and how to evaluate it ‘aa

Michael Hicks
The University of Marylanad

@[M ISSISP 2018

Joint work with George Klees, Andrew Ruef, Benji Cooper, Shiyi Wel

What is fuzzing”

* A Kind of random testing

* Goal: make sure certain bad things don’t happen,
no matter what

Crashes, thrown exceptions, non-termination

- All of these things can be the foundation of security
vulnerabilities

- Complements functional testing

- Test features (and lack of misfeatures) directly
- Normal tests can be starting points for fuzz tests

~lle-based fuzzing

* Mutate or generate inputs

 Run the target program with them
 See what happens

 Repeat

XXX

y36

XXz
mmm

XXX
XXX
XXX

Examples: Radamsa and Blab

 Radamsa is a mutation-based, black box fuzzer
* |t mutates Inputs that are given, passing them along

echo "1 + (2 + (3 + 4))" | radamsa --seed 12 -n 4
l++((5- + 3)

(3 + 41907596644)
(-4 + (3 + 4))
(2 +4 + 3)

cho .. | radamsa --seed 12 -n 4 | bc -1

+ o+

5
1
1
1

D

 Blab generates inputs according to a grammar
(grammar-based), specified as regexps and CFGs

¢ blab -e '(([wrstp][aeiouy]{1,2}){1,4} 32){5} 10’
soty wyplsi tisyro to patu

hitps://qitlab.com/akihe/radamsa https://code.google.com/p/ouspg/wiki/Blab

https://gitlab.com/akihe/radamsa
https://code.google.com/p/ouspg/wiki/Blab

EXx: American Fuzzy Lop (AFL)

e |tis a mutation-based, “gray-box” fuzzer. Process:

 Instrument target to gather tuple of <ID of current code
location, ID last code location>
On Linux, the optional QEMU mode allows black-box binaries to be fuzzed
+ Retain test input to create a new one if coverage profile
upaated

New tuple seen, or existing one a substantially increased number of times
Mutations include bit flips, arithmetic, other standard stuff

¢ afl-gcc -c .. -0 target
¢ afl-fuzz -1 1inputs -0 outputs target
afl-fuzz 0.23b (Sep 28 2014 19:39:32) by <lcamtuf@google.com>

[*] Verifying test case 'inputs/sample.txt'...
[+] Done: 0 bits set, 32768 remaining in the bitmap. ..

Queue cycle: 1n time : 0 days, 0 hrs, 0 min, 0.53 sec ..

http://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/

american fuzzy lop 0.47b (readpng)

process timing overall results
0 days, O hrs, 4 min, 43 sec
0 days, 0 hrs, 0 min, 26 sec 195
none seen yet 0
0 days, O hrs, 1 min, 51 sec 1
cycle progress map coverage
38 (19.49%) 1217 (7.43%)
0 (0.00%) 2.55 bits/tuple
stage progress findings 1n depth
interest 32/8 128 (65.64%)
0/9990 (0.00%) 85 (43.59%)
654k 0 (0O unique)
2306 /sec 1 (1 unique)
fuzzing strategy yields path geometry
88/14.4k, 6/14.4k, 6/14.4K 3
0/1804, 0/1786, 1/1750 178
31/126k, 3/45.6k, 1/17.8k 114
1/15.8k, 4/65.8k, 6/78.2k 0
34/254k, 0/0 0
2876 B/931 (61.45% gain) 0

Other fuzzers

» Black box: CERT Basic Fuzzing Framework (BFF),
/7Uf, ...

» Gray box: VUzzer, Driller, Fairtuzz, T-Fuzz, Angorra,

* White box: KLEE, angr, SAGE, Mayhem, ...

There are many more ...

Evaluating Fuzzing
an adventure In the scientific method

ASSsessIing Progress

Fuzzing is an active area
- 2-4 papers per top security conference per year
- Many fuzzers now in use

* SO0 things are getting better, right?

* Jo know, claims must be supported by empirical

evidence

|.e., that a new fuzzer is more effective at finding
vulnerabllities than a baseline on a realistic workload

|s the evidence reliable?

~Uzzing evaluation Recipe
Requires for Advanced Fuzzer (call it A)

A compelling baseline fuzzer B to compare against

A sample of target programs (benchmark suite)
- Representative of larger population

* A performance metric
|[deally, the number of bugs found (else a proxy)

* A meaningful set of configuration parameters
* Notably, justifable seed file(s), timeout

* A sufficient number of trials to judge performance
» Comparison with baseline using a statistical test

ASSsessIing Progress

 We looked at 32 published papers and compared
their evaluation to our template

- What target programs, seeds and timeouts did they
choose and how did they justity them?

- Against what baseline did they compare”
- How did they measure (or approximate) performance?

- How many trials did they perform, and what statistical
test”?

* We found that most papers did some things right,
but none were perfect
+ Raises questions about the strength of published results

Measuring Effects

» [ailure to follow the template may not mean
reported results are wrong
- Potential tor wrong conclusions, not certainty

 We carried out experiments to start to assess this
potential

» (Goal is to get a sense of whether the evaluation
oroblem iIs real

 Short answer: There are problems
* SO we provide some recommended mitigations

Summary of Results

Few papers measure multiple runs
» And vet tuzzer performance can vary substantially across runs

 Papers often choose small number of target programs, with a small
common set
- And yet they target the same population
- And performance can vary substantially

Few papers justify the choice of seeds or timeouts
» Yet seeds strongly influence performance,
- And frends can change over time

 Many papers use heuristics to relate crashing inputs to bugs
* Yet these heuristics have not been evaluated
« One experiment shows they dramatically overcount bugs

Tapar (has D

Don’'t Researchers Know Better?

 Yes, many do. Even so, experts forget or are nudged
away from best practice by culture and circumstance
- Especially when best practice is more effort

o Solution: List of recommendations
- And identification of open problems

CHECKLIST

HOW TO GET THINGS RIGHT

* |nspiration for effort to provide checklist broadly
+ SIGPLAN Empirical Evaluation Guidelines
» http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/

Outline

* Preliminaries

Papers we looked at
Categories we considered
Experimental setup

* Results by category, with recommendations

« Statistical Soundness

+ Seed selection

« [Imeouts
Performance metric
Benchmark choice

e Future Work

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM[7] R(29) G ? Vv -
FuzzSim[44] R(101) B 100 C S R/M 10D
Dowser[18] R(7) O ? O Vv 8H
COVERSET]|38] R(10) O S, G* ? R 12H
SYMFUZZ[8] R(8) A B,Z S M 1H
MutaGen[23] R(8) R,Z S L \% 24H
SDF[28] R(1) Z, 0 0 Vv 5D
Driller[41] C(126) A G L, E Vv 24H
QuickFuzz-1[16] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C,G* E | 6H,24H
SeededFuzz[43] R(5) O M O G,R 2H
[46] R(2) A O LE Vv 2H
AFLGo[5] R(?) A O 20 S L V/E | 8H, 24H
VUzzer[37] C(63), L, R(10) A GS,0 Vv 6H, 24H
SlowFuzz[35] R(10) O 100 - \%
Steelix[26] C(17), L, R(5) A V,0 GG L,E,M Vv 5H
Skyfire[42] R(4) O ? L, M R, G LONG
kAFL[39] R(3) O 5 C,G* Vv 4D, 12D
DIFUZE[11] R(7) O G* G 5H
Orthrus[40] G, R(2) ALO 80 C S, G* \Y >7D
Chizpurfle[22] R(1) O G* G -
VDF[21] R(18) C E Vv 30D
QuickFuzz-2[17] R(?) O 10 G* G, M
IMF[19] R(105) O G* O G 24H
[48] S(?) O 5 G G 24H
NEZHA[34] R(6) ALO O R
[45] G AL Vv 5M
S2F[47] L, R(8) A O G O Vv 5H, 24H
FairFuzz[25] R(9) A 20 C C E V/M 24H
Angora[9] L, R(8) AV, 0O 5 G, C L, E VvV 5H
T-Fuzz[33] C(296), L, R(4) A O C,G* Vv 24H
MEDS[20] S(2), R(12) O 10 C Vv 6H

- 32 papers (2012-2018)

- Started from 10 high-impact
papers, and chasead
references

+ Plus: Keyword search

- Disparate goals

- Improve initial seed
selection

+ Smarter mutation (e.q.,
pbased on taint data)

- Ditferent observations (e.g.,
running time)

- Faster execution times,
parallelism

- Etc.

Experimental Setup

Advanced Fuzzer: AFLFast (CCS'16), Baseline: AFL

Five target programs used by previous fuzzers
 Three binutils programs: exxfilt, nm, objump (AFLFast)
+ [wo Image processing ones: gif2png (VUzzer), FFmpeg
(fuzzsim)

30 trials (more or less) at 24 hours per run
» Empty seed, sampled seed, others
» Mann Whitney U test

Experiments on de-duplication effectiveness

Why AFL, AFLFast”

AFL is popular (14/32 papers used it as baseline)

AFLFast Is open source, easy bulld instructions, anad

easy experiments to reproduce and extend
+ Thanks to the authors for their help!

|ssues that we found not unique to AFLFast
» QOther papers do worse

« QOther fuzzers have same core structure as AFL/AFL

|lssues may not undermine results
But conclusions are probably weakened, caveated
» The point: We need stronger evaluations to see

-ast

Statistical Soundness

~UzzINg IS a Random Process

The mutation of the input is chosen randomly by the
fuzzer, and the target may make random choices

EFach fuzzing run is a sample of the random process
» Question: Did it find a crash or not?

Samples can be used to approximate the
distribution
- More samples give greater certainty

s A better than B at fuzzing” Need to compare
distributions to make a statement

Analogy: Biased Dice

 \We want to compare the “performance” of two dice
- Die Ais better than die B if it tends to land on higher

numbers more often (biased!)

e Suppose rolling A and B yields 6 ar

d 1. 1s A better?

- Maybe. But we don't have enough In

ormation. One trial is

not enough to characterize a randornr

Drocess.

Multiple [rials

« What it | roll A and B five times each and get
- A:0,0,1,1,0
B:4,4,4, 4 4
- [s A better?

 Could compare average measures
* median(A) = 6, median(B) = 4
* mean(A) = 4, mean(B) = 4
- The first suggests A is better, but the second does not

- And there is still uncertainty that these comparisons
hold up after more trials

Statistical Tests

* A mechanism for quantitatively accepting or rejecting a
hypothesis about a process

* |n our case, the process is fuzz testing and the
hypothesis Is that fuzz tester A (a “random variable”) is
better than B at finding bugs in a particular program,
e.g., that median(A) - median(B) = 0 for that program

* The confidence of our judgment is captured in the p-

value

» |t is the probability that the outcome of the test is wrong

- Convention: p-value = 0.05 is a sufficient level of
confidence

A Practical Guide for Using Statistical Tests to Assess
Randomized Algorithms in Software Engineering

Andrea Arcuri
Simula Research Laboratory
P.O. Box 134, 1325 Lysaker, Norway

arcuri@simula.no

ABSTRACT

Randomized algorithms have been used to successfully address many
different types of software engineering problems. This type of al-
gorithms employ a degree of randomness as part of their logic.
Randomized algorithms are useful for difficult problems where a
precise solution cannot be derived in a deterministic way within
reasonable time. However, randomized algorithms produce differ-
ent results on every run when applied to the same problem instance.
It is hence important to assess the effectiveness of randomized algo-
rithms by collecting data from a large enough number of runs. The
use of rigorous statistical tests is then essential to provide support
to the conclusions derived by analyzing such data. In this paper, we
provide a systematic review of the use of randomized algorithms in
selected software engineering venues in 2009. Its goal is not to per-
form a complete survey but to get a representative snapshot of cur-
rent practice in software engineering research. We show that ran-
domized algorithms are used in a significant percentage of papers
but that, in most cases, randomness is not properly accounted for.
This casts doubts on the validity of most empirical results assess-
ing randomized algorithms. There are numerous statistical tests,
based on different assumptions, and it is not always clear when and
how to use these tests. We hence provide practical guidelines to
support empirical research on randomized algorithms in software
engineering.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General;
[.2.8 TArtificial Intelligencel: Problem Solving. Control Methods.

Lionel Briand
Simula Research Laboratory and
University of Oslo
P.O. Box 134, 1325 Lysaker, Norway

briand@simula.no

1. INTRODUCTION

Many problems in software engineering can be alleviated through
automated support. For example, automated techniques exist to
generate test cases that satisfy some desired coverage criteria on
the system under test, such as for example branch [26] and path
coverage [22]. Because often these problems are undecidable, de-
terministic algorithms that are able to provide optimal solutions in
reasonable time do not exist. The use of randomized algorithms
[44] is hence necessary to address this type of problems.

The most well-known example of randomized algorithm in soft-
ware engineering is perhaps random testing [13, 6]. Techniques
that use random testing are of course randomized, as for example
DART [22] (which combines random testing with symbolic execu-
tion). Furthermore, there is a large body of work on the application
of search algorithms in software engineering [25], as for example
Genetic Algorithms. Since practically all search algorithms are ran-
domized and numerous software engineering problems can be ad-
dressed with search algorithms, randomized algorithms therefore
play an increasingly important role. Applications of search algo-
rithms include software testing [41], requirement engineering [8],
project planning and cost estimation [2], bug fixing [7], automated
maintenance [43], service-oriented software engineering [9], com-
piler optimisation [11] and quality assessment [32].

A randomized algorithm may be strongly affected by chance. It
may find an optimal solution in a very short time or may never
converge towards an acceptable solution. Running a randomized
algorithm twice on the same instance of a software engineering
problem usually produces different results. Hence, researchers in

(‘l‘\#f“!(\ra nnn:nnn'-:nn fl\(\f Aﬂ‘lﬂ]n"\ “f\‘la] fnnl'\n: IIIII knnnr‘ MAan roanm

e Use the Student T test 7
» Meets the right form for the test

test inputs) drawn f

OIT]

distribution. Certair

ly

» But assumes that samples (fuzz

a normal

Ot 1

ue

e Arcuri & Brian advice: Use the
Mann Whitney U Test

 No assumption of distribution

normality

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM][7] R(29) G ? Vv -
FuzzSim[44] R(101) B 100 C S R/M 10D
Dowser[18] R(7) O ? O Vv 8H
COVERSET|38] R(10) O S, G* ? R 12H
SYMFUZZ[8] R(8) A B,Z S M 1H
MutaGen[23] R(8) R,Z S L \% 24H
SDF[28] R(1) Z, 0 0 Vv 5D
Driller[41] C(126) A G L, E Vv 24H
QuickFuzz-1[16] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C,G* E | 6H,24H
SeededFuzz[43] R(5) O M O G,R 2H
[46] R(2) A O LE v 2H
AFLGo[5] R(?) A O 20 S L V/E | 8H, 24H
VUzzer[37] C(63), L, R(10) A GS,0 Vv 6H, 24H
SlowFuzz[35] R(10) O 100 - \%
Steelix[26] C(17), L, R(5) A V,0 CG L,LE,M Vv 5H
Skyfire[42] R(4) O ? L,M R, G LONG
kAFL[39] R(3) O 5 C,G* Vv 4D, 12D
DIFUZE[11] R(7) O G* G 5H
Orthrus[40] G, R(2) ALO 80 C S, G* vV >7D
Chizpurfle[22] R(1) O G* G -
VDF[21] R(18) C E Vv 30D
QuickFuzz-2[17] R(?) O 10 G* G, M
IMF[19] R(105) O G* O G 24H
[48] S(?) O 5 G G 24H
NEZHA[34] R(6) AL O O R
[45] G AL Vv 5M
S2F[47] L, R(8) A O G O Vv 5H, 24H
FairFuzz[25] R(9) A 20 C C E V/M 24H
Angora[9] L, R(8) AV,0 D G, C L, E VvV 5H
T-Fuzz[33] C(296), L, R(4) A O C,G* Vv 24H
MEDS[20] S(2), R(12) O 10 C Vv 6H

Evaluations

19/32 papers said nothing
about multiple trials
* Assume 1

13/32 papers said multiple

trials

- Varying number; one case
not specified

3/13 papers characterized
variance across runs

O papers performed a
statistical test

Practical Impact”

* Fuzzers run for a long time, conducting potentially
millions of individual tests over many hours

f we consider our biased die: Perhaps no statistical test is
needed (just the mean/median) if we have a /ot of trials?

 Problem: Fuzzing is a stateful search process

Each test is not independent, as in a die roll
Rather, it is influenced by the outcome of previous tests

he search space is vast; covering it all is difficult

e Therefore, we should consider each run as a trial, and
consider many trials

-Xperimental results show potentially high per-trial
variance

Crashes found

Performance Plot

1800 | | | nm (elmpty §eed)

1600 | aflfast _ - - - 1 max

| | |

A - ‘ _ 95%
1200 | median 95%,

|

1000 +

I

800 |

600 |

400

200

O‘ L - +~ - = - — - o - = - | — |= -
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

Crashes found

1800

1600

1400

1200

1000

800

600

400

200

0
0

Performance Plot

nm (empty seed)

| | |

|

|

10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (seconds)

max

95%

median g9,

min

95%
median 95%,

Statistically Significant

1800

nm (empty seed)

— afl
1600 — aflfast

1400 |

1200 -

1000 |

800 |-

Crashes found

600 |-

400

200

significant variance
N performance

0 T = + — n— - - = - |= - = -
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (seconds)

0 < 10-13

Crashes found

1800

1600

1400 |

1200 |

1000 |

800 |-

600 |-

400

cxxfilt (empty seed)

— affl
— aflfast

200 -y’

10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (seconds)

0 < 10-10

Higher median
clearly better

Crashes found

Statistically Insignificant

600

500

400 +

300

200

100

0!
0

FFmpeg (empty seed)

— afl
— aflfast .

10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

o =0.3/79

Max AFL = 550
Min AFLFast = 150

Crashes found

80

70

60 -

50 -

40 +

30}

20

10

0
0

gif2png (empty seed)

— affl
— aflfast

I N
f [=1
|l |
! | {
| u: :
o {7:
]

10000 20000 30000 40000 50000 60000 70000
Time (seconds)

5 = 0.0676

80000 90000

Higher median
does not meet bar
for significance

| Want You

to run multiple trials
and

use a statistical test to
compare daistributions!

Seed Selection

Seed Corpus

* Mutation-based fuzzers require an initial seed (or
seeds) to start the process

- Conventional wisdom: Valid input, but small
- Valid, to drive the program into its "main” logic
» Small, to complete test more quickly

e Some studies on how to choose seeds
- Applied to black box fuzzer; relevant to gray box?

 How might seed choices matter?

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM][7] R(29) G ? v -
FuzzSim[44] R(101) B 100 C S R/M 10D
Dowser[18] R(7) O ? O Vv 8H
COVERSET|38] R(10) O S, G* ? R 12H
SYMFUZZ[8] R(8) A B,Z S M 1H
MutaGen[23] R(8) R,Z S L \% 24H
SDF[28] R(1) Z, 0 0 v 5D
Driller[41] C(126) A G L, E Vv 24H
QuickFuzz-1[16] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C,G* E | 6H,24H
SeededFuzz[43] R(5) O M O G,R 2H
[46] R(2) A O LE Vv oH
AFLGo[5] R(?) A O 20 S L V/E | 8H, 24H
VUzzer[37] C(63), L, R(10) A GS,0 Vv 6H, 24H
SlowFuzz[35] R(10) O 100 - \Y%
Steelix[26] C(17), L, R(5) A V,0 CG L,LE,M Vv 5H
Skyfire[42] R(4) O ? L,M R, G LONG
kAFL[39] R(3) O 5 C,G* Vv 4D, 12D
DIFUZE[11] R(7) O G* G 5H
Orthrus[40] G, R(2) ALO 80 C S, G* A% >7D
Chizpurfle[22] R(1) O G* G -
VDF[21] R(18) C E Vv 30D
QuickFuzz-2[17] R(?) O 10 G* G, M
IMF[19] R(105) O G* O G 24H
[48] S(?) O 5 G G 24H
NEZHA[34] R(6) AL O O R
[45] G AL Vv 5M
S2F[47] L, R(8) A O G O Vv 5H, 24H
FairFuzz[25] R(9) A 20 C C E V/M 24H
Angora[9] L, R(8) AV,0 5 G, C L, E VvV 5H
T-Fuzz[33] C(296), L, R(4) A O C, G* \Y 24H
MEDS[20] S(2), R(12) O 10 C Vv 6H

Evaluations

e 16/32 papers skipped
particulars of seed choice
+ “Valid” seed (V)

e 2/32 papers used the
empty (E) file (eg. AFLFast)
* Surprising contradiction to
conventional wisdom

* Question: Practical impact?

EXperiments

 Empty seed

« Sampled from FFmpeg site (http://samples.
mpeq.orqg)
- All less than 1 MB
- Picked smallest one

 Made with FFmpeqg itself (using videogen and
audiogen programs)

* Also sampled and made object files for nm anad
objdump, and text for cxxfilt

http://mpeg.org

F-Mpeg: Empty vs. Handmade

450

1 1

400 || —

afl

aflfast
afldumb

350

300

250

200

Crashes found

150

100

50

FFmpeg (empty seed)

(AFLFast vs. AFL) p1 = 0.379

O e — e - 1 1 1 L L
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (seconds)

empty seed

Crashes found

(AFLDumb vs. AFL) p2 < 10-15

5000

4000

3000

2000

1000

I

I

|

FFmpeg (1 random MP4)

1 1

— affl
— aflfast
—— afldumb

10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

1-made
01 = 0.043
02 < 10-1

Crashes found

FFMpeg: Sampled vs. Handmade

20

15

10

FFmpeg (1 sampled video)

— afl :
—— aflfast :
—— afldumb |
|
= | .
|
|
|
. .
0
10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (seconds)

1-sampled
o1 > 0.05
02 < 10

Crashes found

5000

4000

3000

2000

1000

I

I

I

|

FFmpeg (1 random MP4)

T

afl
aflfast
afldumb

e —_— o — - - -

0
0

10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (seconds)

1-made

Summary, More Programs

empty 1-made
FFmpeg, AFLDumb | 0 (< 1071°) | 5000 (< 10711
FFmpeg, AFL 382.5 102
FFmpeg, AFLFast | 369.5 (=0.379) | 129 (< 0.05)
nm, AFL 448 23
nm, AFLFast 1239 (< 10719) | 24 (= 0.830)
objdump, AFL 6.5 5
objdump, AFLFast | 29 (<107°) | 6 (< 1079)
cxxfilt, AFL 540.5 572.5
cxxfilt, AFLFast 1400 (< 10719 | 1364 (< 10719

median p-value
relative to AFL

Seed Corpus: Recommendations

 Performance with different seeds varies dramatically
Not all “valid” seeds are the same

 [he empty seed can perform well
» Contrary to conventional wisdom

e Evaluations should
» (Clearly document seed choices

Evaluate on several seeds to assess performance

difference
But how to say something comprehensive Is not easy

1T Imeouts

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM][7] R(29) G ? v -
FuzzSim[44] R(101) B 100 C S R/M 10D
Dowser[18] R(7) O ? O Vv 8H
COVERSET|38] R(10) O S, G* ? R 12H
SYMFUZZ[8] R(8) A B,Z S M 1H
MutaGen[23] R(8) R,Z S L \% 24H
SDF[28] R(1) Z, 0 0 Vv 5D
Driller[41] C(126) A G L, E Vv 24H
QuickFuzz-1[16] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C,G* E | 6H,24H
SeededFuzz[43] R(5) O M O G,R 2H
[46] R(2) A O LE v 2H
AFLGo[5] R(?) A O 20 S L V/E | 8H, 24H
VUzzer[37] C(63), L, R(10) A GS,0 Vv 6H, 24H
SlowFuzz[35] R(10) O 100 - \Y%
Steelix[26] C(17), L, R(5) A V,0 CG L,LE,M Vv 5H
Skyfire[42] R(4) 0 ? LM R,G | LONG
kAFL[39] R(3) O 5 C,G* Vv 4D, 12D
DIFUZE[11] R(7) O G* G 5H
Orthrus[40] G, R(2) ALO 80 C S, G* Vv >7D
Chizpurfle[22] R(1) O G* G -
VDF[21] R(18) C E Vv 30D
QuickFuzz-2[17] R(?) O 10 G* G, M
IMF[19] R(105) O G* O G 24H
[48] S(?) O 5 G G 24H
NEZHA[34] R(6) AL O O R
[45] G AL Vv 5M
S2F[47] L, R(8) A O G O Vv 5H, 24H
FairFuzz[25] R(9) A 20 C C E V/M 24H
Angora[9] L, R(8) AV, O0 5 G, C L, E VvV 5H
T-Fuzz[33] C(296), L, R(4) A O C, G* VvV 24H
MEDS[20] S(2), R(12) O 10 C Vv 6H

Evaluations

10/32 papers ran 24 hours

/132 papers ran 5 or 6 hours

Others less, or much more
 Minutes ... or months!

Question: How much does
this choice matter?

Crashes found

Trends can be Stable

nm (empty seed)

cxxfilt (empty seed
1800 T T T T T T 1800 T T T l(p yl)' ! |
— afl) — afl .- =
1600 | — aflfast T : 1600 | — aflfast L :
1400 .o T T : 1400 - |
1200 - 1200 -]
©
c
1000 - 3 1000}]
»
()
800 - - % 800} .
o
@)
600 | . 600 |- |
400 . 400 | .
200 + - 200 |k |
0 = I - - - — - — - = - = - = = j= = 0 | 1 1 1 1 | 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds) Time (seconds)

D < 10-13 b < 10-10

AFLFast better at
5 8 24 hours

Trends can Change

16 nm (3 sampled ELFs)

— afl
14 1| — aflfast

12

10

I
|
I |
I
_'Iﬁl
| I | '
- I_ AI_Il.‘. J
| | |
2_ —_— o ll
I !
AL
| '|
0

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

Can take time for
fuzzing to "warm up”

Crashes found

3-sampled
6 hours: p < 1013 AFLFast is better
24 hours: p = 0.000105 AFL Is better

1 imeouts:

Recommendations

 Longer timeouts are better because they subsume

shorter ones

» Using plots like ones we've shown earlier, performance
can be compared at different points in time

 But there is a practical limit to long timeouts

Hard to work or

weeks or monthr

substantial program corpus over

S

- 24 hours seems like a good target

» Ecologically relevant
- But longer would be even better!

« Subsumes common 5 and 8 hour limits

ASSEeSSINg
Pertormance

Performance Metrics

- Ultimate “ground truth”: Bugs

- Finding lots of different inp
same bug is not that usefu

Uts whose root cause Is the

(maybe, harmtul!)

 Some benchmarks designed with known bugs

 (Crash has telltale sign

* For others: Which crash signals which bug?

* Heuristics: Stack hash and coverage (AFL CMIN)

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM][7] R(29) G ? Vv -
FuzzSim[44] R(101) B 100 C S R/M 10D
Dowser[18] R(7) O ? O Vv 8H
COVERSET|38] R(10) O S, G* ? R 12H
SYMFUZZ[8] R(8) A B,Z S M 1H
MutaGen[23] R(8) R,Z S L \% 24H
SDF[28] R(1) Z, 0 0 Vv 5D
Driller[41] C(126) A G L, E Vv 24H
QuickFuzz-1[16] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C,G* E | 6H,24H
SeededFuzz[43] R(5) O M O G,R 2H
[46] R(2) A O LE v 2H
AFLGo[5] R(?) A O 20 S L V/E | 8H, 24H
VUzzer[37] C(63), L, R(10) A GS,0 Vv 6H, 24H
SlowFuzz[35] R(10) O 100 - \Y%
Steelix[26] C(17),L,R(5) | A,V,0 C,G | LEM v 5H
Skyfire[42] R(4) O ? L,M R, G LONG
kAFL[39] R(3) O 5 C,G* Vv 4D, 12D
DIFUZE[11] R(7) O G* G 5H
Orthrus[40] G, R(2) ALO 80 C S, G* \Y >7D
Chizpurfle[22] R(1) O G* G -
VDF[21] R(18) C E Vv 30D
QuickFuzz-2[17] R(?) O 10 G* G, M
IMF[19] R(105) O G* O G 24H
[48] S(?) O 5 G G 24H
NEZHA[34] R(6) AL O O R
[45] G AL Vv 5M
S2F[47] L, R(8) A O G O Vv 5H, 24H
FairFuzz[25] R(9) A 20 C C E V/M 24H
Angora[9] L, R(8) AV,0 5 G, C L, E VvV 5H
T-Fuzz[33] C(296), L, R(4) A O C,G* Vv 24H
MEDS[20] S(2), R(12) O 10 C Vv 6H

Evaluations

8 used AFL CMIN (“unigue
crashes”) (C)

/ used stack hashes (S)

/ assessed ground truth
perfectly (G)

» 8 others did, in part (“case
study”, G*)

For C and S: How effective
at predicting G?

AFL CMIN

* A crashing input is considered “unique” if either

the coverage profile includes an edge (“tuple”) not seen In
any of the previous crashes

the profile is missing a tuple always present in earlier faults

e AFL calls this CMIN. Docs |

Just using the faulting locatl
Sl
inflate cou

Might be a common sink for di
« Hashing a stack trace wil

Inct bugs

if the crash site can be reached through a nu

recursive code paths

justify it by saying:
on will result in false negatives

Nts (false positives)

mber of different, possibly

 But CMIN may suffer from inflated counts, too

False Positives

int main(int argc, char* argv([]) { | . Bug is in crash ()
1f (argc >= 2) {
char b = argv [1][0]; o But different inputs that lead
if (b crash(); to crash () will be treated
else crash(); as distinct
} » They have different control-
return 0; flow edges

Y

(Fuzzy) Stack Hashes

* |dea: ldentify bug according to the stack at the
time of the crash (return addresses)

 Or: Limit attention to the top N frames (where N is
between 3 and 5 in most papers)

» Rationale: Faulting location highly indicative of
source of bug

» Stack provides necessary context (i.e., when faulting
function given a input, only from certain caller)

» But some “context” may be supertluous
- Assume: frames closer to bug more relevant

-alse Positives and Negatives

void f£() { .. format(sl);
vold g() { .. format(s2);

vold format(char *s) {
//bug: corrupt s
prepare(s);

}

vold prepare(char *s)
output(s);

}

volid output(char *s) {
//failure manifests

}

o With N=3, distinct calls to
format from £ and g will be
conflated, properly

e But with N=5, calling format
from £ and g are made distinct

+ Overcounting

 With N=2, a bug In a different
caller to prepare that
corrupts its argument will be
conflated with the format bug

+ Undercounting

s
N
w

N
N
N

AN
N
&)

AN
)\
(0))

AN
N
~

N
N
(00

ASsessing Heuristics

* Used bug tracker to find patches
since fuzzed version

Line 419 static struct demangle_component *d_sour

static long d_number (struct d_info *);
static struct demangle_component *d_identifier (struct d_info *, int);

static struct demangle_component *d_operator_name (struct d_info

*);

\I%l-b
— N
O O

~
N
S

\l
N
—h

~
N
\)

~
N
w

~l
N
o

~
N
)]

— 3%

1

—
(@)
(@)

—

—A
(@)
w

6

—
@)
(0))
AN

{

—
@)
&)

6

—
@)
(@)
()]

— S

681

—A
(@)
0
(\}

—
(o)
0 0)
w

—
@)
Qo
N

—
(®))]
00)
&)

—
(@)
00
(0))

1687

Line 715 d_dump (struct demangle_component *dc, i

case DEMANGLE_COMPONENT_FIXED_TYPE:
printf ("fixed-point type, accum? %d, sat? %d\n",
dc->u.s_fixed.accum, dec->u.s_fixed.sat);
d_dump (dc->u.s_fixed.length, indent + 2)
break;
case DEMANGLE_COMPONENT_ARGLIST:
printf ("argument list\n");

Line 1656 d_number_component (struct d_info *di)
660 /* identifier ::= <(unqualified source code identifier)> */

662 static struct demangle_component *
d_identifier (struct d_info *di, int len)

const char *name;

Line 1677 d_identifier (struct d_info *di, int len

/* Look for something which looks like a gcc encoding of an
anonymous namespace, and replace it with a more user friendly
name. */

if (len >= (int) ANONYMOUS_NAMESPACE_PREFIX_LEN + 2
&& memcmp (name, ANONYMOUS_NAMESPACE_PREFIX,

ANONYMOUS_NAMESPACE_PREFIX_LEN) == 0)

Line 423 static struct demangle_component *d_sour

static long d_number (struct d_info *);
static struct demangle_component *d_identifier (struct d_info *, long);

static struct demangle_component *d_operator_name (struct d_info *);

Line 719 d_dump (struct demangle_component *dc, i
case DEMANGLE_COMPONENT_FIXED_TYPE:

printf ("fixed-point type, accum? %d, sat? %d\n",
dc->u.s_fixed.accum, dec->u.s_fixed.sat);
d_dump (dc->u.s_fixed.length, indent + 2);
break;
case DEMANGLE_COMPONENT_ARGLIST:
printf ("argument list\n");

Line 1660 d_number_component (struct d_info *di)
/* identifier ::= <(unqualified source code identifier)> */

static struct demangle_component *
d_identifier (struct d_info *di, long len)

{

const char *name;

Line 1681 d_identifier (struct d_info *di, int len
/* Look for something which looks like a gcc encoding of an

anonymous namespace, and replace it with a more user friendly
name. */
if (len >= (long) ANONYMOUS_NAMESPACE_PREFIX_LEN + 2
&& memcmp (name, ANONYMOUS_NAMESPACE_PREFIX,
ANONYMOUS_NAMESPACE_PREFIX_LEN) == 0)

Picked 67393 that fixed an integer
overflow

* Applied just that fix to the
baseline and re-ran against all
57,000 crashing inputs (post-
CMIN)

hose that no longer crash are
due to this bug

e Re-run must account for non-
determinism

Jsed valgrind: “non crash” only if
it found no issue

2000

1800

1600

1400

—
N
o
o

800

crashing inputs
—
(-
o
o

600

400

200

CMIN Results

67393-fixed (AFL) ®other (AFL) 67393-fixed (AFLFast) ®other (AFLFast)

HILHTTTHHTE

HHTHHHNULHHII

IHHTHUTLLT L TR LT B 1 D

et

11]} SRR RRRRRRRRRRRRRRRRRRRRRRRRAAE]

THLLI L W il H __
AFL Trials AFLFast

31124 total inputs found for this bug

Bug

Stack Hash Results

Bug fix to cxxfilt Distinct Hashes Matches False Matches

Bug 67393 336 311 25

 Computed stack hashes (N=5) for all 31124 inputs
corresponding to bug
» 3306 distinct stack hashes

+ or 12 out of 500 CMIN (average on a per-trial basis)
- Much better!

e But: only 311 distinct: 25 also matched another bug
» [False negatives; might mean missed bugs!

Full Triage for Cxxfilt

We considered all Git commits from the version of
cxxfilt with tested on until the present

We applied each commit and retested each input
- Those that now passed were grouped with that commit

We examined commits to see it they should be
considered multiple bug fixes, rather than just one

+ Split a big commit into 5 smaller ones — part of an en
masse merge of trunks (includes 67393)

No results for stack hashes as yet

Count of crashes

cxxfilt: AFL CMIN vs. Bugs

AFL AFLfast

S 67393 1 e 13 total bugs
UY 6 o 7 » No trial found more than 8

6 — 6 1 8
6 /|

e * 3 bugs account for most
i crashing inputs
 Bug 67393 the most Iinputs

 Number of crashing inputs
correlates with number of bugs,
but only loosely

(o))

 Mann Whitney p-value is .091 for
ArFLFast bugs > AFL bugs
e vs. 10-10 for “unique” crashes

What is a (single) Bug”

» All of the previous discussion assumes that we can

identify one
+ Maybe we d

bug as distinct from another
idn’t split patches as much as we should

nave, and so heuristics better than we've said

 But It turns out that "bug” Is a slippery concept

* Proposal: A bug is a code fragment (or lack thereof)

that contribu

es to one or more failures. By

‘contributes

0, we mean that the buggy code

fragment is executed (or should have been, but
was missing) when the failure happens
- http://www.pl-enthusiast.net/2015/09/08/what-is-a-bug/

http://www.pl-enthusiast.net/2015/09/08/what-is-a-bug/

Metrics Summary

 [hisis just one pro

gram and set of fuzzing results,

but it shows the potential for heuristics to

- Massively overco
- Miss bugs (false r

unt bugs (false positives)
egatives)

- The good news Is*
the former

hat the situation seems tilted toward

 As such, it seems prudent to attempt to measure
ground truth directly
- Use benchmarks with known bugs

- Might still use othe

r programs, to avoid overfitting

Q: Better Heuristic?

[t CMIN and Stack Hashes are poor, perhaps there’s
room to do better, even if not pertectly

Relies on (at least partially) answering the “what is a
single bug”?” question

We are starting to explore some ideas here

Q: Improve the Search?

 Qur results overall show that there can be a fair bit
of variance in performance from run to run
* esp. when counting crashes

* |ndeed, no cxxfilt run found all 13 bugs

 Found a few common In common but then varied a fair
bit on the rare ones

 Perhaps the fuzzing search is hitting a local minima,
and so “rebooting” helps

- A similar observation underpins search in SAT solvers
today

larget Programs

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM[7] R(29) G ? v -
FuzzSim[44] R(101) B 100 C S R/M 10D
Dowser[18] R(7) O ? O \Y% 8H
COVERSET|38] R(10) O S, G* ? R 12H
SYMFUZZ[8] R(8) A B,Z S M 1H
MutaGen|[23] R(8) R,Z S L Vv 24H
SDF[28] R(1) Z, 0 0 v 5D
Driller[41] C(126) A G L, E Vv 24H
QuickFuzz-1[16] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C, G* E | 6H, 24H
SeededFuzz[43] R(5) O M O G,R 2H
[46] R(2) A O LE v 2H
AFLGo[5] R(?) A O 20 S L V/E | 8H, 24H
VUzzer[37] C(63), L, R(10) A GS,0 Vv 6H, 24H
SlowFuzz[35] R(10) O 100 - \%
Steelix[26] C(17),L,R() | A,V,0 C,G | LEM v 5H
Skyfire[42] R(4) O ? L,M R, G LONG
kAFL[39] R(3) O 5 C,G* Vv 4D, 12D
DIFUZE[11] R(7) O G* G 5H
Orthrus[40] G, R(2) AL O 80 C S, G* \% >7D
Chizpurfle[22] R(1) O G* G -
VDF[21] R(18) C E Vv 30D
QuickFuzz-2[17] R(?) O 10 G* G, M
IMF[19] R(105) O G* O G 24H
[48] S(?) O 5 G G 24H
NEZHA[34] R(6) AL O O R
[45] G AL Vv 5M
S2F[47] L, R(8) A O G O Vv 5H, 24H
FairFuzz[25] R(9) A 20 C C E V/M 24H
Angora[9] L, R(8) AV,0 5 G, C L, E VvV 5H
T-Fuzz[33] C(296), L, R(4) A O C,G* Vv 24H
MEDS[20] S(2), R(12) O 10 C Vv 6H

Evaluations

» 30/32 used real programs
- [ypically 5-10, as many as
100, but vary a tair bit across
papers
- 2/32 use Google Test Suite
» Fair/sufficient sample?

» 8/32 purposely-vulnerable
programs (or injected bugs)
» 5/32 use LAVA-M
» 4/32 use CGC
- Ecological validity”

Crashes found

1800

1600

1400

1200

1000

800

600

400

200 -

0
0

Binutils vs. Image proc.

nm (empty seed)

I

I

1

| I |

— afl
— aflfast - 1

10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

p < 1013

From AFLFast paper

Crashes found

600

500

400

300

200

100

0
0

FFmpeg (empty seed)

I

T

1

1

I

1

afl
aflfast .

10000 20000 30000 40000 50000 60000 70000 80000 90000

J —

Time (seconds)

o =0.3/79

From VUzzer paper

Google Fuzz Test Suite

https://github.com/gooqgle/fuzzer-test-suite

24 programs and libraries with known bugs
+ OpenSSL, PCRE, SQLite, libpng, libxml2, libarchive, ...

Comes with harness to connect to AFL and libfuzzer
- And confirm when a bug is discovered

This is a sort of regression suite, so its generality is
not entirely clear

Also, Google OSS-Fuzz project
» https://github.com/google/oss-fuzz

https://github.com/google/fuzzer-test-suite
https://github.com/google/oss-fuzz

Cyber Grand Challenge

« CGC is a suite of 296 programs constructed for

DARPA's Cyber Grand Challenge
- Intended to be ecologically valid, but also intended
to be challenging (gamification)

- Validity not tested
- And subset In many papers

* (Good feature: Known ground truth (ielltale sign
when bug is triggered)

o https://github.com/trailofbits/chb-multios

https://github.com/trailofbits/cb-multios

L AVA-M

 LAVA is a bug injection methodology that adds "magic
number checks” to inputs that otherwise do not aftect
control flow (much)

| AVA-M Is the result of using it to inject bugs in four open-
source programs (base64, md5sum, uniq, and who)
» 2000+ bugs injected in who (!)

e “A significant chunk of future work for LAVA involves
making the generated corpora look more like the bugs
that are found in real programs.”

 http://moyix.blogspot.com/2016/10/the-lava-synthetic-
bug-corpora.html

http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html

A Fuzzing Benchmark?

A substantial (large) sample

of relevant programs

(look at the breadth of existing fuzzing papers)
» Some justification for ecological validity

Should know ground truth

Fuzzers should not overtfit to
* Perhaps run a sample from a
- May want to include non-ber

despite not necessarily havir

Google Fuzz, CGC, LAVA-M
good starting points

the benchmark
arger population
chmark programs too,
g ground truth

- current papers may be

Summary: Do’s and Don'ts

Do assess a random process using multiple trials
and a statistical test
» Don't run just one trial
+ Don’t compute just the mean/median

 Don’t use heuristics as only performance measure
» Some results should be based on ground truth

* Do clarify choice of seed
« Evaluate choices and understand which Is best

* Do use longer timeout and measure performance
over time

General advice: SIGPLAN guidelines!

i
_
<

—
— :
; =
| 38 : -
'3 "l)
¥ ‘] v 3
i) = A

http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/

