
Fuzzing
and how to evaluate it

Michael Hicks
The University of Maryland

UM
Joint work with George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei

What is fuzzing?
• A kind of random testing

• Goal: make sure certain bad things don’t happen,
no matter what

• Crashes, thrown exceptions, non-termination
• All of these things can be the foundation of security

vulnerabilities

• Complements functional testing
• Test features (and lack of misfeatures) directly
• Normal tests can be starting points for fuzz tests

File-based fuzzing
• Mutate or generate inputs
• Run the target program with them
• See what happens
• Repeat

XXX
XXX
XXX

XXX
y36
XXz
mmm

Examples: Radamsa and Blab
• Radamsa is a mutation-based, black box fuzzer

• It mutates inputs that are given, passing them along

% echo "1 + (2 + (3 + 4))" | radamsa --seed 12 -n 4
5!++((5- + 3)
1 + (3 + 41907596644)
1 + (-4 + (3 + 4))
1 + (2 +4 + 3)
% echo … | radamsa --seed 12 -n 4 | bc -l

https://gitlab.com/akihe/radamsa https://code.google.com/p/ouspg/wiki/Blab

% blab -e '(([wrstp][aeiouy]{1,2}){1,4} 32){5} 10’
soty wypisi tisyro to patu

• Blab generates inputs according to a grammar
(grammar-based), specified as regexps and CFGs

https://gitlab.com/akihe/radamsa
https://code.google.com/p/ouspg/wiki/Blab

Ex: American Fuzzy Lop (AFL)
• It is a mutation-based, “gray-box” fuzzer. Process:

• Instrument target to gather tuple of <ID of current code
location, ID last code location>

- On Linux, the optional QEMU mode allows black-box binaries to be fuzzed
• Retain test input to create a new one if coverage profile

updated
- New tuple seen, or existing one a substantially increased number of times
- Mutations include bit flips, arithmetic, other standard stuff

% afl-gcc -c … -o target
% afl-fuzz -i inputs -o outputs target
afl-fuzz 0.23b (Sep 28 2014 19:39:32) by <lcamtuf@google.com>
[*] Verifying test case 'inputs/sample.txt'...
[+] Done: 0 bits set, 32768 remaining in the bitmap. …
———————
Queue cycle: 1n time : 0 days, 0 hrs, 0 min, 0.53 sec …

http://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/

Other fuzzers
• Black box: CERT Basic Fuzzing Framework (BFF),

Zzuf, …

• Gray box: VUzzer, Driller, Fairfuzz, T-Fuzz, Angorra,
…

• White box: KLEE, angr, SAGE, Mayhem, …

There are many more …

Evaluating Fuzzing
an adventure in the scientific method

Assessing Progress
• Fuzzing is an active area

• 2-4 papers per top security conference per year
• Many fuzzers now in use

• So things are getting better, right?

• To know, claims must be supported by empirical
evidence

• I.e., that a new fuzzer is more effective at finding
vulnerabilities than a baseline on a realistic workload

• Is the evidence reliable?

Fuzzing Evaluation Recipe
for Advanced Fuzzer (call it A)

• A compelling baseline fuzzer B to compare against

• A sample of target programs (benchmark suite)
• Representative of larger population

• A performance metric
• Ideally, the number of bugs found (else a proxy)

• A meaningful set of configuration parameters
• Notably, justifable seed file(s), timeout

• A sufficient number of trials to judge performance
• Comparison with baseline using a statistical test

Requires

Assessing Progress
• We looked at 32 published papers and compared

their evaluation to our template
• What target programs, seeds and timeouts did they

choose and how did they justify them?
• Against what baseline did they compare?
• How did they measure (or approximate) performance?
• How many trials did they perform, and what statistical

test?

• We found that most papers did some things right,
but none were perfect

• Raises questions about the strength of published results

Measuring Effects
• Failure to follow the template may not mean

reported results are wrong
• Potential for wrong conclusions, not certainty

• We carried out experiments to start to assess this
potential

• Goal is to get a sense of whether the evaluation
problem is real

• Short answer: There are problems
• So we provide some recommended mitigations

Summary of Results
• Few papers measure multiple runs

• And yet fuzzer performance can vary substantially across runs

• Papers often choose small number of target programs, with a small
common set
• And yet they target the same population
• And performance can vary substantially

• Few papers justify the choice of seeds or timeouts
• Yet seeds strongly influence performance,
• And trends can change over time

• Many papers use heuristics to relate crashing inputs to bugs
• Yet these heuristics have not been evaluated
• One experiment shows they dramatically overcount bugs

Don’t Researchers Know Better?
• Yes, many do. Even so, experts forget or are nudged

away from best practice by culture and circumstance
• Especially when best practice is more effort

• Solution: List of recommendations
• And identification of open problems

• Inspiration for effort to provide checklist broadly
• SIGPLAN Empirical Evaluation Guidelines
• http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/

Outline
• Preliminaries

• Papers we looked at
• Categories we considered
• Experimental setup

• Results by category, with recommendations
• Statistical Soundness
• Seed selection
• Timeouts
• Performance metric
• Benchmark choice

• Future Work

• 32 papers (2012-2018)
• Started from 10 high-impact

papers, and chased
references

• Plus: Keyword search
• Disparate goals

• Improve initial seed
selection

• Smarter mutation (e.g.,
based on taint data)

• Different observations (e.g.,
running time)

• Faster execution times,
parallelism

• Etc.

Experimental Setup
• Advanced Fuzzer: AFLFast (CCS’16), Baseline: AFL

• Five target programs used by previous fuzzers
• Three binutils programs: cxxfilt, nm, objump (AFLFast)
• Two image processing ones: gif2png (VUzzer), FFmpeg

(fuzzsim)

• 30 trials (more or less) at 24 hours per run
• Empty seed, sampled seed, others
• Mann Whitney U test

• Experiments on de-duplication effectiveness

Why AFL, AFLFast?
• AFL is popular (14/32 papers used it as baseline)

• AFLFast is open source, easy build instructions, and
easy experiments to reproduce and extend

• Thanks to the authors for their help!

• Issues that we found not unique to AFLFast
• Other papers do worse
• Other fuzzers have same core structure as AFL/AFLFast

• Issues may not undermine results
• But conclusions are probably weakened, caveated
• The point: We need stronger evaluations to see

Statistical Soundness

Fuzzing is a Random Process
• The mutation of the input is chosen randomly by the

fuzzer, and the target may make random choices

• Each fuzzing run is a sample of the random process
• Question: Did it find a crash or not?

• Samples can be used to approximate the
distribution

• More samples give greater certainty

• Is A better than B at fuzzing? Need to compare
distributions to make a statement

Analogy: Biased Dice
• We want to compare the “performance” of two dice

• Die A is better than die B if it tends to land on higher
numbers more often (biased!)

• Suppose rolling A and B yields 6 and 1. Is A better?
• Maybe. But we don’t have enough information. One trial is

not enough to characterize a random process.

Multiple Trials
• What if I roll A and B five times each and get

• A: 6, 6, 1, 1, 6
• B: 4, 4, 4, 4, 4
• Is A better?

• Could compare average measures
• median(A) = 6, median(B) = 4
• mean(A) = 4, mean(B) = 4
• The first suggests A is better, but the second does not
• And there is still uncertainty that these comparisons

hold up after more trials

Statistical Tests
• A mechanism for quantitatively accepting or rejecting a

hypothesis about a process

• In our case, the process is fuzz testing and the
hypothesis is that fuzz tester A (a “random variable”) is
better than B at finding bugs in a particular program,
e.g., that median(A) - median(B) ≥ 0 for that program

• The confidence of our judgment is captured in the p-
value

• It is the probability that the outcome of the test is wrong
• Convention: p-value ≤ 0.05 is a sufficient level of

confidence

• Use the Student T test ?
• Meets the right form for the test
• But assumes that samples (fuzz

test inputs) drawn from a normal
distribution. Certainly not true

• Arcuri & Brian advice: Use the
Mann Whitney U Test

• No assumption of distribution
normality

Evaluations
• 19/32 papers said nothing

about multiple trials
• Assume 1

• 13/32 papers said multiple
trials

• Varying number; one case
not specified

• 3/13 papers characterized
variance across runs

• 0 papers performed a
statistical test

Practical Impact?
• Fuzzers run for a long time, conducting potentially

millions of individual tests over many hours
• If we consider our biased die: Perhaps no statistical test is

needed (just the mean/median) if we have a lot of trials?

• Problem: Fuzzing is a stateful search process
• Each test is not independent, as in a die roll

- Rather, it is influenced by the outcome of previous tests
• The search space is vast; covering it all is difficult

• Therefore, we should consider each run as a trial, and
consider many trials

• Experimental results show potentially high per-trial
variance

Performance Plot

median

min

max

95%
95%

Performance Plot

median

min

max

95%
95%

median

min

max

95%
95%

p < 10-13 p < 10-10

Statistically Significant

Higher median
clearly better

significant variance
in performance

p = 0.0676p = 0.379

Statistically Insignificant

Max AFL = 550
Min AFLFast = 150

Higher median
does not meet bar

for significance

I Want You
to run multiple trials

and

use a statistical test to
compare distributions!

Seed Selection

Seed Corpus
• Mutation-based fuzzers require an initial seed (or

seeds) to start the process

• Conventional wisdom: Valid input, but small
• Valid, to drive the program into its “main” logic
• Small, to complete test more quickly

• Some studies on how to choose seeds
• Applied to black box fuzzer; relevant to gray box?

• How might seed choices matter?

Evaluations
• 16/32 papers skipped

particulars of seed choice
• “Valid” seed (V)

• 2/32 papers used the
empty (E) file (eg. AFLFast)

• Surprising contradiction to
conventional wisdom

• Question: Practical impact?

Experiments
• Empty seed

• Sampled from FFmpeg site (http://samples.
mpeg.org)

• All less than 1 MB
• Picked smallest one

• Made with FFmpeg itself (using videogen and
audiogen programs)

• Also sampled and made object files for nm and
objdump, and text for cxxfilt

http://mpeg.org

empty seed
(AFLFast vs. AFL) p1 = 0.379
(AFLDumb vs. AFL) p2 < 10-15

FFMpeg: Empty vs. Handmade

1-made
p1 = 0.048
p2 < 10-11

1-sampled
p1 > 0.05
p2 < 10-5

FFMpeg: Sampled vs. Handmade

1-made
p1 = 0.048
p2 < 10-11

Summary, More Programs

median p-value
relative to AFL

Seed Corpus: Recommendations
• Performance with different seeds varies dramatically

• Not all “valid” seeds are the same

• The empty seed can perform well
• Contrary to conventional wisdom

• Evaluations should
• Clearly document seed choices
• Evaluate on several seeds to assess performance

difference
- But how to say something comprehensive is not easy

Timeouts

Evaluations
• 10/32 papers ran 24 hours

• 7/32 papers ran 5 or 6 hours

• Others less, or much more
• Minutes … or months!

• Question: How much does
this choice matter?

p < 10-13 p < 10-10

Trends can be Stable

AFLFast better at
5, 8, 24 hours

3-sampled
6 hours: p < 10-13 AFLFast is better
24 hours: p = 0.000105 AFL is better

Trends can Change

Can take time for
fuzzing to “warm up”

Timeouts: Recommendations
• Longer timeouts are better because they subsume

shorter ones
• Using plots like ones we’ve shown earlier, performance

can be compared at different points in time

• But there is a practical limit to long timeouts
• Hard to work on substantial program corpus over

weeks or months

• 24 hours seems like a good target
• Ecologically relevant

- But longer would be even better!
• Subsumes common 5 and 8 hour limits

Assessing
Performance

Performance Metrics
• Ultimate “ground truth”: Bugs

• Finding lots of different inputs whose root cause is the
same bug is not that useful (maybe, harmful!)

• Some benchmarks designed with known bugs
• Crash has telltale sign

• For others: Which crash signals which bug?

• Heuristics: Stack hash and coverage (AFL CMIN)

Evaluations
• 8 used AFL CMIN (“unique

crashes”) (C)

• 7 used stack hashes (S)

• 7 assessed ground truth
perfectly (G)

• 8 others did, in part (“case
study”, G*)

• For C and S: How effective
at predicting G?

AFL CMIN
• A crashing input is considered “unique” if either

• the coverage profile includes an edge (“tuple”) not seen in
any of the previous crashes

• the profile is missing a tuple always present in earlier faults

• AFL calls this CMIN. Docs justify it by saying:
• Just using the faulting location will result in false negatives

- Might be a common sink for distinct bugs
• Hashing a stack trace will inflate counts (false positives)

- if the crash site can be reached through a number of different, possibly
recursive code paths

• But CMIN may suffer from inflated counts, too

False Positives
int main(int argc, char* argv[]) {
 if (argc >= 2) {
 char b = argv [1][0];
 if (b == 'a') crash();
 else crash();
 }
 return 0;
}

• Bug is in crash()

• But different inputs that lead
to crash() will be treated
as distinct

• They have different control-
flow edges

(Fuzzy) Stack Hashes
• Idea: Identify bug according to the stack at the

time of the crash (return addresses)
• Or: Limit attention to the top N frames (where N is

between 3 and 5 in most papers)

• Rationale: Faulting location highly indicative of
source of bug

• Stack provides necessary context (i.e., when faulting
function given a input, only from certain caller)

• But some “context” may be superfluous
- Assume: frames closer to bug more relevant

False Positives and Negatives
void f() { … format(s1); … }
void g() { … format(s2); … }
void format(char *s) {
 //bug: corrupt s
 prepare(s);
}
void prepare(char *s) {
 output(s);
}
void output(char *s) {
 //failure manifests
}

• With N=3, distinct calls to
format from f and g will be
conflated, properly

• But with N=5, calling format
from f and g are made distinct

• Overcounting

• With N=2, a bug in a different
caller to prepare that
corrupts its argument will be
conflated with the format bug

• Undercounting

Assessing Heuristics
• Used bug tracker to find patches

since fuzzed version
• Picked 67393 that fixed an integer

overflow

• Applied just that fix to the
baseline and re-ran against all
57,000 crashing inputs (post-
CMIN)
• Those that no longer crash are

due to this bug

• Re-run must account for non-
determinism
• Used valgrind: “non crash” only if

it found no issue

CMIN Results

Bug
67393

Other
inputs

AFLFastAFL

}
31124 total inputs found for this bug

Stack Hash Results

• Computed stack hashes (N=5) for all 31124 inputs
corresponding to bug

• 336 distinct stack hashes
• or 12 out of 500 CMIN (average on a per-trial basis)

- Much better!

• But: only 311 distinct: 25 also matched another bug
• False negatives; might mean missed bugs!

Full Triage for Cxxfilt
• We considered all Git commits from the version of

cxxfilt with tested on until the present

• We applied each commit and retested each input
• Those that now passed were grouped with that commit

• We examined commits to see if they should be
considered multiple bug fixes, rather than just one

• Split a big commit into 5 smaller ones — part of an en
masse merge of trunks (includes 67393)

• No results for stack hashes as yet

cxxfilt: AFL CMIN vs. Bugs
• 13 total bugs

• No trial found more than 8

• 3 bugs account for most
crashing inputs

• Bug 67393 the most inputs

• Number of crashing inputs
correlates with number of bugs,
but only loosely

• Mann Whitney p-value is .091 for
AFLFast bugs > AFL bugs

• vs. 10-10 for “unique” crashes

Bug 67393

What is a (single) Bug?
• All of the previous discussion assumes that we can

identify one bug as distinct from another
• Maybe we didn’t split patches as much as we should

have, and so heuristics better than we’ve said

• But it turns out that “bug” is a slippery concept

• Proposal: A bug is a code fragment (or lack thereof)
that contributes to one or more failures. By
“contributes to”, we mean that the buggy code
fragment is executed (or should have been, but
was missing) when the failure happens

• http://www.pl-enthusiast.net/2015/09/08/what-is-a-bug/

http://www.pl-enthusiast.net/2015/09/08/what-is-a-bug/

Metrics Summary
• This is just one program and set of fuzzing results,

but it shows the potential for heuristics to
• Massively overcount bugs (false positives)
• Miss bugs (false negatives)
• The good news is that the situation seems tilted toward

the former

• As such, it seems prudent to attempt to measure
ground truth directly

• Use benchmarks with known bugs
• Might still use other programs, to avoid overfitting

Q: Better Heuristic?
• If CMIN and Stack Hashes are poor, perhaps there’s

room to do better, even if not perfectly

• Relies on (at least partially) answering the “what is a
single bug?” question

• We are starting to explore some ideas here

Q: Improve the Search?
• Our results overall show that there can be a fair bit

of variance in performance from run to run
• esp. when counting crashes

• Indeed, no cxxfilt run found all 13 bugs
• Found a few common in common but then varied a fair

bit on the rare ones

• Perhaps the fuzzing search is hitting a local minima,
and so “rebooting” helps

• A similar observation underpins search in SAT solvers
today

Target Programs

Evaluations
• 30/32 used real programs

• Typically 5-10, as many as
100, but vary a fair bit across
papers

• 2/32 use Google Test Suite
• Fair/sufficient sample?

• 8/32 purposely-vulnerable
programs (or injected bugs)

• 5/32 use LAVA-M
• 4/32 use CGC
• Ecological validity?

p = 0.379

Binutils vs. Image proc.

p < 10-13

From AFLFast paper From VUzzer paper

Google Fuzz Test Suite
• https://github.com/google/fuzzer-test-suite

• 24 programs and libraries with known bugs
• OpenSSL, PCRE, SQLite, libpng, libxml2, libarchive, …

• Comes with harness to connect to AFL and libfuzzer
• And confirm when a bug is discovered

• This is a sort of regression suite, so its generality is
not entirely clear

• Also, Google OSS-Fuzz project
• https://github.com/google/oss-fuzz

https://github.com/google/fuzzer-test-suite
https://github.com/google/oss-fuzz

Cyber Grand Challenge
• CGC is a suite of 296 programs constructed for

DARPA’s Cyber Grand Challenge
• Intended to be ecologically valid, but also intended

to be challenging (gamification)
• Validity not tested
• And subset in many papers

• Good feature: Known ground truth (telltale sign
when bug is triggered)

• https://github.com/trailofbits/cb-multios

https://github.com/trailofbits/cb-multios

LAVA-M
• LAVA is a bug injection methodology that adds “magic

number checks” to inputs that otherwise do not affect
control flow (much)

• LAVA-M is the result of using it to inject bugs in four open-
source programs (base64, md5sum, uniq, and who)

• 2000+ bugs injected in who (!)

• “A significant chunk of future work for LAVA involves
making the generated corpora look more like the bugs
that are found in real programs.”

• http://moyix.blogspot.com/2016/10/the-lava-synthetic-
bug-corpora.html

http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html

A Fuzzing Benchmark?
• A substantial (large) sample of relevant programs

(look at the breadth of existing fuzzing papers)
• Some justification for ecological validity

• Should know ground truth

• Fuzzers should not overfit to the benchmark
• Perhaps run a sample from a larger population
• May want to include non-benchmark programs too,

despite not necessarily having ground truth

• Google Fuzz, CGC, LAVA-M, current papers may be
good starting points

Summary: Do’s and Don’ts
• Do assess a random process using multiple trials

and a statistical test
• Don’t run just one trial
• Don’t compute just the mean/median

• Don’t use heuristics as only performance measure
• Some results should be based on ground truth

• Do clarify choice of seed
• Evaluate choices and understand which is best

• Do use longer timeout and measure performance
over time

General advice: SIGPLAN guidelines!

http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/

