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Lambda Calculus

Syntax

Lambda calculus is recursively defined.

E := x

:= λx .E

:= E E

Here x can be any name and E s on the right hand side can be
replaced by any sub expression constructed using the same rules.
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Binding

Without brackets, these are the binding rules:

λx .f a b = (λx .f a b)

a b c = (a b) c

If we want to express something different, we use brackets.
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Free variables

A variable is free if it is not bound by a lambda e.g.

x is bound: λx .x
y is free: λx .y

λx .y (λy .z y x)
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α-Conversion

What letter we use after our λs doesn’t matter e.g.

λx .x

λy .y

are the same function (they do the same thing)

We can change the name of a variable after a λ as long as we
change all places where it would be substituted. This is called
α-conversion.
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β-Reduction

Whenever we have an expression of the form:

(λx .E )F

We can replace it with E where we replace all occurences of x in E
with F e.g.

(λx .λy .x y) (λz .z)

→λy .(λz .z) y
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Representing Data

How can we use this to represent data?
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Booleans

True := λx .λy .x

False := λx .λy .y
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Numbers

This method of representing numbers is called Church numerals.

0 := λf .λx .x

1 := λf .λx .f x

2 := λf .λx .f (f x)

3 := λf .λx .f (f (f x))


