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Abstract

We count all latin cubes of order n ≤ 6 and latin hypercubes of order n ≤ 5
and dimension d ≤ 5. We classify these (hyper)cubes into isotopy classes and
paratopy classes (main classes). For the same values of n and d we classify all d-ary
quasigroups of order n into isomorphism classes and also count them according to
the number of identity elements they possess (meaning we have counted the d-ary
loops).

We also give an exact formula for the number of (isomorphism classes of) d-ary
quasigroups of order 3 for every d. Then we give a number of constructions for
d-ary quasigroups with a specific number of identity elements. In the process, we
prove that no 3-ary loop of order n can have exactly n−1 identity elements (but no
such result holds in dimensions other than 3). Finally, we give some new examples
of latin cuboids which cannot be extended to latin cubes.

1 Basic definitions

Let [n] denote the set {1, 2, . . . , n} and let [n]d denote the cartesian product [n] × [n] ×
· · · × [n] of d copies of [n]. By a hypercube of order n and dimension d we mean a d-

dimensional array of nd cells where the cells are indexed by [n]d and each cell contains

an element of [n] (which we will call a symbol). Suppose that H is such a hypercube and

c is any cell of H. A line through c is the set of n cells of H whose coordinates match

those of c except possibly in the k-th coordinate (there is one line for each choice of k).

A hyperplane through c is the set of nd−1 cells of H whose k-th coordinate matches that

of c (there is one hyperplane for each choice of k). Any hyperplane in a d-dimensional

hypercube can be considered to be a (d−1)-dimensional hypercube, simply by dropping

the common coordinate. We use vector notation such as ~v for an element of [n]d. In a
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hypercube H we denote the symbol in the cell with coordinates ~v = (v1, v2, . . . , vd) by

H(~v) or H(v1, v2, . . . , vd).

We say that a hypercube H is latin if the n cells in any line of H contain each of the

symbols in [n] exactly once. We define Hd
n to be the set of latin hypercubes of order n

and dimension d. Given a hypercube L ∈ Hd
n and a cell ~v = (v1, v2, . . . , vd) ∈ [n]d, we

can define d permutations of [n] corresponding to the lines through ~v. Namely, for each

j ∈ [d] we define ρj(~v, L) to be the permutation

k 7→ L(i1, . . . , ij−1, k, ij+1, . . . , id) for k ∈ [n].

If ρj

(
(1, 1, . . . , 1), L

)
is the identity permutation for each j ∈ [d] then we say that L is

reduced. We define Rd
n ⊆ Hd

n to be the set of reduced latin hypercubes of order n and

dimension d.

For some purposes it is easier to think of each hypercube H ∈ Hd
n as, instead, a

set TH ⊆ [n]d+1 where for each ~v = (v1, v2, . . . , vd) ∈ [n]d there is a (d + 1)-tuple

〈v1, v2, . . . , vd, H(~v)〉 in TH . (We adopt the convention of writing the tuples of a hy-

percube inside angle brackets 〈 〉.) The latin property of the hypercube is equivalent to

saying that no two of its tuples differ in exactly one coordinate.

Some of the interest in latin hypercubes stems from coding theory, given that a hy-

percube L ∈ Hd
n is equivalent to a maximum distance separable (MDS) code over an

alphabet of size n, with length d + 1 and minimum distance 2. See Laywine and Mullen

[16] for a good introduction to this area.

Another source of interest in latin hypercubes is in non-associative algebra. A d-ary

quasigroup of order n is a function Q : [n]d → [n] such that Q(~u) 6= Q(~v) whenever ~u

and ~v differ in exactly one coordinate. Such a quasigroup is clearly equivalent to a latin

hypercube L ∈ Hd
n where L(~v) = Q(~v). Moreover L is reduced if and only if 1 is an

identity element in the corresponding quasigroup Q. (An identity element of Q is an

x ∈ Q such that

Q(y, x, x, . . . , x) = Q(x, y, x, . . . , x) = · · · = Q(x, x, . . . , x, y) = y

for all y ∈ Q.) A quasigroup possessing an identity element is called a loop. One of

the aims of this paper is to count d-ary quasigroups and d-ary loops of order n (up to

isomorphism) for small d and n. We do this using the theory in Section 2 and the algorithm

in Section 3. For d > 2 it transpires that identity elements in d-ary loops need not be

unique. Hence, in Section 5 we examine constructions for loops with various numbers of

identity elements.

A third source of applications for latin hypercubes is in the design of statistical experi-

ments. In this field the phrases “latin cube” and “latin hypercube” are used for a broader

class of objects than we are allowing in our definition. See [6] or [24] in this regard. The

statistical definition of latin hypercube seems unnatural in other contexts since it does
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not have the property that each hyperplane is necessarily a latin hypercube of one lower

dimension. The confusion arising from these different definitions is unfortunate, but we

choose to follow, for example [4] and [15] in our use of “latin hypercube” and many papers

(e.g. [8, 9, 14, 17, 22]) in our use of “latin cube”. The alternative terminology “permu-

tation (hyper)cube” was advocated in [6] and used in [1, 3, 7, 11]. This terminology is

better reserved for the higher dimensional analogues of permutation matrices (that is,

multi-dimensional arrays with all entries 0 or 1 such that each line contains a unique 1).

Interestingly, (d+1)-dimensional permutation hypercubes of order n are combinatorial

objects essentially equivalent to d-dimensional latin hypercubes of order n (both objects

described in our preferred terminology). This simple observation was made by Gupta [9],

who used the phrase “permutation cube” in our preferred sense.

In the cases d = 1, 2, 3 a latin hypercube of dimension d is a permutation, a latin

square and a latin cube, respectively. Much of the theory of latin hypercubes is yet to

be developed although some analogues of results for latin squares have been investigated

for latin cubes and occasionally for hypercubes in general. Completion and embedding

results have been obtained by Cruse [4], Kochol [14] and Lindner [17]. Fu [8] considered

the range of values possible for the number of common entries shared by distinct latin

cubes (in other terminology, this equates to studying the possible sizes of trades in latin

cubes). A number of authors have considered sets of k mutually orthogonal latin hyper-

cubes. Here again several different definitions are possible; see [6] and [16] for further

information and references. The notions of intercalates, transversals and prolongation

were generalised by Heinrich [11] from latin squares to higher dimensions. The same gen-

eralisation of transversals was used in [15] but a different generalisation of transversals

was given by Beljavskaja and Murathudjaev [3]. Finally, strongly diagonal latin squares

(also called Knut Vik designs) and totally symmetric latin squares were generalised to

higher dimensions by Alavi et al. [1] and Bailey et al. [2] respectively.

The usual notions of isotopism, paratopism and isomorphism generalise naturally from

latin squares to higher dimension. Let Sn be the symmetric group on [n] and let Sc
n denote

the direct product of c copies of Sn. Then the natural action of Sd+1
n on [n]d+1 induces

an action on Hd
n (where, as discussed above, we associate each H ∈ Hd

n with a subset

TH ⊆ [n]d+1). This action is called isotopism (or isotopy) and its orbits are called isotopy

classes. Define ∆d+1
n to be the diagonal subgroup of Sd+1

n , that is ∆d+1
n = {(g, g, . . . , g) ∈

Sd+1
n }. An important special case of isotopism is the action of ∆d+1

n on Hd
n. This action

is called isomorphism and its orbits are called isomorphism classes. If the hypercube is

regarded as the table of values of a d-ary quasigroup on [n], then isomorphisms of the

hypercube correspond to standard isomorphisms of the quasigroup.

A further group action on a hypercube is provided by permutation of the elements of

tuples. In this action, a permutation τ ∈ Sd+1 maps the tuple 〈v1, v2, . . . , vd+1〉 onto the

tuple 〈v1, v2, . . . , vd+1〉τ = 〈w1, w2, . . . , wd+1〉 where wiτ = vi for 1 ≤ i ≤ d+1. Here, and
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elsewhere, we use the superscript notation for the image of an object under a function;

thus iτ means τ(i), and Lτ is the image of L obtained by applying τ to each of its tuples.

Such images are the conjugates (also called parastrophes) of L.

An arbitrary combination of a conjugacy and an isotopism is called a paratopism

(or paratopy). The set of all paratopisms corresponds to the wreath product Sn o Sd+1 in

its natural action on [n]d+1. The orbits of its action on the set of all hypercubes are called

paratopy classes, main classes or species.

The stabilisers of a latin hypercube L under isotopism, paratopism and isomorphism

are known respectively as the autotopism group, autoparatopism group and automorphism

group of L. We use respectively Is(L), Par(L) and Aut(L) to denote these groups. For

example, Aut(L) = {σ ∈ ∆d+1
n | Lσ = L}.

One of the main objectives of this paper is enumeration of latin hypercubes and

associated structures (such as d-ary quasigroups). The enumeration of latin squares has

a lengthy and well known history for which we refer to the recent survey given in [18].

Considerably less work has been done for higher dimensions.

To count latin hypercubes it suffices to count reduced latin hypercubes and then apply

the formula

|Hd
n| = n! (n− 1)!d−1|Rd

n|. (1)

One of the first works was by Gupta [9] who enumerated latin cubes by hand and

obtained the incorrect value |R3
4| = 58. The correct value |R3

4| = 64 was subsequently

obtained by Mullen and Weber [22] and much later by Jia and Qin [13], with both pairs

of researchers attempting to count and classify latin cubes of orders 1 up to 5.

Mullen and Weber [22] reported the numbers of reduced latin cubes of orders 1 up

to 5 to be 1, 1, 1, 64, 40246 and the numbers of isomorphism classes to be 1, 1, 1, 19, 1860.

They did not establish the number of isotopism classes for order 5, but found the number

for orders 1 to 4 respectively to be 1, 1, 1, 12. Zinoviev and Zinoviev [28] found that there

are 5 paratopy classes of latin cubes of order 4. Our computations confirm the above

numbers.

Apparently unaware of Mullen and Weber’s work two decades earlier, Jia and Qin [13]

attempted similar computations. They reported the same numbers of reduced latin cubes

but gave the numbers of isotopism classes to be 1, 1, 1, 15, 479. These last two values are

incorrect.

A patent application by Ito [12] included values of |Rd
4| for d ≤ 5 that agree with our

computations (see Table 1), and also with the values found by Potapov and Krotov [23].

Potapov and Krotov also proved that

3d+122d+1 ≤ |Hd
4| ≤ (3d+1 + 1)22d+1

for d ≥ 5.
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2 Counting equivalence classes

The numbers of isotopy and paratopy classes of latin hypercubes are related to the total

number of latin hypercubes via the sizes of the autotopism and autoparatopism groups,

as in the following lemma whose proof is elementary.

Lemma 1. For any L ∈ Hd
n, the paratopy class of L contains

(a)
(d+ 1)!

|Par(L)|/|Is(L)|
isotopy classes,

(b)
(d+ 1)!n!nd−1

|Par(L)|
reduced latin hypercubes, and

(c)
(d+ 1)! (n!)d+1

|Par(L)|
latin hypercubes.

In the case of isomorphism classes, the natural setting is that of quasigroups and

loops. The procedure for counting isomorphism classes of ordinary quasigroups given

in [18, Theorem 4] applies equally well to the d-ary case, and the same proof applies with

obvious adaptions, so we state our first theorem without proof.

Let Id
n be a set containing one hypercube from each isotopy class of Hd

n, and let Md
n

be a set containing one hypercube from each paratopy class of Hd
n.

Define the cycle structure of a permutation γ to be the sequence (n1, n2, . . . ), where

ni is the number of cycles of length i in γ. If σ = (σ1, σ2, . . . , σd+1) is a (d+1)-tuple of

permutations, define ψ(σ) as follows:

(i) If σ1, σ2, . . . , σd+1 have the same cycle structure (n1, n2, . . . ), then ψ(σ) =
∏

i ni! i
ni ;

(ii) otherwise, ψ(σ) = 0.

Theorem 1. The number of isomorphism classes of d-ary quasigroups of order n is∑
L∈Id

n

1

|Is(L)|
∑

σ∈Is(L)

ψ(σ)d =
∑

L∈Md
n

(d+ 1)!

|Par(L)|
∑

σ∈Is(L)

ψ(σ)d.

As pointed out by a referee, some of these results are true in a more general setting.

For some set X, let Fd
n(X) be the class of all functions from [n]d+1 to X. A latin hy-

percube is such a function for X = {0, 1}, namely the characteristic function of the set

of (d+1)-tuples it comprises. Isotopy, paratopy and isomorphism are defined for Fd
n(X)

by permutations of the domain [n]d+1 in the same way as for latin hypercubes. We then

have, with essentially the same proofs, that Lemma 1(a), (c) and Theorem 1 are true for

any subclass of Fd
n(X) which is closed under paratopy.

While counting d-ary quasigroups required no new theory, it turns out that counting

d-ary loops is less straightforward. The “obvious” extension of [18, Theorem 5] to the

5



d-ary case does not work, primarily due to the possibility that loops have more than

one identity element (see Section 5 for examples). Therefore, we need to develop a more

complicated approach.

We say that two cells ~u and ~v of L ∈ Hd
n are line-equivalent if ρj(~u, L) = ρj(~v, L)

for all j ∈ [d]. If x, y are both identity elements of a d-ary loop then (x, x, . . . , x) is line

equivalent to (y, y, . . . , y).

For 1 ≤ i ≤ d+1, define L[i] to be the conjugate of L obtained by exchanging the i-th

and (d+1)-th elements of tuples. This includes the case L[d+1] = L.

Theorem 2. For L ∈ Hd
n, choose C(L) to be a set of cells that includes exactly one cell

from each line-equivalence class of cells of L. For each cell ~v, define

N(~v, L) =
∣∣{h ∈ Is(L) | h(ρ1,ρ2,...,ρd,1) ∈ ∆d+1

n

}∣∣,
where ρj = ρj(~v, L) for each j, and 1 is the identity of Sn.

Then the number of isomorphism classes of d-ary loops of order n is

∑
L∈Id

n

1

| Is(L)|
∑

~v∈C(L)

N(~v;L) =
∑

L∈Md
n

d !

|Par(L)|

d+1∑
t=1

∑
~v∈C(L[t])

N(~v;L[t]). (2)

Proof. Let Ld
n consist of all the loops in Hd

n. Note that we do not require any particular

elements to be the identity elements. The number we seek is the number of equivalence

classes of Ld
n under ∆d+1

n . By the Burnside-Frobenius Lemma, this is equal to the average

number of loops fixed by an element of ∆d+1
n . Our task is therefore to find the number of

pairs (M, g) for M ∈ Ld
n and g ∈ ∆d+1

n , such that M g = M .

We start by seeking the number of such pairs where M is in the isotopy class of some

fixed L ∈ Hd
n. This isotopy class consists of all Lσ for σ ∈ Sd+1

n , with the caveat that each

hypercube appears for exactly |Is(L)| values of σ. Leaving that factor for later, we need

to find the number of pairs (σ, g) for σ ∈ Sd+1
n and g ∈ ∆d+1

n , such that Lσ is a loop and

Lσg = Lσ. The last condition is equivalent to σgσ−1 ∈ Is(L).

Writing h for σgσ−1, our problem reduces to counting all pairs (σ, h) for σ ∈ Sd+1
n and

h ∈ Is(L) such that

(a) Lσ is a loop, and

(b) hσ ∈ ∆d+1
n .

We proceed by parameterizing those σ satisfying (a). This is analogous to reducing a

latin square, except that we do not require an identity element in the first position, and,

indeed, we must remember that there can be more than one identity element.

• Choose a cell ~v and a permutation δ ∈ Sn.

• Permute rows, columns, etc., so that the lines through cell ~v are all the identity permu-

tation.
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• Apply δ ∈ Sn to each of the d+ 1 components.

The resulting loop has L(~v)δ as an identity element. Symbolically, we have

σ = σ(~v, δ) = (ρ1(~v, L)δ, ρ2(~v, L)δ, . . . , ρd(~v, L)δ, δ). (3)

It is easy to see that every σ satisfying (a) has this form. However, this parameterisation

has redundancies: σ(~u, δ′) = σ(~v, δ) if and only if ~u is line-equivalent to ~v and δ′ = δ.

Finally, for each σ = σ(~v, δ), we need to know how many h ∈ Is(L) satisfy (b). This

does not depend on δ since hσ(~v,δ) ∈ ∆d+1
n ⇔ hσ(~v,1) ∈ ∆d+1

n .

We can now derive the first expression in (2). For each L ∈ Id
n, the number of pairs

(σ, h) satisfying (a) and (b) can be found by testing, for one ~v from each line-equivalence

class of cell, whether σ(~v, 1) satisfies (b). For each of those that pass the test, we have n!

choices of δ. Then we divide by |Is(L)| to account for the number of times each hypercube

appears as Lσ and by |∆d+1
n | = n! as required by the Burnside-Frobenius Lemma.

The summand of the outside summation in the first half of (2) is not invariant under

conjugacy, so converting to a sum over paratopy classes is not just a matter of apply-

ing some factors. However, the summand is invariant under conjugacies that leave the

(d+1)-th position fixed. Therefore, we get all the information we need from the conju-

gates L[1], L[2], . . . , L[d+1]. Each of these represents d! |Is(L)|/|Par(L)| isotopy classes, so

the second half of (2) is obtained.

In Table 1 we give the results of our enumeration of latin hypercubes, classified ac-

cording to various notions of equivalence. A more detailed count of hypercubes, classified

according to group sizes, is presented in the appendix. A representative of each of the

paratopy classes covered by Table 1 can be found in [21]. In Table 2 we give the results

of our enumeration of loops (up to isomorphism) according to the number of identity

elements they have. In Section 5 we consider further the question of how many identity

elements a loop can have. To save space, we have omitted a number of known values for

d = 2 and n ∈ {9, 10, 11}, see [18, 20].

3 Construction method

To reduce the probability of error, all the computations were carried out independently by

the two authors using slightly different algorithms. We now describe the first algorithm

used.

Let L ∈ Hd
n. For 1 ≤ k ≤ n, the k-th hyperplane of L is L(k) ∈ Hd−1

n defined by

L(k)(i1, . . . , id−1) = L(i1, . . . , id−1, k) for all i1, . . . , id−1.

Next we define an ordering on latin hypercubes. The hypercube L can be specified by
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d n reduced isotopy classes paratopy classes quasigroups

2 2 1 1 1 1

2 3 1 1 1 5

2 4 4 2 2 35

2 5 56 2 2 1411

2 6 9408 22 12 1130531

2 7 16942080 564 147 12198455835

2 8 535281401856 1676267 283657 2697818331680661

3 2 1 1 1 1

3 3 1 1 1 11

3 4 64 12 5 2589

3 5 40246 59 15 23192922

3 6 95909896152 5678334 264248 1381105636226980

4 2 1 1 1 1

4 3 1 1 1 21

4 4 7132 328 26 1565243

4 5 31503556 5466 86 435509352937

5 2 1 1 1 1

5 3 1 1 1 43

5 4 201538000 2133586 4785 263347981121

5 5 50490811256 1501786 3102 16751644838639300

6 2 1 1 1 1

6 3 1 1 1 85

Table 1: Number of reduced latin hypercubes, isotopy classes of latin hypercubes,

paratopy classes of latin hypercubes and isomorphism classes of quasigroups for small

orders n and dimensions d.

listing the symbols in each of the nd cells in a particular order:

Σ(L) =
[
L(1, 1, 1, . . . , 1), L(2, 1, 1, . . . , 1), . . . , L(n, 1, 1, . . . , 1),

L(1, 2, 1, . . . , 1), L(2, 2, 1, . . . , 1), . . . , L(n, 2, 1, . . . , 1),

L(1, 3, 1, . . . , 1), . . . ,

L(1, n, 1, . . . , 1), L(2, n, 1, . . . , 1), . . . , L(n, n, 1, . . . , 1),

L(1, 1, 2, . . . , 1), . . . ,

L(1, n, n, . . . , n), L(2, n, n, . . . , n), . . . , L(n, n, n, . . . , n)
]
.

The order of the cells (earlier indices varying faster) is important for what follows. We

call L isotopy-minimal if Σ(L) ≤ Σ(L′) for every L′ in the isotopy class of L. Similarly, L

is paratopy-minimal if Σ(L) ≤ Σ(L′) for every L′ in the paratopy class of L. In each case,
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Number of identity elements

d n 1 2 3 4 5 6 Total

2 2 1 1

2 3 1 1

2 4 2 2

2 5 6 6

2 6 109 109

2 7 23746 23746

2 8 106228849 106228849

2 9 9365022303540 9365022303540

3 2 0 1 1

3 3 1 0 0 1

3 4 3 15 0 1 19

3 5 1826 32 1 0 1 1860

3 6 797971315 1422290 525 90 0 6 799394226

4 2 1 0 1

4 3 0 0 1 1

4 4 2213 0 0 0 2213

4 5 1349704 9 0 0 0 1349713

5 2 0 1 1

5 3 1 0 0 1

5 4 34140 66060918 0 524800 66619858

5 5 2122915806 805040 280 0 70 2123721196

6 2 1 0 1

6 3 1 0 0 1

Table 2: Counts of loops according to their number of identity elements

the comparison ≤ is lexicographic order. The following properties follow easily from the

definitions.

Lemma 2. Let L be a latin hypercube. Then the following hold.

(i) There is exactly one isotopy-minimal hypercube in each isotopy class and exactly one

paratopy-minimal hypercube in each paratopy class.

(ii) If L is paratopy-minimal, then L is isotopy-minimal.

(iii) If L is isotopy-minimal, then L is reduced.

(iv) If L is paratopy-minimal in Hd
n, then L(1) is paratopy-minimal in Hd−1

n .

The aim of the computation was to find all paratopy-minimal hypercubes L ∈ Hd
n.

As permitted by Lemma 2(iv), we took the paratopy-minimal hypercubes in Hd−1
n as L(1).
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Then we extended L(1) to L in all possible ways such that L was reduced. Finally, we

rejected L if it was not paratopy-minimal.

To check that L is paratopy-minimal, we verified that Σ(L) ≤ Σ(Lγ) for each of the

nd−1(d+1)!n! paratopisms γ that take L to a reduced hypercube. These paratopisms have

the form γ = γ(~v, δ, L) = σ(~v, δ)τ , where τ is one of the (d+1)! conjugacies, and σ(~v, δ) is

defined as in (3) with δ ∈ Sn such that L(~v)δ = 1. In this case, the redundancy issue noted

just after (3) does not occur: all these nd−1(d+1)!n! paratopisms are different. To see

this, note that the condition L(~v)δ = 1 implies that σ(~v, δ) maps position ~v onto position

(1, 1, . . . , 1). If γ = γ(~v, δ, L) was found such that Σ(Lγ) < Σ(L), thereby rejecting L as

not paratopy-minimal, the next candidate hypercube L′ was first tested with γ(~v, δ, L′).

This often rejected L′ as well, giving a useful speedup.

If the minimality test for L was passed, we had also found the autoparatopism group:

Par(L) consists of those γ for which Σ(Lγ) = Σ(L).

The second algorithm used to count |Hd
n| was similar to the first in that it generated a

catalogue of paratopy class representatives by extending all paratopy class representatives

from Hd−1
n in all ways that produced a reduced hypercube. However, the isomorphism

testing was different. The reduced hypercubes were canonically labelled using nauty [19]

in much the same way as latin squares were treated in [18]. Any hypercube was rejected

if its canonical labelling was identical to that of a previously constructed hypercube.

The autoparatopism group of each hypercube was calculated by nauty while finding the

canonical labelling.

It is clear that both these generation methods are quite crude, but the use of more

sophisticated techniques, such as applying a minimality test after each hyperplane is

added, would not help very much with these small values of n and d. In particular, we

do not think they would improve the efficiency enough to make hypercubes with higher

order and/or dimension enumerable with present computing power.

4 Number of quasigroups of order 3

In this section we count the d-ary quasigroups of order n = 3, for arbitrary d. Before

developing that result we need to introduce a notion of linearity.

We say that H ∈ Hd
n is linear if there exist s ∈ [n] and ci ∈ [n] for i ∈ [d], such that

H(x1, x2, . . . , xd) ≡ s+
d∑

i=1

cixi (mod n), (4)

for each (x1, x2, . . . , xd) ∈ [n]d. We say that a quasigroup/loop is linear if its corresponding

hypercube is linear. For (4) to define a latin hypercube it is necessary and sufficient that

each ci should be relatively prime to n. Let φ denote Euler’s phi function. It follows that
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there are exactly n(φ(n))d linear hypercubes in Hd
n, since we have n choices for s and φ(n)

choices for each ci.

For n ≤ 3 and arbitrary d it is easy to prove by induction on d that every hypercube

in Hd
n is linear. This conclusion also follows from the values of |Hd

n| as given, for example,

by Finizio and Lewis [7] or Laywine and Mullen [16, p.224].

In our next theorem we will use the fact that each of the 2d3 hypercubes in Hd
3 is

linear to count the d-ary quasigroups of order 3. Our result is phrased in terms of the

Jacobsthal sequence, which is defined by an = 1
3
(2n + (−1)n+1), or alternatively by the

recurrence

an = an−1 + 2an−2 with a1 = a2 = 1. (5)

This is sequence A001045 in Sloane’s On-Line Encyclopedia of Integer Sequences [25],

which lists many combinatorial objects counted by the sequence. Here we extend that

list.

Theorem 3. Let Qd
3,g be the set of d-ary quasigroups of order 3 with an automorphism

group of order g. Then |Qd
3,2| = ad+1, |Qd

3,3| = |Qd
3,6| = ad and |Qd

3,g| = 0 for g /∈ {2, 3, 6}.
Hence |Qd

3| = ad+2.

Proof. First note that the result for |Qd
3| follows from the other results and (5), since

|Qd
3| =

∑
g |Qd

3,g|.
Let Hd

3,g be the set of d-dimensional hypercubes of order n for which the corresponding

quasigroup is in Qd
3,g. Clearly, |Qd

3,g| = |Hd
3,g| g/3! .

Consider the diagonal cells of an arbitrary H ∈ Hd
3. Specifically, for i ∈ {1, 2, 3} define

ui by 〈i, i, i, . . . , i, ui〉 ∈ H. SinceH must be linear, we find that u2−u1 ≡ u3−u2 ≡ u1−u3

(mod 3).

We now argue that uk = k if and only if H possesses an automorphism τ fixing k and

swapping the other two elements of {1, 2, 3}.
Certainly if H has such an automorphism then it maps 〈k, k, . . . , k, uk〉 to 〈k, k, . . . , k,

τ(uk)〉, from which we infer that uk = k, the only fixed point of τ .

So assume that uk = k and define τ : [3] → [3] by τ(x) ≡ −k − x (mod 3). Note

that τ fixes k and swaps the elements of [3] \ {k}. Since H is linear we can assume the

existence of s, ci satisfying (4). Given that uk = k, this implies that k = s+ k
∑
ci. Now

if we apply the isomorphism τ to a general element 〈x1, x2, . . . , xd, s +
∑
cixi〉 of H, it

maps that element to〈
−k − x1,−k − x2, . . . ,−k − xd,−k − s−

∑
cixi

〉
where all coordinates should be calculated mod 3. However, this is an element of H since

s+
∑

ci(−k − xi) = s− k
∑

ci −
∑

cixi = s+ (s− k)−
∑

cixi ≡ −k − s−
∑

cixi

11



mod 3. We conclude that τ is indeed an automorphism, as we contended.

At this point we separate into three cases. Define α ∈ [3] by α ≡ u2 − u1 ≡ u3 − u2 ≡
u1 − u3 (mod 3).

Case 1: α 6= 1

By the definition of α there exists a unique k ∈ {1, 2, 3} such that uk = k. This means

Aut(H) contains a unique transposition and hence |Aut(H)| = 2.

Case 2: α = 1 and there exists k ∈ {1, 2, 3} such that uk = k.

Since α = 1 we know uk = k for all k ∈ {1, 2, 3}. This means Aut(H) contains three

transpositions and hence |Aut(H)| = 6.

Case 3: α = 1 and there does not exist k ∈ {1, 2, 3} such that uk = k.

In this case Aut(H) contains no transpositions. However, by applying the permutation

π : uk → k to the symbols of H we obtain a hypercube H ′ to which case 2 applies.

That means that π is an automorphism of H ′, and hence also of H. We deduce that

|Aut(H)| = 3.

Moreover there must be exactly twice as many hypercubes in case 3 as there are in case

2. Any example from case 2 can be turned into an example from case 3 by applying either

(123) or (321) to its symbols. Exactly one of these permutations will map an example

from case 3 to one from case 2. It follows that |Hd
3,3| = 2|Hd

3,6| and thus |Qd
3,3| = |Qd

3,6|.
We now consider how a (d−1)-dimensional hypercube H can be embedded as the first

hyperplane of a d-dimensional hypercube H ′. Since our hypercubes are linear there is

only one choice to make, namely whether cd = 1 or cd = 2. If H is in case 2 or 3 then for

either choice H ′ must fall into case 1. On the other hand, if H is in case 1 then there is

exactly one choice of cd so that H ′ is also in case 1. Compiling this information we get

|Hd
3,2| = 2

∣∣Hd−1
3,3 ∪Hd−1

3,6

∣∣ + |Hd−1
3,2 |∣∣Hd

3,3 ∪Hd
3,6

∣∣ = |Hd−1
3,2 |

and hence

|Qd
3,2| = 2|Qd−1

3,3 |+ |Qd−1
3,2 |

|Qd
3,3| = |Qd−1

3,2 |.

The theorem now follows from (5) by induction on d.

5 Number of identity elements

It is well known that a binary quasigroup can have at most one identity element but

that d-ary quasigroups for d > 2 can have multiple identity elements. In this section we

12



investigate constructions which produce quasigroups with a specific number of identity

elements.

It is beyond the scope of this paper to provide a complete answer to the question of for

which n, d and i there exists a quasigroup in Qd
n with exactly i identity elements. We set

the more modest goal of, at a minimum, constructing at least one quasigroup in all cases

for which Table 2 claims existence. Our methods and results represent a step toward an

eventual solution of the more general question. We begin with some notation that will be

used throughout this section.

Suppose A ∈ Qα
n and B ∈ Qβ

n. We define a new quasigroup in Qα+β−1
n , which we call

the composition of A and B and write as A `B, by

(A `B)(x1, . . . , xα+β−1) = A
(
B(x1, . . . , xβ), xβ+1, . . . , xα+β−1

)
.

Also, for any quasigroup A and positive integer c we define Ac inductively by A1 = A and

Ac = Ac−1 ` A for c > 1. In particular, if Zn denotes the quasigroup in Q2
n defined by

Zn(x, y) ≡ x+ y (mod n), then (Zn)c is the quasigroup in Qc+1
n which is evaluated simply

by adding coordinates modulo n.

The next lemma makes some observations about the number of identity elements in

compositions. The (entirely elementary) proof will be omitted. In part 3, the meaning of

total loop is a loop in which every element is an identity element.

Lemma 3.

1. (Zn)c ∈ Qc+1
n has gcd(n, c) identity elements.

2. If x is an identity element in both A and B then x is an identity element in A `B.

The converse is false, as can easily be seen by considering observation 1.

3. Suppose A is a total loop. Then x is an identity element in A `B if and only if x

is an identity element in B.

The following result proves, among other things, existence of total loops in many cases.

Theorem 4. Suppose that n, d, i are positive integers satisfying

• n 6∈ {3, 7},

• d ≥ 3 and d is odd,

• i ≡ n (mod 2) or i = 2.

Then there exists a loop in Qd
n with exactly i identity elements.

13



Proof. For any odd d > 1 and any n 6∈ {3, 7} Teirlinck [26] showed the existence in Qd
n of

a 2-idempotent quasigroup, namely a quasigroup in which each subset of cardinality 1 or

2 is a subquasigroup. It is easy to see that every 2-idempotent quasigroup is a total loop,

proving the case i = n.

Suppose i ≡ n (mod 2). In a 2-idempotent quasigroup, we can replace each of the

subquasigroups on the pairs {i + 1, i + 2}, {i + 3, i + 4}, . . . , {n − 1, n} by the other

possible subquasigroup on the same two elements. Doing so results in a new quasigroup

in which none of i + 1, . . . , n is an identity element. However, no tuple containing any

element less than i + 1 has been altered, so the elements 1, . . . , i are all still identity

elements.

It remains to show the i = 2 case. Again we start with a 2-idempotent quasigroup.

Suppose after replacing the subquasigroup on the elements {1, 2} by the other possible

subquasigroup on those elements, we arrive at a quasigroup Q. Now define Q′ by

Q′(~x) =


1 if Q(~x) = 2,

2 if Q(~x) = 1,

Q(~x) otherwise.

Then Q′ will be a quasigroup in which 1 and 2 are identity elements. However, if x 6∈ {1, 2}
then Q′(1, x, x, . . . , x) = 2 so x is not an identity element.

Teirlinck left open the case of existence when n = 7, but it is easy to check by computer

that no total loop (and hence no 2-idempotent quasigroup) exists in Q3
7. Despite this, we

will show that a total loop exists in Qd
7 for all sufficiently large d. Also, total loops (unlike

2-idempotent quasigroups) can exist in even dimensions. Consider S ∈ Q3
7 given by

S = [5671234.6237415.7364152.1743526.2415763.3152647.4526371.

6237415.2345671.3471526.7514263.4652137.1726354.5163742.

7364152.3471526.6712345.4125637.1536274.5243761.2657413.

1743526.7514263.4125637.3456712.5267341.2631475.6372154.

2415763.4652137.1536274.5267341.7123456.6374512.3741625.

3152647.1726354.5243761.2631475.6374512.4567123.7415236.

4526371.5163742.2657413.6372154.3741625.7415236.1234567].

It is easy to check that (Z7)
3 ` S is a total loop in Q6

7. By composing this total loop with

itself we can then produce total loops in Q6+5k
7 for any integer k ≥ 0.

Theorem 5. For each odd n > 3 there exists a D such that Qd
n contains a total loop for

all d ≥ D.

14



Proof. We first show that for n = 7 we can choose D = 25. For arbitrary positive integers

k, c we have shown above the existence of a total loop T ∈ Q5k+1
7 and also noted in

Lemma 3 that (Z7)
7c is a total loop in Q7c+1

7 . Forming T ` (Z7)
7c then produces a total

loop in Q7c+5k+1
7 . Every integer exceeding 24 can be written in the form 7c + 5k + 1 for

non-negative integers c, k (see, for example, Theorem 3.15.1 in [27]).

The argument for odd n 6∈ {3, 7} is similar, but we use a total loop T ∈ Q2k+1
n instead

(whose existence is guaranteed by Theorem 4). Using T ` (Zn)nc gives a total loop

in Qnc+2k+1
n . Since n is odd, every integer exceeding n − 1 can be written in the form

nc+ 2k + 1 for non-negative integers c, k. Thus we may take D = n.

Next we consider quasigroups in which there is (only) one element which is not an

identity element. It seems plausible, given the data from Table 2, that the following is

the only general restriction on how many identity elements there can be in a ternary

quasigroup.

Lemma 4. A 3-ary quasigroup of order n cannot have exactly n− 1 identity elements.

Proof. Let Q be a 3-ary quasigroup of order n on the symbols [n] in which every x ∈
[n] \ {u} is an identity element. Take an arbitrary v ∈ [n] \ {u}. Then there exists

x ∈ [n] such that 〈v, x, u, v〉 ∈ Q. If x 6= u this contradicts the fact that 〈v, x, x, v〉 ∈ Q

since x is an identity element. We conclude that 〈v, u, u, v〉 ∈ Q, and a similar argument

shows that 〈u, v, u, v〉 ∈ Q and 〈u, u, v, v〉 ∈ Q. Finally, there is some x ∈ [n] such that

〈x, u, u, u〉 ∈ Q. If x 6= u this contradicts 〈x, u, u, x〉 ∈ Q, so we must have 〈u, u, u, u〉 ∈ Q.

We have shown that u is an identity element, so if Q has at least n− 1 identity elements

then it must have n identity elements.

The data in Table 2 is consistent with a generalisation of Lemma 4 to some higher

dimensions. However, no such generalisation is possible.

Lemma 5. For every d > 3 there exists an n and a Q ∈ Qd
n such that Q has exactly n−1

identity elements.

Proof. We first show that 5-ary quasigroups can have exactly n−1 identity elements. Let

E = [78123456.85274163.12385674.27816345.34567812.41638527.56741238.63452781.

85274163.56781234.27416385.78123456.41638527.12345678.63852741.34567812.

12385674.27416385.34567812.81634527.56741238.63852741.78123456.45278163.

27816345.38527416.81634527.12345678.63452781.74163852.45278163.56781234.

34567812.41638527.56741238.63452781.78123456.85274163.12385674.27816345.

41638527.72143658.63852741.34567812.85274163.56781234.27416385.18325476.

56741238.63852741.78123456.45278163.12385674.27416385.34567812.81634527.

63452781.14365872.45278163.56781234.27816345.38527416.81634527.72143658]
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Now Q ∈ Q5
8 defined by Q = (Z8)

2 ` E has exactly 7 identity elements (the element 8

is not an identity element, since Q(1, 8, 8, 8, 8) = 7). By Theorem 4, there is a total loop

T ∈ Q2k+1
8 for all k ≥ 1. Then by Lemma 3, T ` Q is a loop in Q2k+5

8 with exactly 7

identity elements. Thus we have the required example whenever the dimension is odd.

For any even d, (Z2)
d−1 provides a (rather trivial) example. By Lemma 3, it is a d-ary

quasigroup of order 2 with one identity element.

Our next result shows among other things that the n = 2 examples used to prove

Lemma 5 are the only linear examples of order n quasigroups with n−1 identity elements.

Lemma 6. The number of identity elements in a linear d-ary loop of order n divides n.

Proof. Suppose L is a linear d-ary loop of order n, defined by (4). Since L is a loop it

possesses at least one identity element, say ι. Then 〈y, ι, ι, . . . , ι, y〉 ∈ L for all y ∈ [n]

which implies that

s+ ι

d∑
i=2

ci + c1y ≡ y (mod n). (6)

As (6) must hold for all y we conclude that c1 = 1. A similar argument shows that cj = 1

for all j ∈ [d]. Hence (6) reduces to s+ (d− 1)ι ≡ 0 (mod n). This recurrence either has

no solution for ι (impossible since we know L has an identity element), or its number of

solutions is a divisor of n. It is obvious that each solution will yield a (different) identity

element.

Having considered loops with a high number of identity elements, we turn briefly to

the other end of the spectrum. It is a trivial matter for any n ≥ 3 and d ≥ 2 to create

a linear quasigroup with no identity elements. For example, take ci = −1 for all i in (4),

and consider the proof of Lemma 6 above. Building quasigroups with a unique identity

element is also easy.

Theorem 6. For all n ≥ 4 and d ≥ 2 there exists a loop in Qd
n with a unique identity

element.

Proof. The result for d = 2 is well known. For d = 3 and odd n we can use (Zn)2, by

Lemma 3.

Suppose n is even and n > 2. Let Z ′n = Z(τ,τ,τ)
n be the binary quasigroup isomorphic

to Zn by applying the transposition τ = (1 n
2
) uniformly to the triples. Now consider

Q = Zn ` Z ′n. The element n is an identity element of Zn, Z ′n and hence also of Q,

by Lemma 3. For x 6∈ {n
2
, n}, we have Q(x, n, x) ≡ Z ′n(x, n) + x ≡ 2x 6≡ n (mod n),

so x is not an identity element. Moreover, n
2

is not an identity element either, since

Q(n
2
, n

2
, n) = Z ′(n

2
, n

2
) = 2 6= n.

We have thus shown the theorem for d ≤ 3. From these base cases the theorem now

follows for d > 3 and n 6= 7 by composition with a total loop whose existence is guaranteed

16



by Theorem 4. For n = 7, we use the base cases (Z7)
c for c ∈ [6], each of which has a

unique identity element, by Lemma 3. By composing these with the total loops from

Q5k+1
7 , we generate all the required examples for n = 7.

We now describe examples of quasigroups with each of the possible number of identity

elements shown in Table 2.

If n ≤ 3 then part 1 of Lemma 3 provides the examples we need. So we can assume

henceforth that n ∈ {4, 5, 6}. In particular this means there exists a total loop in Q3
n, by

Theorem 4, and a loop with a unique identity element in Qd
n for all d ≥ 2, by Theorem 6.

This provides the required examples for d = 4, except that we need a quasigroup in Q4
5

with two identity elements. Let

Qa = [12345.23451.34512.45123.51234]

Qb = [12345.25413.34251.41532.53124]

Qc = [12345.25413.34521.43152.51234]

Then the quasigroup Q(x1, x2, x3, x4) = Qc

(
Qa(x1, x2), Qb(x3, x4)

)
, has 2 identity ele-

ments, as required.

By composition with a total loop we will obtain all required examples for d = 5 as

soon as we find the examples for d = 3. Moreover, most of the examples needed for d = 3

can be found by applying Theorem 4 and Theorem 6. Only one case remains, namely we

need an example in Q3
6 with 3 identity elements. In fact, we give examples of all possible

numbers of identity elements in Q3
6. Let

Q0 = [124653.213546.431265.652134.546312.365421]

Q1 = [123456.214365.632514.351642.465231.546123]

Q2 = [123456.214365.635214.356142.542631.461523]

Q3 = [123456.214365.632541.351624.546132.465213]

Q4 = [123456.214365.632514.351642.546231.465123]

Q6 = [123456.214365.632541.351624.546213.465132]

For each i ∈ {0, 1, 2, 3, 4, 6}, the quasigroup Qi ` Q0 has exactly i identity elements.

6 Incompletable latin cuboids

A natural method of building latin hypercubes is to add hyperplanes one at a time, as we

did in Section 3. We call the intermediate objects thereby created latin hypercuboids. In

the three-dimensional case, Kochol [14] used the name “latin parallelepipeds”.
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There is celebrated result due to Marshall Hall [10] that every latin rectangle is com-

pletable to a latin square. However, the equivalent statement is not true in higher di-

mensions. Kochol [14] proved that for any k and n satisfying 1
2
n < k ≤ n − 2 there

is an n × n × k latin cuboid which cannot be completed to an n × n × n latin cube.

Although he did not say so, it is simple to use such examples to create non-completable

n× n× · · · × n× k latin hypercuboids in higher dimensions.

It is an open question how “thin” an non-completable latin hypercuboid can be. In

acknowledging that his theorem is not best possible, Kochol [14] alluded to an example

of an non-completable 5× 5× 2 latin cuboid, although it seems this example might have

never been published. Below we give examples of non-completable 5 × 5 × 2, 6 × 6 × 2,

7 × 7 × 3 and 8 × 8 × 4 latin cuboids. In the latter two cases it remains open whether

there are thinner examples. The 5 × 5 × 2 cubiod cannot be extended even to 3 layers,

while the other examples can be extended to n×n× (n−2) latin cuboids, but no further.

[12345.21453.34521.45132.53214.

21453.13542.52134.34215.45321]

[123456.214365.345612.436521.561234.652143.

214365.125643.456231.362154.643512.531426]

[1632745.6173452.2356174.5264317.3417526.7541263.4725631.

2147653.7456231.3715462.6523174.4362715.1634527.5271346.

3715426.1624573.6243751.4176235.2531647.5467312.7352164]

[14257638.68421375.26875413.57368241.85643127.31784562.43512786.72136854.

26813457.47286531.38564172.71635824.13758246.62341785.54127368.85472613.

31462785.14738256.62147538.83251467.78524613.57816324.25673841.46385172.

42175863.86354712.51628347.35742186.27486531.14563278.78231654.63817425]

These examples show that Kochol’s theorem is not best possible for n ∈ {5, 6, 7, 8} and

hence leave wide open the question of what the best result might be in general. Cutler and

Öhman [5] showed for all m that every (2mk)× (2mk)×m latin cuboid can be extended

by 1 layer provided k is sufficiently large.
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Appendix

In the following tables we present the number of paratopy classes of latin hypercubes L

with each combination of the parameters d, n, I, P/I, where d is the dimension, n is the

order, I = |Is(L)| and P = |Par(L)|. Lemma 1 explains how to compute the numbers of

hypercubes, reduced hypercubes, and isotopy classes of hypercubes.

A representative of each of these paratopy classes can be found in [21].
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d n I P/I count d n I P/I count d n I P/I count

3 2 8 24 1 3 6 3 3 1 3 6 16 6 3

total 1 3 4 337 16 8 24

3 3 54 24 1 3 6 1 16 24 5

total 1 3 8 5 18 1 67

3 4 16 24 1 4 1 14855 18 2 54

64 8 1 4 2 3898 18 4 28

128 4 1 4 3 1 18 6 2

128 24 1 4 4 1121 18 8 10

384 24 1 4 6 12 20 1 1

total 5 4 8 179 20 2 1

3 5 3 4 5 4 24 4 20 4 2

4 4 1 5 4 1 24 1 67

4 24 1 6 1 1302 24 2 75

6 24 1 6 2 739 24 4 17

10 4 1 6 4 244 24 6 1

10 8 1 6 6 1 24 8 10

12 4 1 6 8 13 27 1 5

20 24 1 8 1 1118 27 2 11

60 24 1 8 2 831 27 4 6

100 8 1 8 3 1 27 8 3

500 24 1 8 4 220 36 1 23

total 15 8 6 6 36 2 26

3 6 1 1 75916 8 8 65 36 4 8

1 2 17193 9 1 137 36 6 1

1 3 29 9 2 90 36 8 6

1 4 3049 9 4 30 48 1 2

1 6 7 9 6 1 48 2 9

1 8 309 9 8 13 48 4 8

1 12 2 10 2 1 48 6 1

1 24 3 10 8 3 48 8 3

2 1 115256 12 1 316 54 1 6

2 2 16921 12 2 208 54 2 6

2 3 8 12 4 53 54 4 5

2 4 2768 12 6 1 54 8 4

2 6 15 12 8 7 54 24 1

2 8 127 16 1 22 72 1 9

3 1 4460 16 2 65 72 2 14

3 2 1688 16 4 28 72 4 4

Table 3: Counts of paratopy classes by I = |Is(L)| and P/I = |Par(L)|/|Is(L)| (part 1)
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d n I P/I count d n I P/I count d n I P/I count

3 6 72 8 3 4 4 256 12 1 5 2 32 720 1

(cont) 81 8 1 512 8 2 total 1

108 1 7 512 10 1 5 3 486 720 1

108 2 2 512 12 2 total 1

108 4 1 512 120 1 5 4 16 72 1

108 8 2 1536 120 1 64 1 1909

120 2 1 total 26 64 2 1574

120 8 1 4 5 1 1 3 64 3 9

144 2 3 1 2 5 64 4 572

144 4 2 1 6 3 64 6 61

144 8 3 2 2 2 64 8 164

162 2 1 2 4 1 64 10 9

216 1 2 2 6 1 64 12 88

216 2 2 2 12 1 64 16 51

216 8 1 3 1 24 64 20 1

324 2 1 3 2 7 64 24 5

324 4 1 3 6 3 64 36 8

432 2 1 4 6 1 64 48 22

432 24 1 5 2 9 64 60 1

648 2 1 5 4 4 64 72 5

720 8 1 10 2 1 64 120 4

1296 8 1 10 4 2 64 720 3

total 264248 10 6 2 128 1 16

4 2 16 120 1 10 12 1 128 2 24

total 1 12 2 1 128 4 54

4 3 162 120 1 12 6 1 128 6 8

total 1 20 2 2 128 8 13

4 4 32 8 2 20 12 1 128 12 15

32 10 1 25 8 2 128 16 12

32 12 3 50 4 1 128 36 2

32 120 2 50 8 2 128 48 14

64 4 3 50 12 2 128 60 1

64 12 2 100 8 1 128 720 2

64 24 2 100 12 1 256 1 4

128 8 1 500 12 1 256 2 26

256 4 1 2500 120 1 256 4 24

256 8 1 total 86 256 6 8

Table 4: Counts of paratopy classes by I = |Is(L)| and P/I = |Par(L)|/|Is(L)| (part 2)
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d n I P/I count d n I P/I count d n I P/I count

5 4 256 8 18 5 5 2 8 1 5 5 25 6 9

(cont) 256 12 6 2 9 1 25 8 81

256 16 6 2 12 3 25 12 4

256 24 1 2 18 10 25 16 5

256 36 2 2 36 6 50 4 4

256 48 7 3 1 1128 50 6 1

512 4 2 3 2 378 50 8 13

512 12 1 3 3 31 50 12 3

512 16 2 3 4 55 50 16 5

1024 4 3 3 6 39 50 18 2

1024 8 2 4 2 2 50 36 1

1024 12 3 4 3 1 60 36 1

1024 16 3 4 4 1 100 4 3

1024 48 2 4 6 2 100 6 2

1024 72 1 4 18 3 100 8 8

2048 4 4 4 36 3 100 12 1

2048 12 2 4 72 1 100 16 1

2048 16 2 5 2 468 100 36 1

2048 36 1 5 4 18 125 8 2

2048 48 4 5 6 26 125 12 2

2048 60 1 5 12 2 125 24 2

2048 720 1 6 18 2 125 48 1

6144 720 1 6 36 3 250 8 1

total 4785 10 2 14 250 12 3

5 5 1 1 337 10 4 14 250 16 3

1 2 105 10 6 10 250 36 1

1 3 72 10 8 4 250 48 2

1 4 28 10 12 5 500 12 1

1 6 40 10 36 1 500 16 2

1 12 4 12 2 2 500 36 1

1 18 3 12 3 1 500 48 1

1 36 4 12 4 1 2500 48 1

2 1 3 12 6 1 2500 72 1

2 2 6 20 2 2 12500 720 1

2 3 7 20 12 1 total 3102

2 4 7 20 72 1

2 6 5 25 4 70

Table 5: Counts of paratopy classes by I = |Is(L)| and P/I = |Par(L)|/|Is(L)| (part 3)
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