based on

Angelic values {áSymbolic Variable name, Constant, State ñ} Paths,Tests

Angelix Implementation

59
KLEE

Clang

Runtime

Synthesis
Z3

Buggy
Source

Instrumented
Source

Suspicious
Locations

Debugger

Angelic
Forest

Clang

Instrumented
Source

Patch IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Results

60

0
5

10
15
20
25
30
35

w
ir

es
ha

rk ph
p

gz
ip

gm
p

lib
tif

f
O

ve
ra

ll

Angelix
SPR
GenProg

#Fixes Del Del, Per

Angelix 28 5 18%
SPR 31 13 42%

Subject LoC
wireshark 2814K
php 1046K
gzip 491K
gmp 145K
libtiff 77K

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Multiline Results

Defect Fixed
Expressions

Libtiff-4a24508-cc79c2b 2
Libtiff-829d8c4-036d7bb 2
CoreUtils-00743a1f-ec48bead 3
CoreUtils-1dd8a331-d461bfd2 2
CoreUtils-c5ccf29b-a04ddb8d 3

61

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

62

1 i f (hbtype == TLS1 HB REQUEST) {
2 . . .
3 memcpy (bp , pl , payload) ;
4 . . .
5 }

(a) The buggy part of the Heartbleed-
vulnerable OpenSSL

1 i f (hbtype == TLS1 HB REQUEST
2 && payload + 18 < s->s3->rrec.length) {
3 . . .
4 }

(b) A fix generated automatically

1 if (1 + 2 + payload + 16 > s->s3->rrec.length)
2 return 0;
3 . . .
4 i f (hbtype == TLS1_HB_REQUEST) {
5 . . .
6 }
7 e l s e i f (hbtype == TLS1_HB_RESPONSE) {
8 . . .
9 }
10 r e t u r n 0 ;

(c) The developer-provided repair

The Heartbleed Bug is a serious vulnerability in the popular
OpenSSL cryptographic software library. This weakness allows
stealing the information protected, under normal conditions, by
the SSL/TLS encryption used to secure the Internet. SSL/TLS
provides communication security and privacy over the Internet
for applications such as web, email, instant messaging (IM) and
some virtual private networks (VPNs).

--- Source: heartbleed.com

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Research Issues in Program Repair
• [OLD] Large search space of candidate patches for general-purpose repair tools.
• ->. What should I use?
• -> Which search frameworks could we use?
• -> Syntactic Program Repair

• [NEW] Weak description of intended behavior / correctness criterion e.g. tests
• -> Overfitting of a patch candidate to tests?
• -> Extract specification from test executions to reduce overfitting.
• ->. Do so, while still navigating the search space
• -> Semantic Program Repair IS

SI
SP

 S
um

m
er

 S
ch

oo
l 2

01
8

63

Spec. from reference implementation

64

1 int search(int x, int a[], int length) {
2 int i;
3 for (i=0; i<length; i++) {
4 if (x == a[i])
5 return i;
6 }
7 return −1;
8 }

(a) Correct linear search

1 int search(int x, int a[], int length) {
2 int L = 0;
3 int R = length-1;
4 do {
5 int m = (L+R)/2;
6 if (x == a[m]) {
7 return m;
8 } else if (x < a[m]) { // bug fix: x > a[m]
9 L = m+1;
10 } else {
11 R = m-1;
12 }
13 } while (L <= R);
14 return -1;
15 }

(b) Buggy binary search

User-define condition: length = 3 & a[0] < a[1] < a[2]

Verification condition

Experiments on embedded Linux Busybox IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

SemGraft

65

Verification
condition

Counterexample

Is
SAT?

Negate
Patch
found

Buggy
program

Is
SAT?

Angelic
forest

Is
SAT?

Component
library

Candidate
patch

No

Yes

Yes

Yes

Buggy program

Reference
program

Symbolic
analysis

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

SemGraft Results

66

Program Commit Bug Angelix SemGraft

sed c35545a Handle empty match Correct Correct
seq f7d1c59 Wrong output Correct Correct
sed 7666fa1 Wrong output Incorrect Correct
sort d1ed3e6 Wrong output Incorrect Correct
seq d86d20b Don’t accepts 0 Incorrect Correct
sed 3a9365e Handle s/// Incorrect Correct
Program Commit Bug Angelix SemGraft
mkdir f7d1c59 Segmentation fault Incorrect Correct
mkfifo cdb1682 Segmentation fault Incorrect Correct
mknod cdb1682 Segmentation fault Incorrect Correct
copy f3653f0 Failed to copy a file Correct Correct
md5sum 739cf4e Segmentation fault Correct Correct
cut 6f374d7 Wrong output Incorrect Correct

GNU Coreutils
as reference

Linux Busybox
as reference

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

GNU Coreutils Cut

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

67

GNU Coreutils wrongly interprets the command -b 2-,3- as -b 3- (extract input bytes
starting from the third byte):

echo -ne ’1234 ’ | cut -b 2-,3-
34

instead of -b 2- (extract input bytes starting from the second byte):

echo -ne ’1234 ’ | cut -b 2-,3-
234

Developer tests:

echo -ne ’1234 ’ | cut -b 2-,3-
echo -ne ’1234 ’ | cut -b 3-,2-

GNU Coreutils cut

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

68

if (! rhs_specified){
if (eol_range_start == 0 || eol_range_start == 3)

eol_range_start = initial ;
field_found = true ;

}

if (! rhs_specified){
if (eol_range_start == 0 || initial < eol_range_start)

eol_range_start = initial ;
field_found = true ;

}

Developer patch

Automatic patch based on developer tests

Parameterized test to improve automated repair and apply SemGraft

echo -ne ’1234 ’ | cut -b s-,b-

Recap: Comparison
Syntactic Program Repair

1. Where to fix, which line?

2. Generate patches in the candidate
line

3. Validate the candidate patches
against correctness criterion.

Semantic Program Repair

1. Where to fix, which line(s)?

2. What values should be returned by
those lines, e.g. <inp ==1, ret== 0>

3. What are the expressions which
will return such values?

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

69

Syntax-based Schematic
for e in Search-space{

Validate e against Tests
}

Semantics-based Schematic
for t in Tests {

generate repair constraint Ψt
}
Synthesize e from ∧tΨt

Specification Inference

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Test input

Concrete
values

Expected output of
program

Output:
Value-set or Constraint

Symbolic
execution

Program

Concrete Execution

70

Revisiting Program Synthesis
From input-output examples

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

71

where P is a set of well-formed programs to choose from (candidate patches)
T is a given set of tests

Program Repair involves solving for such program fragments from input-
output examples or input-output constraints, amounting to second order
reasoning.

Repair via 2nd order reasoning

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

72

Buggy Program

…

var = x // x= f(LiveVars), directly solve for f?

Concrete test input

Concrete Execution

Symbolic Execution with x as the
only unknown

Path conditions,
Output Expressions

First order Symbolic Execution

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

73

size_t search (data , len , pred) {
size_t i;
for (i = 0; i < len; i++){

if (pred (data [i])) return i;
}
return len;

}
int positive (int x) { return x > 0; }

Symbolic Inputs a,b,g

search((int[]){a,b,g}, 3, positive)

First order Symbolic Execution

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

74

size_t search (data , len , pred) {
size_t i;
for (i = 0; i < len; i++){

if (pred (data [i])) return i;
}
return len;

}
int positive (int x) { return x > 0; }

Symbolic Execution results of

Path Condition Input Output

a > 0 {1,0,0} 0
a ≤ 0 Ù b >0 {0,1,0} 1
a ≤ 0 Ù b ≤ 0 {0,0,1} 2
a ≤ 0 Ù b ≤ 0 Ù g ≤ 0 {0,0,0} 3

search((int[]){a,b,g}, 3, positive)

(Our) Second order reasoning
• Allow for existentially quantified second order variables.

• Restrict their interpretation to a language e.g. linear integer arithmetic

Term = Var | Constant | Term + Term | Term – Term | Constant * Term

• SAT
� r(0) > 0 Ù r(1) ≤ 0
� Satisfying solution r = lx. 1 – x

• UNSAT
� r(0) > 0 Ù r(1) ≤ 0 Ù r(2) > 0
� All functions in LIA are monotonic. IS

SI
SP

 S
um

m
er

 S
ch

oo
l 2

01
8

75

Second order Symbolic Execution

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

76

size_t search (data , len , pred) {
size_t i;
for (i = 0; i < len; i++){

if (pred (data [i])) return i;
}
return len;

}

Symbolic Execution results of

Path Condition r Output

r(0) lx. true 0
¬ r(0)Ù r(1) lx. x>0 1
¬ r(0)Ù ¬ r(1) Ù r(2) lx. x> 1 2
¬ r(0)Ù ¬ r(1) Ù ¬ r(2) lx. false 3

search((int[]){0,1,2}, 3, r)

Syntactic Program Repair

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

77

scanf(“%d”, &x);
for(i = 0; i <10; i++){

int t = x – i;
if (t > 0) printf(“1”);
else printf(“0”);

}

P(5) ® “1110000000” expected “1111111000”

Enumerate and test P[x − i → x + i], P[x − i → x − 1], ...

Buggy Program:

Sample Test:

Generate and validate based repair tools:

First order Semantic Program Repair

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

78

scanf(“%d”, &x);
for(i = 0; i <10; i++){

int t = a;
if (t > 0) printf(“1”);
else printf(“0”);

}

P(5) ® “1110000000” expected “1111111000”

Buggy Program:

Sample Test:

Synthesis Specification: $ e Î Term. Úi pi [a®e] Ù output = expected

Background theory LIA

Second order Program Repair

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

79

scanf(“%d”, &x);
for(i = 0; i <10; i++){

int t = r(i,x);
if (t > 0) printf(“1”);
else printf(“0”);

}

P(5) ® “1110000000” expected “1111111000”

Buggy Program:

Sample Test:

Synthesis Specification: $ r. Úi pi Ù output = expected

Solve for r directly
Term = Var | Constant | Term + Term |

Term – Term | Constant * Term

(Old)Encoding for synthesis in 1st order

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

80

(Recap) Second order reasoning
• Allow for existentially quantified second order variables.

• Restrict their interpretation to a language e.g. linear integer
arithmetic

Term = Var | Constant | Term + Term | Term – Term | Constant * Term

• Example SAT
� r(0) > 0 Ù r(1) ≤ 0
� Satisfying solution r = lx. 1 – x

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

81

(New) Propositional Logic encoding

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

82

Application in Repair: results

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

83

… error_severity(1);
return;

}
// r(ent->fts_info, ent->fts_errno, prev_depth)
else if (ent->fts_info == FTSSLNONE){

if (symlink_loop(ent->fts_accpath))
…

find in GNU Coreutils

2000 paths in traditional first
order Symbolic Execution

Comparison: 1st and 2nd order logic

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

84

Time taken by second order symbolic
execution is independent of the
maximum number of paths explored.

Other applications
• Modeling libraries for symbolic execution of application program.

� Do not manually provide libraries for symbolic analysis.
� Instead, they can be partially synthesized.

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

85

void main (int argc , char * argv [])
{
int a = atoi(argv [1]) ;
printf ("%d\n", 16 / a);
}

void atoi_sketch (char *arr []) {
int acc;
for (i = 0; i < strlen (arr); i++)
acc = r(acc , arr[i]);
return acc;
}

Second order
reasoning

r = lxy. 10 x + y - 48

P(“4") ® “4";
P(“16") ® “1" Tests

Use this r and symbolic execution
to find crashing inputs e.g. “0”

Future work in Semantic Repair

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

86

Briefly:
Novel applications outside security

87

Use program repair in intelligent
tutoring systems to give the
students’ individual attention.

Study in IIT-Kanpur (FSE17)

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

Application in Education

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

88

Intelligent tutoring

Dataset Preparation
§ Lab: Programming assignments

89

A Feasibility Study of Using Automated Program Repair for
Introductory Programming Assignments ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 1: Characteristics of our dataset

Lab # Prog Topic

Lab 3 63 Simple Expressions, printf, scanf
Lab 4 117 Conditionals
Lab 5 82 Loops, Nested Loops
Lab 6 79 Integer Arrays
Lab 7 71 Character Arrays (Strings) and Functions
Lab 8 33 Multi-dimensional Arrays (Matrices)
Lab 9 48 Recursion
Lab 10 53 Pointers
Lab 11 55 Algorithms (sorting, permutations, puzzles)
Lab 12 60 Structures (User-De�ned data-types)

Overall, it seems feasible to use APR tools for the purpose of
tutoring introductory programming, given that repairs can be gen-
erated more often than not after tailoring APR tools, and further
improvement seems possible by addressing a few common reasons
for repair failure. To facilitate further research, we share our dataset
containing 661 real student programs, our toolchain implementing
the partial-repair policy/strategy, and our user-study materials in
the following URL: https://github.com/jyi/ITSP. A summary de-
scription is available in Section A.

2 AUTOMATED PROGRAM REPAIR
We perform a feasibility study with the following four state-of-
the-art APR tools: GenProg [19], AE [44], Prophet [21], and An-
gelix [24]. These four tools, similar to the majority of APR tools,
are test-driven, meaning that a modi�ed program P 0 is considered
repaired if P 0 passes all tests in the provided test suite. GenProg
repeatedly modi�es the program using genetic programming [17]
until it �nds a repair or the time budget is exhausted. In contrast
to GenProg where the program is modi�ed in a stochastic fashion
(the program is modi�ed di�erently at each run of the tool), AE
modi�es the program in a deterministic way by applying mutation
operators to the program. Prophet �rst searches for a transforma-
tion schema that can be used to repair the program, and in the
next step, it instantiates the transformation schema to generate a
repair. In the second step of schema instantiation, Prophet uses a
repair model learned from successful human patches to prioritize
the instantiation similar to human patches. Angelix �rst searches
for a set of angelic values for potentially buggy expressions E; when
these angelic values substitute E, all tests are passed. In the next
step, Angelix synthesizes patch expressions that return the angelic
values found in the �rst step. These four APR tools, while shar-
ing the goal of generating repairs that pass all tests, internally use
di�erent repair algorithms and repair operators. We include these
di�erent APR tools in our study to gain holistic understanding of
the feasibility of using APR tools for programming tutoring.

3 DATASET
The dataset on which we perform and report our analysis was
obtained from an Introductory C Programming (CS-101) course
o�ered at Indian Institute of Technology Kanpur (IIT-K) by the
third author. The programs were collected using Prutor [5], a sys-
tem that stores intermediate versions of programs in addition to

Table 2: The result of our initial experiment in which the
existingAPR tools are used out of the box. The overall repair
rate is 31%.

Lab # Programs # Fixed Repair Rate Time

Lab 3 63 3 5 % 6 s
Lab 4 117 30 26 % 20 s
Lab 5 82 27 33 % 89 s
Lab 6 79 32 41 % 50 s
Lab 7 71 17 24 % 75 s
Lab 8 33 16 48 % 139 s
Lab 9 48 15 31 % 46 s
Lab 10 53 24 45 % 24 s
Lab 11 55 26 47 % 83 s
Lab 12 60 18 30 % 38 s
Total 661 208 31 % 59 s

the �nal submissions. This course was credited by 400+ �rst year
undergraduate students. One of the major grading component was
weekly programming assignments (termed Lab). The assignments
were designed around a speci�c topic every week, as described in
Table 1, so as to test the concepts learned so far. The labs were
conducted in an environment where we recorded the sequence of
submissions made by students towards the goal of passing as many
pre-de�ned test-cases as possible. Multiple attempts were allowed,
with only the last submission being graded. For each of these labs,
we pick a random sample of (Pb , Pc) program pairs as our dataset,
where Pb is a version of student program which fails on one or
more test-cases, and Pc is a later version of the attempt by the same
student which passes all the provided test-cases. We exclude from
our dataset the instances of Pb failed to be compiled. The second
column of Table 1 shows the number of programs for each lab we
include in our dataset.

4 INITIAL FEASIBILITY STUDY
How often can the state-of-the-art APR tools �x incorrect student
programs? A high repair rate of APR is a prerequisite to using
APR tools for feedback generation. As the �rst step of our feasibil-
ity study, we investigate how well four state-of-the-art APR tools
(i.e., GenProg, AE, Prophet, and Angelix) �x the incorrect student
programs in our dataset. For each incorrect program, a repair is
considered found if one of the four APR tools successfully generates
a repair — that is, a generated repair passes all provided tests of the
program. We run the four APR tools in parallel until either (a) one
of the APR tools successfully generates a repair or (b) all APR tools
fail to generate a repair within a time limit (15 minutes). We use the
default con�guration of each APR tool with slight modi�cations for
Prophet to extend the search space of repair [22]. Our experiment
was performed on an Intel Xeon E5-2660 2.60Ghz processor with
Ubuntu 14.04 64-bit operating system and 62GB of memory.

4.1 Results of Initial Experiment
Table 2 shows the results of our initial experiment. Each column rep-
resents (from left to right) the lab for which the incorrect programs
were submitted (Lab), the number of incorrect programs submitted
to the lab (# Programs), the number of incorrect programs in the lab

742

Almost Incorrect vs Almost Correct

90
0

25

50

75

Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 Lab 8 Lab 9 Lab 10 Lab 11 Lab 12 Total

Group High failure rate Low failure rate

Repair Rate

Almost
Incorrect

Almost
Correct

The fact that student programs are
often significantly incorrect makes it

difficult to fix those programs.

Tailoring Repair Policy

91

P:
8
F:
2P:

5
F:
5

P:
6
F:
4 P:

9
F:
1

partial
repair

P:10
F: 0

P: # of passing
tests
F: # of failing
tests

Partial Repair: (all previously passing tests) + (at least one previously failing test)

Two-Step Repair

92

Test 1
Test 2
Test 3
Test 4
Test 5

Test 1
Test 2
Test 3
Test 4
Test 5

Test 1
Test 2
Test 3
Test 4
Test 5

+ if (true) {
+ S’;
+ } else {

S;
+ }

+ if (E) {
+ S’;
+ } else {

S;
+ }

User Study: Graders – Time Taken

Wrap up: Community Response

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

94

• Angelix (angelix.io) — program repair tool based on symbolic execution:
• The first constraint-based repair systems that scales to large programs;
• Repaired Heartbleed vulnerability in OpenSSL;46 stars on GitHub, 16

forks, 6 contributors;
• Used by researchers from over 80 institutions; Used in intelligent

tutoring system at IIT Kanpur.

• program-repair.org community website:
• ~300 unique visitors per month;
• ~100 researchers subscribed;
• Contributors from ~10 institutions.

• The community is growing, please join and contribute!

Relevant Research Results

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

95

Semantic Program Repair Using a Reference Implementation (PDF)
Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, Abhik Roychoudhury
ACM/IEEE 40th International Conference on Software Engineering (ICSE) 2018.

Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis (pdf)
Sergey Mechtaev, Jooyong Yi, Abhik Roychoudhury
ACM/IEEE International Conference on Software Engineering (ICSE) 2016.

DirectFix: Looking for Simple Program Repairs (PDF)
Sergey Mechtaev, Jooyong Yi, Abhik Roychoudhury
ACM/IEEE International Conference on Software Engineering (ICSE) 2015.

SemFix: Program Repair via Semantic Analysis (pdf)
Hoang D.T. Nguyen, Dawei Qi, Abhik Roychoudhury, Satish Chandra
ACM/IEEE International Conference on Software Engineering (ICSE) 2013.

Symbolic execution with second order existential constraints
Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, Abhik Roychoudhury
ACM Symposium on Foundations of Software Engineering (FSE) 2018.

ACKNOWLEDGEMENT: National Cyber Security Research program from NRF
Singapore http://www.comp.nus.edu.sg/~tsunami/

http://www.comp.nus.edu.sg/~abhik/projects/Repair/index.html

Ack. to former students and grant

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

96

Marcel. Boehme, PhD. NUS 2014, Post-doc NUS -> Lecturer Monash

Van Thuan Pham, PhD. 2017

Sergey Mechtaev, PhD. 2018 -> Lecturer University College London

Shin Hwei Tan, PhD. 2018 -> Asst Prof, SUSTech, Shenzen. China

Jooyong Yi, past post-doc -> Asst Prof. Innopolis

ACKNOWLEDGEMENT: National Cyber Security Research program from NRF
Singapore http://www.comp.nus.edu.sg/~tsunami/ and DSO National Labs

