
Lambda Calculus

Lambda Calculus

Nicholas Miehlbradt

October 28, 2022



Lambda Calculus

Syntax

Lambda calculus is recursively defined.

E := x

:= λx .E

:= E E

Here x can be any name and E s on the right hand side can be
replaced by any sub expression constructed using the same rules.



Lambda Calculus

Binding

Without brackets, these are the binding rules:

λx .f a b = (λx .f a b)

a b c = (a b) c

If we want to express something different, we use brackets.



Lambda Calculus

Free variables

A variable is free if it is not bound by a lambda e.g.

x is bound: λx .x
y is free: λx .y

λx .y (λy .z y x)



Lambda Calculus

α-Conversion

What letter we use after our λs doesn’t matter e.g.

λx .x

λy .y

are the same function (they do the same thing)

We can change the name of a variable after a λ as long as we
change all places where it would be substituted. This is called
α-conversion.



Lambda Calculus

β-Reduction

Whenever we have an expression of the form:

(λx .E )F

We can replace it with E where we replace all occurences of x in E
with F e.g.

(λx .λy .x y) (λz .z)

→λy .(λz .z) y



Lambda Calculus

Representing Data

How can we use this to represent data?



Lambda Calculus

Booleans

True := λx .λy .x

False := λx .λy .y



Lambda Calculus

Numbers

This method of representing numbers is called Church numerals.

0 := λf .λx .x

1 := λf .λx .f x

2 := λf .λx .f (f x)

3 := λf .λx .f (f (f x))


