Cryptographic fundamentals, Asymmetric cryptography and Homomorphic encryption

Artem Lenskiy

(Artem.Lenskiy@anu.edu.au)

Information security

$\checkmark \quad$ The practice of protecting information by mitigating information risks.

- Secure storage
- Secure communication
- Secure computation

\checkmark Information security uses cryptography to transform usable information into a form that renders it unusable by anyone other than an authorized user (encryption).

The language of cryptography

m plaintext message
$K_{A}(m)$ ciphertext, encrypted with key K_{A}
$m=K_{B}\left(K_{A}(m)\right)$

Applications of asymmetric cryptography

What can go wrong ?

- eavesdrop: intercept messages
- actively insert messages into connection
- impersonation: can fake (spoof) source address in packet (or any field in packet)
- hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
- denial of service: prevent service from being used by others (e.g., by overloading resources)

Symmetric and Asymmetric cryptography

Symmetric key crypto: Bob and Alice share same (symmetric) key:

$$
K_{A}=K_{B}=K_{S}
$$

\checkmark Asymmetric key crypto: K_{A}^{+}, K_{A}^{-}: Alice's public and private key, K_{B}^{+}, K_{B}^{-}: Bob's public and private key,

Simple digital signature for message m

Goal: sender (Bob) digitally signs document, establishing he is document owner/creator. verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document Bob signs m by encrypting with his private key K_{B}^{-}, creating "signed" message, $K_{B}^{-}(m)$

$$
\begin{aligned}
& \left\{m, K_{B}^{-}(m)\right\} \\
& \text { Bob's message }, \\
& m, \text { signed } \\
& \text { (encrypted) with } \\
& \text { his private key }
\end{aligned}
$$

Simple digital signature for message m

Suppose Alice receives msg m, with signature: $\left\{m, K_{B}^{-}(m)\right\}$
Alice verifies m signed by Bob by applying Bob's public key K_{B}^{+}to $K_{B}^{-}(m)$ then checks $K_{B}^{+}\left(K_{B}^{-}(m)\right)=m$.
$\checkmark \quad$ If $K_{B}^{+}\left(K_{B}^{-}(m)\right)=m$, whoever signed m must have used Bob's private key.

Result:

Alice thus verifies that

- Bob signed m
- no one else signed m
- Bob signed m and not m^{\prime}

Nonrepudiation:

- Alice can take m, and signature $K_{B}(m)$ to court and prove that Bob signed m.

RSA (Rivest-Shamir-Adleman) algorithm

One of the first public-key cryptosystems and is widely used. Idea: finding the factors of a large composite number is difficult.
Example: What are the factors of 1027 ? Can you check 13 and 19 ? P vs $N P$
Modular arithmetic:

$$
x \bmod n=\text { remainder of } x \text { when divided by } n
$$

Properties:

$$
\begin{aligned}
{[(a \bmod n)+(b \bmod n)] \bmod n } & =(a+b) \bmod n \\
{[(a \bmod n)-(b \bmod n)] \bmod n } & =(a-b) \bmod n \\
{[(a \bmod n) \cdot(b \bmod n)] \bmod n } & =(a \cdot b) \bmod n
\end{aligned}
$$

Then

$$
\left[(a \bmod n)^{d}\right] \bmod n=[(a \bmod n) \cdot \ldots \cdot(a \bmod n)] \bmod n=a^{d} \bmod n
$$

Example: $x=14, n=10, d=2$
a. $\quad x^{d} \bmod n \Rightarrow 14^{2} \bmod 10=6$
b. $\quad\left[(x \bmod n)^{d}\right] \bmod n \Rightarrow\left[(14 \bmod 10)^{2}\right] \bmod 10=16 \bmod 10=6$

Exercise

Compute

$\checkmark \quad 31 \bmod 7$
$27 \bmod 7$
$(31+27) \bmod 7$
$(31 \bmod 7+27 \bmod 7) \bmod 7$
(31-27) mod 7
$(31 \bmod 7) \cdot(27 \bmod 7) \bmod 7$
$31^{3} \bmod 7$
$(31 \bmod 7)^{3} \bmod 7$

Greatest common divisor

For two integers x, y, the greatest common divisor of x and y is denoted $\operatorname{gcd}(x, y)$.
Two nonzero integers a and b is the greatest positive integer d such that d is a divisor of both a and b.

Examples:

- $\quad a=27, b=21$ then $d=7$.
- Divisors of a are $1,3,7,27$
- Divisors of b are $1,7,21$
- $\quad a=24, b=54$ then $d=6$.
- Divisors of a are 1,2,4, 6, 24
- Divisors of b are $1,2,3,6,9,18,27,27,54$
$a=57, b=63$ then $d=$?

RSA algorithm

Key generation:

1. Choose two large prime numbers p, q
2. Compute
3. $n=p q$
4. $\phi(n)=\phi(p, q)=\phi(p) \phi(q)=$ $(p-1)(q-1)$
where $\phi(p)=p-1$. Note $\phi(n)=\phi(p, q)$ is coprime with $p q$.
5. Choose $e \in(1, \phi(n))$ coprime with $\phi(n)$
6. Choose d s.t. $(e d-1) \bmod \phi(n) \equiv 0$ Then (e, n) and (d, n) are the keys.

Example:

1. $p=13, q=17$
2. Compute
3. $n=221$
4. $\phi(n)=(13-1)(17-1)=192$
5. $e=11$, it is coprime with $\phi=192$
6. $\quad d=35 \Rightarrow(11 \cdot 35-1) \bmod 192=0$

The keys are $(11,221),(35,221)$.
$\phi(n)$ is Euler's Totient Function. See proofs of different interesting properties.

RSA: key generation (Matlab)

Part 1: Key generation

```
% (1) select two distinct prime numbers
p = nthprime(1000); q = nthprime(1001);
% (2) compute n and phi(n) that produces a number that is relatively prime to n
n = q * p;
phi = @(p,q) (p - 1) * (q - 1);
% (3) Choose any number 1 < e < phi(n) that is coprime to phi(n);
e = 0;
while(gcd(e, phi(p,q)) ~= 1) % This number is not a divisor of phi(n)
    e = ceil(rand(1) * phi(p,q) + 1); % Randomly peak until the condition is true
end
% (4) Compute d, such that d and e have the same remainder of division by phi.
d = 2;
while(powmod(d*e, 1, phi(p, q)) ~= 1)
    d = d + 1;
end
```


RSA

Encryption/decryption:

1. Divide a message into bit strings s.t. each string corresponds to a decimal number $m<n$.
2. Encrypt: $c=K_{e}(m)$

$$
c=\left(m^{e}\right) \bmod n
$$

3. Decrypt: $m=K_{d}(c)$

$$
m=\left(c^{d}\right) \bmod n
$$

Example:

1. \quad Since $n=221,7$ bits $(127<221)$ segments suffice.
Plaintext Hi!
[100100011010010100001]
$72 \quad 10533$
2. Encrypt '! ':
$\left(33^{11}\right) \bmod 221=67$
Cyphertext $67 \Rightarrow{ }^{\prime} C^{\prime}$
3. Decrypt:
$\left(67^{35}\right) \bmod 221=33 \Longrightarrow!^{\prime}$

RSA (MATLAB)

$m^{\wedge} d$ causes the overflow

```
m = sym(int64('!'));
e = sym(11);
d = sym(35);
n = sym(221);
phi = sym(192);
c = mod(m^d, n) % => 67 or 'C'
m = mod(c^e, n) % => 33 or 'C'
```

To avoid the overflow, symbolic math is used.

RSA algorithm

Encryption/decryption:

1. Divide a message into bit strings s.t. each string corresponds to a decimal number $m<n$.
2. Encrypt: $c=K_{e}(m)$

$$
c=\left(m^{e}\right) \bmod n
$$

3. Decrypt: $m=K_{d}(c)$

$$
m=\left(c^{d}\right) \bmod n
$$

Example ($e=11, d=35, n=221$):

1. Since $n=221,7$ bits $(127<221)$ segments suffice.
Plaintext Hi!
[100100011010010100001]
$\begin{array}{lll}72 & 105 & 33\end{array}$
2. Encrypt '! ':
$\left(33^{11}\right) \bmod 221=67$
Cyphertext $67 \Rightarrow{ }^{\prime} C^{\prime}$
3. Decrypt:
$\left(67^{35}\right) \bmod 221$
$=\left(67^{2} \cdot 67^{33}\right) \bmod 221$
$=\left\{(4489) \bmod 221 \cdot\left(67^{33}\right) \bmod 221\right\} \bmod 221$
$=\left\{69 \cdot\left(67^{33}\right)\right\} \bmod 221$
$=33 \Rightarrow{ }^{\prime}!^{\prime}$

Why does RSA work?

Key idea

$$
\begin{gather*}
m=\left(c^{d}\right) \bmod n \tag{1}\\
c=\left(m^{e}\right) \bmod n \tag{2}
\end{gather*}
$$

Substituting (2) to (1)

$$
\begin{equation*}
m=(\underbrace{\left(m^{e}\right) \bmod n}_{c})^{d} \bmod n \tag{3}
\end{equation*}
$$

applying

$$
\left(c^{d}\right) \bmod n=\left(c^{d \bmod \phi(n)}\right) \bmod n
$$

we have

$$
\left(c^{d \bmod \phi(n)}\right) \bmod n=\left(\left(m^{e}\right) \bmod n\right)^{d \bmod \phi(n)} \bmod n \Rightarrow
$$

$$
\begin{aligned}
\left(\left(m^{e}\right) \bmod n\right)^{d \bmod \phi(n)} \bmod n & =\left(m^{e d \bmod \phi(n)}\right) \bmod n . \\
\left(m^{e d \bmod \phi(n)}\right) \bmod n & =\left(m^{1}\right) \bmod n \\
\left(\boldsymbol{c}^{\boldsymbol{d}}\right) \bmod \boldsymbol{n} & =\boldsymbol{m}
\end{aligned}
$$

That's why we chose e and d s.t. $(e d-1) \bmod \phi \equiv 0 \Longrightarrow e d \bmod \phi \equiv 1$

RSA: encryption/decryption (Matlab)

Part 2: Encryption and decryption

```
% Verify the property
disp(['mod(d * e, phi) should be 0: ', num2str(powmod(d*e - 1, 1, phi(p, q)))]);
% Public key is then
disp(['Public key: (', num2str(e), ',', num2str(n),')']);
disp(['Private key: (', num2str(d), ',', num2str(n),')']);
m = 13; % message
disp(['Message to be encrypted: ', num2str(m)]);
% Encrypt
%c = mod(m^e, n); % won't work, due to the overflow
c = powmod(m, e, n);
disp(['Encrypted message: ', num2str(c)]);
% Decrypt
m_ = powmod(c, d, n);
disp(['Decrypted message: ', num2str(m_)]);
```

```
function res = powmod(x, e, n)
    res = 1;
    for k = 1:e
        res = mod(res .* x, n);
    end
end
```


Exercises

Exercise (paper and pen) 1: Let the encryption and description keys be
$\checkmark(e, n)$
(d, n)
where $e=11, d=35, n=221$,
\checkmark Encrypt massages $m_{1}=5, m_{2}=10$ to obtain cyphertexts c_{1} and c_{2}. Decrypt c_{1} and c_{2} and compare to m_{1} and m_{2}.

Exercises (MATLAB) 2: Let $p=173$ and $q=541$

\checkmark Compute (e, n) and (d, n)
Encrypt massages $m_{1}=5, m_{2}=10$ to obtain cyphertexts c_{1} and c_{2}.

Cracking RSA

Captured (e, n) and c, recover m
To decrypt c we need to know d.
Recall what numbers are used to compute d ?

Cracking RSA

```
% To crack the message
% (1) Factorise n
factors = factor(n);
p_ = factors(1);
q_ = factors(2);
phi_ = (p_ - 1) * (q_ - 1);
% (2) Find a secret key such that mod(d * e, phi_) == 1
d_ = 2;
while(powmod(d_ * e, 1, phi_) ~= 1)
    d_ = d_ + 1;
end
disp(['Recoverd private key: (', num2str(d_), ',', num2str(n),')']);
% (3) Decrypt the message as usual
m_ = powmod(c, d_, n);
disp(['Decrypted message: ', num2str(m_)]);
```


Linear transformations and matrices

\checkmark Matrices are very useful for describing transformations

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

\checkmark A plane transformation f can be defined as

$$
f_{\mathbf{A}}(\mathbf{v})=\mathbf{A s}
$$

$\checkmark \quad$ If \mathbf{s} is the position vector of the point $\left(x_{1}, x_{2}\right)$ then

$$
f_{\mathbf{A}}(\mathbf{s})=f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\mathbf{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
a x_{1}+b x_{2} \\
c x_{1}+d x_{2}
\end{array}\right]
$$

\checkmark Example: $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad \checkmark \quad$ Example: $\mathbf{A}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

Learning with Errors (LWE)

Let \mathbb{Z}_{q} denote the ring of integers modulo q and let \mathbb{Z}_{q}^{n} denote the set of n vectors over \mathbb{Z}_{q}.
Example: $q=13, n=4 \quad 1 \quad 1 \quad 4 \quad 2 \quad$ and $q=13, n=1$
$4 \quad y_{1}$
$7 \quad y_{2}$
$\mathbf{A}=\begin{array}{rrrr}3 & 9 & 0 & 8 \\ 1 & 3 & 2 & 2 \\ 7 & 7 & 3 & 4 \\ 6 & 5 & 12 & 1 \\ 3 & 3 & 5 & 11\end{array} \quad \mathbf{s}=\begin{array}{rr}2 & y_{3} \\ 11 & y_{4} \\ \mathbf{x}_{1} & \mathbf{x}_{2} \\ \mathbf{x}_{3} & \mathbf{x}_{4}\end{array}$

Learning with Errors (LWE)

Usually, f_{A} and \mathbf{y} are known and the problem is to find \mathbf{s} in $f_{A}(\mathbf{s})=\mathbf{b}$

It is easy to find \mathbf{s}.

Learning with Errors (LWE)

There exists a linear function $f: \mathbb{Z}_{q}^{n} \rightarrow \mathbb{Z}_{q}$ and the input to the LWE problem is a sample of pairs (\mathbf{x}, y), where $\mathbf{x} \in \mathbb{Z}_{q}^{n}$ and $y \in \mathbb{Z}_{q}$, so that with high probability $y=f(\mathbf{x})$. The deviation from the equality is according to some known noise model.
Problem: A hard problem to find $\mathbf{s} \in \mathbb{Z}_{13}^{7 \times 4}$. hhttos://en wivikedia.orf/ wik//earning with errors

Learning with Errors (LWE)

1. Generate private key

$$
\mathbf{s} \leftarrow \mathbb{Z}_{q}^{N}
$$

2. Generate public key

$$
\mathbf{b}=-\mathbf{A s}+\mathbf{e}
$$

public key
4. Decrypt c

$$
\mathbf{m}=\frac{1}{L}(\mathbf{A} \mathbf{s}+\mathbf{c})
$$

3. Encrypt message \mathbf{m} to cyphertext c (each row encrypts one element in \mathbf{m})

It is easy to see that decryption works

$$
\frac{1}{L}(\mathbf{A} \mathbf{s}+\mathbf{c})=\frac{1}{L}(\mathbf{A} \mathbf{s}+\mathbf{b}+L \mathbf{m})=\frac{1}{L}(\mathbf{A} \mathbf{s}-\mathbf{A} \mathbf{s}+\mathbf{e}+L \mathbf{m})=\mathbf{m}+\frac{\mathbf{e}}{L} \approx \mathbf{m}
$$

Learning with Errors (LWE)

```
% The value of p can be chosen as a power of 10 such that |m| < p/2 for all messages to be used
env.p = 1e4; % Let the set [p] be where the integer to be encrypted belongs to
env.L = 1e4;
env.r = 1e1;
env.N = 4; % Number of elements in column vectors in A
sk = Mod(randi(env.p*env.L, [env.N, 1]), env.p * env.L); % generate secret key
sk =
    -14106118
    -21444101
    -48662258
    17760247
m = 30; % message m, also could be a vector
c = encLWE(m,sk,env) % encrypt message m
c =
    -44887583 29553384 33293629 46706819 -35180159
```

```
m = decLWE(c,sk,env) % decrypt cyphertext c
```

m = decLWE(c,sk,env) % decrypt cyphertext c
m =
30
function y = Mod(x,p)
y = mod(x,p);
y=y-(y>=p/2)*p; % map [0, p-1] to [-p/2, p/2-1]
end

```

\section*{Learning with Errors (LWE)}
1. Generate private key
\[
\mathbf{s} \leftarrow \mathbb{Z}_{q}^{N}
\]

\section*{\(\mathbf{A} \in \mathbb{Z}_{q}^{1 \times N}\)}
sk = Mod( randi(env.p*env.L, [env.N, 1]), env.p * env.L); \% generate secret key
2. Generate public key \(\quad \mathbf{b}=-\mathbf{A s}+\mathbf{e}\)
public key
\(\mathbf{c}=\mathbf{b}+L \mathbf{m}\)
3. Encrypt message m
ciphertext
```

function ciphertext = encLWE(m, sk, env)
n = length(m);
q = env.L * env.p; % q = Lp with L being a power of 10
A = randi(q, [n, env.N]);
e = Mod(randi(env.r, [n,1]), env.r);
b = -A*sk + env.L*m + e;
ciphertext = Mod([b,A], q);
end

```

\section*{Learning with Errors (LWE)}

4. Decrypt c
\[
\mathbf{m}=\frac{1}{L}(\mathbf{A} \mathbf{s}+\mathbf{c})
\]
\[
\mathbf{c}=\mathbf{b}+L \mathbf{m}
\]
ciphertext
```

function plaintext = decLWE(c,sk,env)
s = [1; sk];
plaintext = round(Mod(c*s, env.L*env.p)/env.L);
end

```

Recall that \(\mathrm{s}=[\mathrm{b}, \mathrm{A}]\) so \(\mathrm{c} * \mathrm{~s}=[1 ; \mathrm{sk}] *[\mathrm{~b}, \mathrm{~A}]=\mathrm{b}+\mathrm{sk} * \mathrm{~A}\)
Recall that \(b=-A * s k+e n v . L * m+e\) then \(c * s=-A * s k+e n v . L * m+e+s k * A=e n v . L * m+e\)

\section*{Homomorphic Encryption as a solution privacy preserving computation}


\section*{Homomorphic Encryption as a solution privacy preserving computation}

1. Generate Keys \((e, d)\)
2. Encrypt \(m: m^{*}=\mathcal{H}(m, e)\)
\[
\text { 4. Compute } f: r^{*}=f\left(m^{*}, e\right)
\]

3. Send \(\left(m^{*}, e\right)\) to the server.

5. Send the result \(r^{*}\) back
6. Decrypt \(r^{*}: r=\mathcal{H}^{-1}\left(r^{*}, d\right)\)

\section*{What is homomorphism?}

A homomorphism is a structure-preserving map between two algebraic structures of the same type.
A map \(\mathcal{H}: A \rightarrow B\) between two sets \(A\) and \(B\), equipped with the same structure, s.t. if \(\cdot\) is an operation of the structure then
\[
\mathcal{H}(x \cdot y)=\mathcal{H}(x) \circ \mathcal{H}(y), \forall x, y \in A
\]

\(\mathcal{H}\) preserves the operation.

\section*{What is homomorphism?}

An algebraic structure may have more than one operation, and a homomorphism is required to preserve each operation.
Example: A function between vector spaces \(\mathcal{H}: \mathcal{V} \rightarrow \mathcal{W}\) that preserves the operations of addition and scalar multiplication is a homomorphism or linear map.

\[
\begin{array}{ll}
\mathcal{H}\left(\mathrm{x}_{1}\right)=T \mathrm{x}_{1}=\mathrm{y}_{1}, \quad \mathcal{H}\left(\mathrm{x}_{1}\right)=T \mathrm{x}_{2}=\mathrm{y}_{2} & \\
\mathcal{H}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)=\mathcal{H}\left(\mathrm{x}_{1}\right)+\mathcal{H}\left(\mathrm{x}_{2}\right)=\mathrm{y}_{1}+\mathrm{y}_{2}, & \mathcal{H}\left(\alpha \mathrm{x}_{1}\right)=\alpha \mathcal{H}\left(\mathrm{x}_{1}\right) \\
\mathrm{T}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)=\mathrm{Tx}_{1}+\mathrm{Tx}_{2}=\mathrm{y}_{1}+\mathrm{y}_{2}, & \mathrm{~T}\left(\alpha \mathrm{x}_{1}\right)=\alpha \mathrm{Tx}_{1}
\end{array}
\]

\section*{What is homomorphism?}

The notation for the operations does not need to be the same in the source and the target of a homomorphism.
Group homomorphism: Given two groups ( \(G, *\) ) and ( \(H, \cdot\) ), a function \(\mathcal{H}: G \rightarrow H\) is group homomorphism if
\[
\mathcal{H}(x * y) \rightarrow \mathcal{H}(x) \cdot \mathcal{H}(y), \quad \forall x, y \in G
\]

Example:
\[
\begin{array}{cc}
\mathcal{H}: x \rightarrow e^{x}, \forall x \in \mathbb{R} & \mathcal{G}: x \rightarrow \ln x, \forall x \in \mathbb{R}^{+} \\
(\mathbb{R},+)^{\mathcal{H}}\left(\mathbb{R}^{+}, \cdot\right) & \left(\mathbb{R}^{+}, \cdot\right)(\mathbb{R},+) \\
\mathcal{H}(x+y)=\mathcal{H}(x) \mathcal{H}(y) \Rightarrow & \mathcal{G}(x y)=\mathcal{G}(x)+\mathcal{G}(y) \Rightarrow \\
e^{x+y}=e^{x} e^{y}, & \ln (x y)=\ln (x)+\ln (y)
\end{array}
\]
\(\mathcal{H}\) is also an isomorphism as its inverse function \(\mathcal{H}^{-1}=\mathcal{G}(x)\) forms a group homomorphism
\[
\begin{gathered}
\text { Example: Compute } f(x)=2 x+1 \text {, on "encrypted } x \text { " } \mathcal{H}(x) \\
\mathcal{H}\{2 x+1\}=e^{2 x+1}=e^{x} e^{x} e=\mathcal{H}(x) \mathcal{H}(x) \mathcal{H}(1)=(\mathcal{H}(x))^{2} \cdot \mathcal{H}(1) \\
\mathcal{G}\left\{(\mathcal{H}(x))^{2} \cdot \mathcal{H}(1)\right\}=\mathcal{G}\left\{(\mathcal{H}(x))^{2}\right\}+\mathcal{G}\{\mathcal{H}(1)\}=\mathcal{G}\{\mathcal{H}(x)\}+\mathcal{G}\{\mathcal{H}(x)\}+1=2 x+1_{33}
\end{gathered}
\]

\section*{Example of multiplicative homomorphism using RSA}

\section*{\(\checkmark\) RSA scheme is multiplicatively homomorphic}

Compute \(m_{1} m_{2}\) :
1. Generate keys \((e, n)\) and \((d, n)\)
2. Encrypt:
\[
\begin{aligned}
& c_{1}=\mathcal{H}_{e}\left(m_{1}\right)=\left(m_{1}^{e}\right) \bmod n \\
& c_{2}=\mathcal{H}_{e}\left(m_{2}\right)=\left(m_{2}^{e}\right) \bmod n
\end{aligned}
\]
3. Compute:
\[
c_{1} c_{2}=\mathcal{H}_{e}\left(m_{1}\right) \cdot \mathcal{H}_{e}\left(m_{2}\right)
\]
\(=\left(\left(m_{1}^{e}\right) \bmod n\right) \cdot\left(\left(m_{1}^{e}\right) \bmod n\right)\)
\(=\left(m_{1} m_{2}\right)^{e} \bmod n=\mathcal{H}_{e}\left(m_{1} m_{2}\right)=c_{12}\)
4. Decrypt: \(c_{12}\)
\(\mathcal{H}_{d}\left(c_{12}\right)=\left(c_{12}^{d}\right) \bmod n=m_{1} m_{2}\)

\section*{Example:}
1. Let \(e=11, d=35, n=221\), and
\[
m_{1}=5, m_{2}=10
\]
2. Encrypt :
\[
\begin{gathered}
c_{1}=\left(5^{11}\right) \bmod 221=164 \\
c_{2}=\left(10^{11}\right) \bmod 221=173
\end{gathered}
\]
3. Compute
\[
c_{12}=164 \cdot 173=28372
\]
4. Decrypt:
\[
m_{1} m_{2}=\left(28372^{35}\right) \bmod 221
\]
\(m_{1} m_{2}=(\)
7098200968290592840991958652267788
1571486384800862824462878933961928
9085294896750081950091846259916085
3592398936486064467237262654024462
\(26199977018332807168) \bmod 221=50\)

\section*{Example of multiplicative homomorphism (MATLAB)}
```

% Define the keys
e = 11; d = 35; n = 221;
% Display public and private keys
disp(['Public key: (', num2str(e), ',', num2str(n),')']);
disp(['Private key: (', num2str(d), ',', num2str(n),')']);
% Define the numbers
m1 = 5;
m2 = 10;
disp(['Message to be encrypted: ', num2str(m1)]);
disp(['Message to be encrypted: ', num2str(m2)]);
% Encrypt the numbers
c1 = powmod(m1, e, n);
c2 = powmod(m2, e, n);
disp(['Encrypted number1: ', num2str(c1)]);
disp(['Encrypted number2: ', num2str(c2)]);
% Compute (multiply) over encrypted numbers
c12 = c1 * c2;
disp(['Encrypted results: ', num2str(c12)]);
% Decrypt the result
m_ = powmod(c12, d, n);
disp(['Decrypted message: ', num2str(m_)]);

```

Public key: \((11,221)\)
Private key: \((35,221)\)
Message to be encrypted: 5
Message to be encrypted: 10
Encrypted number1: 164
Encrypted number2: 173
Encrypted results: 28372
Decrypted message: 50```

