Probabilistic Name and Address
Cleaning and Standardisation

Peter Christen Tim Churches Justin Xi Zhu
Department of Computer Centre for Epidemiology and Department of Computer
Science Research Science
Australian National University =~ New South Wales Department Australian National University
Canberra ACT 0200, Australia of Health Canberra ACT 0200, Australia

i Locked Mail Bag 961, North
Peter.Christen@anu.edu.au Sydney NSW 2059, Australia

tchur@doh.health.nsw.gov.au

ABSTRACT

In the absence of a shared unique key, an ensemble of non-
unique personal attributes such as names and addresses is
often used to link data from disparate sources. Such data
matching is widely used when assembling data warehouses
and business mailing lists, and is a foundation of many lon-
gitudinal epidemiological and other health related studies.
Unfortunately, names and addresses are often captured in
non-standard and varying formats, usually with some de-
gree of spelling and typographical errors. It is therefore
important that such data is transformed into a clean and
standardised format before it is further processed.
Traditional approaches for cleaning and standardisation of
personal information have been based on domain-specific
rules that need considerable configuration by highly skilled
end users. In this paper we describe an alternative approach
based on probabilistic hidden Markov models. Experiments
on various health-related administrative data sets show that,
compared to a rules-based approach, the probabilistic sys-
tem is less cumbersome and more flexible to use and, for
more complex data, produces more accurate results.

Keywords

Hidden Markov models, data cleaning, data mining, record
linkage, biomedical informatics, epidemiology.

1. INTRODUCTION

Most real world data collections contain noisy, incomplete
and incorrectly formatted information. Thus data clean-
ing and standardisation are important first steps in data
pre-processing, before such data can be stored in data ware-
houses or used for further analysis [8; 21]. The cleaning
and standardisation of personal names and addresses is es-
pecially important for data integration, to make sure that no
misleading or redundant information is introduced (e.g. du-
plicate records). Related to data integration is data linkage,
the task of linking together records belonging to the same
entity (patient, customer, business) from one or more data
sets. Also called record linkage [7], data linkage is impor-

The Australasian Data Mining Workshop Copyright © 2002

tant in many domains such as longitudinal epidemiological
studies, census related statistics, cleaning of mailing lists,
and fraud and crime detection systems.

The main task of data cleaning and standardisation is the
conversion of the raw input data into well defined, consis-
tent forms and the resolution of inconsistencies in the way
information is represented or encoded. Personal data is of-
ten captured and stored with typographical and phonetical
variations. Moreover, such data may be recorded or cap-
tured in various, possibly obsolete, formats, and data items
may be missing or contain errors. For personal data to be
useful and valuable, it needs to be cleaned and standard-
ised into a well defined format. For example, nicknames
should be expanded into their full names, various abbre-
viations should be converted into standardised forms, and
postcodes should be validated using official postcode lists.
In most settings it is desirable to be able to detect and re-
move duplicate records from a data set, in order to reduce
costs for business mailings or to improve the accuracy of a
data analysis. De-duplication corresponds to linking a data
set with itself.

Where a unique entity identifier or key is shared by all the
data sets to be linked or deduplicated, the process of record
linkage is trivial. However, this is often not the case. In
many data analysis and data mining projects the data re-
quired for analysis is contained in two or more separate data-
bases, which do not share a common unique entity iden-
tifier. In such cases, probabilistic or other record linkage
techniques need to be used to merge the data [5; 25]. Typ-
ically a range of non-unique personal data items such as
names, addresses and dates (e.g. date of birth) are used to
link together records belonging to the same entity (e.g. pa-
tient or customer). Data linkage can be used to improve
data quality and integrity, to allow reuse of existing data
sources for new studies, and to reduce costs and efforts in
data acquisition. In order to maximise the likelihood of
successful data linkage, data must be cleaned and standard-
ised. For example, comparing the name component from
Figure 1 as one string ‘Doc Peter Miller’ with a variation
of the same name, like ‘Mr. Miller, Peter’ would result
in a non-match, whereas properly cleaned and standardised
into the three name fields title, given name and surname,
only the title ‘mister’ would differ from the title ‘doctor’
thus resulting in a partial match.

Name Address Date

| Doc Peter Miller || 42 Main Rd. App.3a CanberraA.C.T. 2600/ | 20/4/1986 |

4 v v ' \ v 1 b
Tile Givenname Surname Geocode Locality Day Month Year

| doctor | |peter | | 42 Main Rd. App.3a|CanberraA.C.T.2600| [29] [4]

miller

- - ’
-
Wayfare Wayfare Wayfare » Unit 4 1 A\l
name type Unittype no. Localityname Territory ~ Postcode

no.
[42. [main| [roaa [apertment | [3a] [canberra || act || 2600]

Figure 1: Example name and address standardisation.

Historical collections of administrative health data and trans-
actional business databases nowadays contain many tens or
even hundreds of millions of records, with new data being
added at the rate of millions of records per annum. Al-
though computing power has increased tremendously in the
last few decades, large-scale data cleaning and linking is still
a resource-intensive process. There have been relatively few
advances over the last decade in the way in which data link-
age is undertaken. Only recently [1; 6; 13; 21; 25] researchers
started to explore this area, and the first encouraging re-
sults on using machine learning techniques are now being
reported [2; 4; 15; 23; 24].

The processes of data standardisation and data linkage have
various names in different user communities. While statisti-
cians and epidemiologists speak of record or data linkage [5;
7], the same process is often referred to as data scrubbing,
pre-processing, or data cleaning [6; 13; 21] by computer sci-
entists and in the database community, whereas it is some-
times called merge/purge processing [9], data integration [3]
or ETL (extraction, transformation and loading) in commer-
cial processing of customer databases or business mailing
lists. Historically, the statistical and the computer science
community have developed their own techniques, and until
recently few cross-references could be found.

This paper reports on a project that aims to developing
new and improved techniques for data standardisation and
data linkage for biomedical data sets. The focus is on im-
proved performance, allowing to standardise and link larger
data sets, and on improved quality by using techniques from
machine learning and data mining. The prototype soft-
ware Febrl, for Freely extensible biomedical record linkage,
is currently under development'. Febrl is written in the
free, open-source Python [12] programming language and
is itself published under a free, open-source license allow-
ing researchers to customise the software for their particu-
lar needs. We hope that Febrl will allow biomedical and
other researchers to standardise and link their data sets at
reduced cost, due to both the free availability of the software
and the reduction of human resources needed to use it.

In Section 2 we introduce the task of data cleaning and stan-
dardisation of personal names and addresses in more detail.
While traditional approaches have been based on rules that
need to be customised by the user according to her or his
data sets and linkage needs, in Section 3 we present an alter-
native technique using probabilistic hidden Markov models
(HMMs). Instead of having to write sophisticated and com-
plex rules that have to be adjusted for various data sets, the

HMM approach needs training records from the data set to
be standardised. In Section 3.1 we show how such train-
ing data can be created semi-automatically with much less
effort and skill than is required to write rules, and in Sec-
tion 4 we present first results showing that the probabilistic
approach can result in highly accurate standardised data by
using only small training sets. Finally, Section 5 presents an
overview of related work, and Section 6 gives an outlook on
current and future directions for this project.

2. CLEANING AND STANDARDISING
PERSONAL INFORMATION

The aim of the data cleaning and standardisation process is
to transform the raw input data records containing names,
addresses and other personal information (like date of birth
or gender) into a well defined and consistent form, as shown
in Figure 1. Personal information can be categorised into
five broad classes: names, addresses, dates (such as date-
of-birth), categorical attributes (such as sex or country-
of-birth) and identifying numbers (such as tax file or
Medicare numbers). This paper deals with the first two
of these classes.

Addresses can be further separated into two parts, namely
the geocode part which contains street and postal address
information, and the locality part which contains town or
suburb names, postcode, as well as state and country in-
formation. As can be seen from Table 1, each component
is further split into several output fields each containing a
basic piece of information.

Name Geocode Locality
title wayfare_number postcode
gender_guess wayfare_name locality_name
givenname wayfare_type locality_qualifier
alt_givenname wayfare_qualifier territory
surname unit_number country
alt_surname unit_type
property_name
institution_name Date
institution_type day
postaddress_number month
postaddress_type year

Table 1: Supported output fields.

‘We assume that the raw input data records are stored as text
files or database tables and each of the input components
is made of one or more text strings. The task is then to
allocate the words and numbers from the raw input into the
appropriate output fields, and to clean and standardise the
values in these output fields.

Our approach to data cleaning and standardisation is based
on the following three steps. Firstly, the input strings are
cleaned. Secondly, they are split into a list of words, numbers
and characters, which are then tagged using look-up tables
(mainly for names and addresses) and some hard-coded rules
(e.g. for numbers, hyphens or commas). Finally these tagged
lists are segmented into output fields using probabilistic hid-
den Markov models. We discuss each step in more detail in
the following three sections.

! See project web site: http://datamining.anu.edu.au/linkage.html

The Australasian Data Mining Workshop Copyright © 2002

2.1 Cleaning

The cleaning step involves converting all letters into lower
case followed by various general corrections of sub-strings
using correction lists, which are stored in text files and can
be modified by the user. Such correction lists are made
of pairs of strings original:replacement. If an original
string is found in the raw input sting, it is replaced by the
corresponding replacement string. For example, variations
of ‘known as’, such as ‘a.k.a.’ or ‘aka’ are all replaced
with the string ‘known as’. Various kinds of brackets and
quoting characters are all replaced with a vertical bar ‘|,
which facilitates tagging and segmenting in the subsequent
steps. Correction lists also allow the replacement string to
be an empty string, in which case an original string found
in the input is removed. For example, the original string
‘abbrev’ can be removed from an input record, by setting
is replacement string to ¢’. Note that the name component
has a different correction list than the geocode and locality
components, because some corrections are specific to names
or addresses. The output of the cleaning step is a cleaned
string ready to be tagged in the next step.

2.2 Tagging

After an input component string has been cleaned, the next
step is to split it at white-space boundaries into a list of
words, numbers, characters, punctuation marks and other
possible separators. Using look-up tables and some hard-
coded rules each of the list elements is assigned one or more
tags. The hard-coded rules include, for example, tagging
an element as a hyphen, a comma, a slash, a number or
an alphanumeric word, while most of the other tags (titles,
given names, surnames, postcode, locality names, wayfare
and unit types, countries, etc.) are assigned to words if
they are listed in one of the look-up tables. A list of all
supported tags is given in Table 2. These look-up tables are
loaded from text files, which can be modified by the user. If
a word (or a word sequence) is found in a look-up table, it is
not only tagged, but it is also replaced by its corresponding
corrected entry in the look-up table. It is possible that a
word is listed in more than one look-up table. Consequently,
it will be assigned more than one tag (see for example the
name word ‘peter’ below). Words which are not found
in any look-up table and which do not match any of the
hard-coded tagging rules are assigned the ‘UN’ (unknown)
tag. Title words like ‘doctor’, ‘doc’, ‘md’ and ‘phd’ for
example will all be assigned the title word tag ‘TI’, and
they will be replaced with the standardised word ‘dr’.
The look-up tables are searched using a greedy matching
algorithm, which searches for the longest tuple of elements
that match an entry in the look-up tables. For example, the
tuple of words (‘macquarie’,‘fields’) will be matched
with an entry in a look-up table with the locality name
‘macquarie fields’, rather than with the shorter entry
‘macquarie’ from the same look-up table.

The output of the tagging step is a list of elements (words,
numbers and separators) and a corresponding list of tags.

Example: Assume the raw input string of the name compo-
nent is ‘Doc. peter Paul MILLER’, which is converted by
the cleaning step into the string ‘doc peter paul miller’.
Assuming that ‘doc’ is listed in the title look-up table (and
corrected into ‘dr’), it will be assigned a ‘TI’ tag. Further
assuming ‘peter’ is listed in both the male given name and

The Australasian Data Mining Workshop Copyright © 2002

Tag | Description Name | Geocode/
Locality
LQ Locality qualifier words - LT
LN | Locality (town) names - LT
TR | Territory (state) names - LT
CR | Country names - LT
IT | Institution type words - LT
IN | Institution names - LT
PA | Postal address type words - LT
PC | Postcodes - LT
UT | Unit type words - LT
WN | Wayfare names - LT
WT | Wayfare type words - LT
ST | Saint names LT LT
TI | Title words LT -
SN | Surnames LT -
GF | Female given names LT -
GM | Male given names LT -
PR | Name prefix words LT -
SP | Name separators LT -
(like ‘known as’)
BO ‘baby of > and similar LT -
sequences
NE | The word nee LT -
(surname or ‘born’)
II | One-letter words (initials) - HC
HY | Hyphen *’ HC HC
C0 | Comma ¢’ HC HC
SL | Slash ¢/’ HC HC
N4 | Numbers with four digits - HC
NU | Other numbers HC HC
(not four digits)
AN | Alpha-numeric words HC HC
VB | Vertical bar |’ HC HC
(various brackets)
RU | Rubbish LT LT
UN | Unknown LT LT

Table 2: Supported tags, based either on look-up tables (LT)
or hard coded rules (HC).

the surname look-up tables, it is assigned the two tags ‘GM’
and ‘SN’. If the next word ‘paul’ is only found in the male
given name look-up table, it will only be assigned a ‘GM’.
Finally, assume the name ‘miller’ is only found in the
surname look-up table, so it will be assigned the tag ‘SN’.
Because ‘peter’ has been assigned two tags, the following
two permutations of tag sequences are possible:

[‘dr’, ‘peter’, ‘paul’, ‘miller’]
[‘TI’, ‘GM,, ‘GM,, lSN:]
[¢TI’, ‘SN’ ‘GM’, ‘SN’]

The question is now which of these two tag sequences is the
most likely one, and how should the elements of the word list
be assigned to the appropriate output fields? This problem
is solved using probabilistic hidden Markov models in the
segmentation step as discussed below.

2.3 Segmenting
Having a list of elements (words, numbers, characters and
separators) and one or more corresponding tag lists, the task

25% 5%

Givenname
55% 5%
30 %

50/
Start [Tltle Middlename
o%
100%
15% Surname ’ 75%

Figure 2: Simple example hidden Markov model for name
component.

is now to assign these elements to the appropriate output
fields. Traditional approaches have used rules (such as ‘if
an element has a tag ‘TI’ then the corresponding word s
assigned to the ‘title’ output field.’). Instead, we use
probabilistic hidden Markov models [20]. The advantages
of hidden Markov models are their robustness with respect
to previously unencountered input sequences, as well as the
fact that they can be trained by clerical staff, rather than
requiring high level analysis and programming skills to cre-
ate complex rules that accommodate all special cases for a
given data set.

3. DATASEGMENTATIONUSING HIDDEN
MARKOV MODELS

Traditional data cleaning and standardisation systems ap-
ply various rule-based approaches to the task of parsing raw
data. For example, AutoStan [14] uses an initial lexicon-
based tokenisation phase followed by a re-entrant rule-based
parsing and token re-writing phase. The approach presented
in this paper also uses lexicon-based tokenisation (or tag-
ging, as described above), but then uses a probabilistic ap-
proach based on hidden Markov models to assign each el-
ement in the cleaned and tagged input list to a particular
output field.

Hidden Markov models [20] (HMMs) were developed in the
1960s and 1970s and are widely used in speech and natural
language processing. They are a powerful machine learning
technique, able to handle new forms of data in a robust
fashion. They are computationally efficient to develop and
evaluate. Only recently have HMMs been used for name and
address standardisation [2; 22].

A HMM is a probabilistic finite state machine made of a
set of states, transition edges between these states and a
finite dictionary of discrete observation (output) symbols.
Each edge is associated with a transition probability, and
each state emits observation symbols from the dictionary
with a certain probability distribution. Two special states
are the start and end state. Beginning from the start state,
a HMM generates a sequence of observation symbols O =
01,02,...,0r by making k — 1 transitions from one state to
another until the end state is reached. Observation symbol
0i,1 < i < k is generated in state 7 based on this state’s
probability distribution of the observation symbols. The
same output sequence can be generated by various paths
through a HMM with different probabilities. Given an ob-
servation sequence, one is often interested in the most proba-
ble path through a given HMM that generated this sequence.
The Viterb: [20] algorithm is an efficient way to compute this
most probable path for a given observation sequence.

The Australasian Data Mining Workshop Copyright © 2002

To state
From Start | Title | Given | Middle | Sur- | End
state name name name
Start - 0.30 0.55 0.0 0.15 -
Title - 0.0 0.85 0.0 0.10 | 0.05
Given- - 0.05 0.0 0.25 0.65 | 0.05
name
Middle- - 0.0 0.0 0.0 1.00 0.0
name
Surname - 0.05 0.20 0.0 0.0 | 0.75
End — - - - - -
State
Obser. | Start | Title | Given | Middle | Sur- | End
symbol name | name | name
TI - 0.96 0.01 0.01 0.01 —
GM - 0.01 0.35 0.33 0.15 -
GF - 0.01 0.35 0.27 0.14 -
SN - 0.01 0.09 0.14 0.45 -
UN - 0.01 0.20 0.25 0.25 -

Table 3: Example name HMM transition and observation
probabilities.

The distribution of both transition and observation proba-
bilities are learned using training data. Each training record
is an example path and observation sequence. While the dic-
tionary of output symbols can be created using the training
data, the states of a HMM are normally fixed and have to
be defined before training. Because training data often does
not cover all possible combinations of states and observa-
tions, during testing and application of a HMM unseen and
unknown data is encountered. To be able to deal with such
cases, smoothing techniques [2] need to be applied which en-
able unseen data to be handled more efficiently. These tech-
niques — such as Laplace or absolute discounting — basically
assign small observation probabilities to all unseen observa-
tions symbols in all states. For states that have more distinct
words during training, they are also expected to encounter
unknown symbols more frequently. Smoothing techniques
reflect this fact by assigning unseen symbols in those states
a higher relative probability [2].

Figure 2 shows a simple HMM example for the name com-
ponent with six states. The start and end states are both
virtual states that are not actually stored in a HMM, as no
symbols are emitted in these states. Instead of the start
state a list of initial state probabilities is used (i.e. proba-
bilities that give the likelihood of a sequence starting in a
certain state). In the given example, a name starts with
a 55% likelihood with a Givenname and is followed with
a (conditional) probability of 656% by a Surname, or 25%
probability with a Middlename, and so on.

Instead of using the original words, numbers and other ele-
ments from the input records directly, the tag sequences (as
discussed in Section 2.2) are used as HMM observation sym-
bols in order to make the derived HMMs more general, i.e.
to allow HMMSs to be trained on one data set and then be
used with other similar, but distinct data sets, with little or
no loss of performance. Using tags also limits the size of the
observation dictionary. Once a HMM is trained, sequences
of tags (one tag per input element) as generated in the tag-
ging step can be given as input to the Viterbi algorithm,

which returns the most likely path (i.e. state sequence) of
the given tag sequence through the HMM, plus the corre-
sponding probability. The path with the highest probability
is then taken and the corresponding state sequence will be
used to assign the elements of the input to the appropriate
output fields.

Example: Assuming the same name example as above, the
input name string ‘Doc. peter Paul MILLER’ is cleaned
and tagged as explained in Section 2.2 into the following
word list and tag sequences:

[‘dr’, ‘peter’, ‘paul’, ‘miller’]
[‘TI,, ‘GM,, (GM)’ ‘SN’]
[¢TI’, ‘SN, ‘GM°, ‘SN’]

These two tag sequences are given to the Viterb: algorithm
and using the name HMM from Figure 2 with transition and
observation probabilities as listed in Table 3, the first tag se-
quence [‘TI’, ‘GM’,‘GM’, ‘SN’] is assigned to the following
path through the HMM (with the corresponding observation
symbols in brackets):

Start -> Title (TI) -> Givenname (GM) ->
Middlename (GM) -> Surname (SN) -> End

The resulting probability of this path is:

0.30 * 0.96 * 0.85 * 0.35 * 0.25 * 0.33 * 1.00 *
0.45 * 0.75 = 0.0023856525

with 0.30 being the transition probability from state Start
to state Title, then 0.96 being the probability that the
symbol ‘TI’ is observed in state Title, 0.85 being the tran-
sition probability from the Title to the Givenname state,
and so on. The most probable path for the second sequence
[‘TI’,“SN’,‘GM’,‘SN’] is:

Start -> Title (TI) -> Givenname (SN) ->
Middlename (GM) -> Surname (SN) -> End

which would result in a probability of:

0.30 * 0.96 * 0.85 * 0.09 * 0.25 * 0.33 * 1.00 *
0.45 * 0.75 = 0.0006134534

Thus the first tag sequence is the most likely one, as ex-
pected. Using the HMM states, the elements of the input
word list are then associated with the corresponding output
fields. In this example ‘dr’ will become the title, ‘peter’
will become the given name, ‘paul’ the middle name (or
alternative given name) and ‘miller’ the surname.

3.1 Hidden Markov Model Training

In our data cleaning and standardisation system we are us-
ing one HMM for names and one for addresses (geocode and
locality) with the corresponding states as listed in Table 4
and Table 5. Many of the output fields can contain more
than one word, therefore the HMMs appropriately have two
states for these elements which are then both assigned to
the corresponding output field.

Both the transition and observation probabilities for the
HMMs have to be trained using collections of records that
have been annotated manually, and which are taken from
the same (or a similar) data set which will be used for data
standardisation. Using these training records a HMM learns
the characteristics of a data set.

The Australasian Data Mining Workshop Copyright © 2002

State Description

titl Title state

baby State for baby of, son of or daughter of
knwn State for known as

andor State for and or or

gnamel | Given name state 1

gname2 | Given name state 2

ghyph Given name hyphen state

gopbr Given name opening bracket state
gclbr Given name closing bracket state
agnamel | Alternative given name state 1

agname2 | Alternative given name state 2
coma State for comma

snamel | Surname state 1

sname2 | Surname state 2

shyph Surname hyphen state

sopbr Surname opening bracket state
sclbr Surname closing bracket state
asnamel | Alternative surname state 1
asname2 | Alternative surname state 2

prefi Name prefix state 1

pref2 Name prefix state 2

rubb Rubbish state, for elements to be
thrown away

Table 4: Name hidden Markov model states.

Thus, instead of requiring highly trained programming staff
to maintain a large number of rules that cover all kinds of
special cases and exceptions, and that have to be modified
for each new given data set, the data to train a HMM can
be created by clerical staff within a couple of days for a
new data source. Furthermore, this training process can
be accelerated by bootstrapping it with training data sets
derived from other, similar data sources.

The training data consists of sequences with one or more
tag:hmm state pairs. Each sequence is a training record
that is given to the HMM, and the HMM learns the char-
acteristics of a data set by using all training examples that
it is given during training. Maximum likelihood estimates
(MLEs) for the matrix of transition and observation prob-
abilities for a HMM are derived by accumulating frequency
counts of each type of transition and output symbol (tag)
from the training records. Because frequency-based MLEs
are used, it is important that the records in the training data
set(s) are reasonably representative of the overall data set(s)
to be standardised. However, HMMs are quite robust to un-
seen data and are not overly troubled if the records in the
training data set(s) do not represent an unbiased sample
of records from the target data. For example, it is possi-
ble to add training records which represent unusual records
without degrading the performance of the HMMs on more
typical records. HMMs also degrade gracefully, in that they
still perform well even with records with a previously unen-
countered structure. A simple set of training examples for
a name component HMM might look like:

GF:gnamel, SN:snamel
UN:gnamel, SN:snamel
GF:gnamel, GM:gname2, UN:snamel
GF:gnamel, GM:snamel
GF:gnamel, UN:gname2, SN:snamel

Each line in the example above corresponds to one training
record, and contains a sequence that corresponds to a partic-

State | Description

wfnu | Wayfare number state
wfnal | Wayfare name state 1
wfna2 | Wayfare name state 2
wfql | Wayfare qualifier state
wfty | Wayfare type state

unnu | Unit number state

unty | Unit type state

prnal | Property name state 1
prna2 | Property name state 2
innal | Institution name state 1
inna2 | Institution name state 2
inty Institution type state
panu | Postal address number state
paty | Postal address type state
hyph | State for hyphen

sla State for slash

coma State for comma

opbr Opening bracket state
clbr | Closing bracket state
locl Locality name state 1
loc2 Locality name state 2
locql | Locality qualifier state
pc Postcode state

terl Territory name state 1
ter2 Territory name state 2
cntrl | Country name state 1
cntr2 | Country name state 2
rubb Rubbish state, for elements to be
thrown away

Table 5: Address hidden Markov model states.

ular path through the various (hidden, unobserved) states
of the HMM together with the corresponding observation
symbols (tags).

For a new data set HMMs for names and addresses can be
created in four main steps. First, a small number (around
100) of records from the original data set are selected ran-
domly and tagged as described in Section 2.2. The output of
this step is one or more tag sequences for each input record
(name or address component). These training records then
have to be edited manually by the user by choosing the cor-
rect tag sequence (if more than one has been created for one
input record) and by adding the appropriate HMM state to
each of the tags in the selected tag sequence. The resulting
small number of training records (like the examples above)
are then used in the second step to train a first rough HMM,
which in the third step is used to create a larger set of train-
ing records, again randomly selected from the original data
set. These training records now already have a tag sequence
that includes HMM states. The user then has to go through
these training records and correct tags or HMM states if
they are wrong. In the file containing the training records,
the original input is commented out, so the user can easily
check if a training record is correct or needs to be modified.
The two examples of address training records below show the
original input string, the cleaned input string at the end of
the tagging routine (the tagged word list concatenated back
into a string) and the corresponding tag sequence which will
be taken as training example. Note that both the original
input and the tagged input are commented using the Python
comment character hash.

The Australasian Data Mining Workshop Copyright © 2002

‘2 richard st lewisham 2049 nsw’
‘2 richard street lewisham 2049 new_south_wales’
NU:wfnu, UN:wfnal, WT:wfty, LN:locl, PC:pc, TR:terl

‘42/131 miller pl manley 2095 nsw’

‘42 / 131 miller place manly 2095 new_south_wales’
NU:unnu, SL:sla, NU:wfnu, UN:wfnal, WT:wfty,
LN:locl, PC:pc, TR:terl

Using this bootstrapping approach a single user can create
and validate in one or two days work enough training records
to be able to standardise real world data sets with a high
accuracy as shown in the following section.

4. STANDARDISATION RESULTS

We developed and evaluated the Febrl system using three
routinely-collected health data sets which contain personal
identifying details. Access to these data sets for the pur-
pose of this project was approved by the Australian National
University Human Research Ethics Committee and by the
relevant data custodians within the NSW Department of
Health. The data sets used in this project were held on
secure computing facilities at the Australian National Uni-
versity and the NSW Department of Health head offices.
Access to the data sets used in this project was strictly lim-
ited to the investigators. All investigators, as well as the
system administrators of the computing facilities, were re-
quired to sign a confidentiality agreement which apprised
them of their responsibilities as well as the legislative protec-
tion (and associated criminal penalties for misuse) afforded
to the data.

In order to minimise the invasion of privacy which is neces-
sarily associated with every use of identified data, all medical
and health status details and other personal details apart
from name (on two of the data sets), date-of-birth (on one
of the data sets), sex and residential address were removed
from the data sets used in this project. The Febrl software
under development is multi-platform capable, and we were
able to tag, clean and segment names and address on both
64-bit Unix and 32-bit Windows platforms without problems
or modifications.

4.1 Address Standardisation

The performance of the Febrl system with typical Aus-
tralian address data was evaluated using two data sets. The
first was a subset of approximately 1 million addresses taken
from uncorrected electronic copies of NSW death certificates
as completed by medical practitioners and coroners in the
years 1988 to 2002. The information systems which captured
these data underwent a number of major changes during this
period. The majority of these data were entered from hand-
written forms.

The second data set was a random sample of 1,000 records
of residential addresses drawn from the NSW Inpatient Sta-
tistics Collection for the years 1993 to 2001. This collec-
tion contains abstracts for every admission to a public- or
private-sector acute care hospital in NSW. Most of the data
are extracted from a range of computerised hospital informa-
tion systems, with a smaller proportion entered from paper
forms.

A number of tests were carried out:

1. An initial bootstrap hidden Markov model (HMM) was
trained using 100 random death certificate (DC) records,
and this was used to form a larger training set of 1,100
randomly chosen DC records. A HMM derived from
this second training set was then used to standard-
ise 50,000 randomly chosen DC records, and records
with unusual patterns of observation symbols (with a
frequency of six or less) were examined, corrected and
added to the training set if the results produced by the
HMM were incorrect. A new HMM was then derived
from this augmented training set and the process re-
peated a further three times, resulting in the addition
of approximately 250 extra training records (bringing
the total number of training records to 1,450). The
HMM which emerged from this process, designated
HMM1, was used to standardise 1,000 randomly cho-
sen DC test records and the accuracy of the standardi-
sation was assessed. Laplace smoothing is used in this
and all subsequent tests.

2. HMM1 was then used to standardise 1,000 randomly
chosen Inpatient Statistics Collection (ISC) records,
and the accuracy was assessed. In other words, a HMM
trained using one data source (DC) was used to stan-
dardise addresses from a different data source (ISC)
without any retraining of the HMM.

3. An additional 1,000 randomly chosen address train-
ing records derived from the Midwives Data Collec-
tion (MDC) were then added to the 1,450 training
records described above, and this larger training set
was used to train HMM2. HMM2 was then used to
re-standardise the same sets of randomly chosen test
records described in steps 1 and 2 above, and the re-
sults were evaluated.

4. Approximately 60 training records, based on archetypes
of those records which were wrongly standardised in all
of the preceding tests, were then added to the train-
ing set to produce HMM3. HMM3 was then used to
re-standardise the same DC and ISC test sets. Thus,
HMMS3 could be considered an “overfitted” model for
the particular records in the two test sets, although in
practice researchers are likely to use such “overfitting”
to maximise standardisation accuracy for the specific
data sets used in their particular study.

5. Finally, by way of comparison, the same two 1,000
record test data sets were standardised using the com-
mercial AutoStan [14] software in conjunction with a
rule set which had been developed and refined by two
of the investigators (TC and KL) over the course of
several years for use with ISC (but not DC) address
data.

For all tests, records were judged to be accurately standard-
ised when all of the elements present in the input address
string, with the exception of punctuation, were allocated to
the correct output field, and the values in each output fields
were correctly transformed to their canonical form where re-
quired. Thus, a record was judged to have been incorrectly
standardised if any element of the input string was not al-
located to an output field, or if any element was allocated

The Australasian Data Mining Workshop Copyright © 2002

HMM /Method

Test Data Set HMM | HMM | HMM | Auto

(1,000 records each) 1 2 3 Stan

Death Certificates 95.7 96.8 97.6 91.5

Inpatient Statistics 95.7 95.9 97.4 95.3
Collection

Table 6: Proportion of correctly standardised address
records (all numbers are percentages).

to the wrong output field. Due to resource constraints, the
investigators were not blinded to the process used to stan-
dardise the records. Results are shown in Table 6.

These results indicate that the HMM approach described
in this paper produces standardisation accuracies which are
comparable to those produced by a well-established rule-
based system when used on the data set for which those
rules were developed, and superior results when used on
a different data set. In other words, the HMM approach
appears to be less sensitive to the particular characteristics
of the data source for which it was developed than a widely-
used rule-based system.

In addition, the results indicate that although the HMMs
are trained using maximum likelihood estimates, they are
quite robust with respect to the source of the training data
and their performance can even be improved by the addition
of a small number of unrepresentative training records which
represent “difficult” cases.

In those records which were not accurately standardised by
the HMMs, an average of 83 per cent of all data elements
present in the input record were allocated to the correct
output fields — in other words, even these incorrectly stan-
dardised records would have considerable utility. In only two
test records (out of 2,000) were all of the elements wrongly
assigned, and both of these were foreign addresses in non-
English speaking countries. The performance of AutoStan
in this respect was similar.

Finally, the addition of a small number of deterministic post-
processing rules is expected to yield even higher accuracies
in future versions of the Febrl system.

4.2 Name Standardisation

Accuracy measurements on names were conducted using a
subset of the NSW Midwives Data Collection (MDC). This
subset contained 962,776 records with personal information
(but no medical details) of women who had given birth in
New South Wales, Australia, over a ten year period (1990-
2000). Most of the data was entered from hand-written
forms, although some of the data for the latter years was
extracted directly from a variety of computerised obstetric
information systems.

A random subset of 10,000 records (around a 1% sample)
with a non-empty name component were selected and split
into 10 test sets each containing 1,000 records. A 10-fold
cross validation study was performed, with each of the folds
having a training set of 9,000 records and the remaining
1,000 records being the test set. The training records were
tagged in about 10 person-hours using the bootstrapping
method as explained in Section 3.1. Hidden Markov mod-
els were then trained without smoothing, and both with
Laplace and absolute discount [2] smoothing, respectively.

Compared to the variation in the format of residential ad-
dresses, names in the MDC are rather homogeneous. Out
of the 10,000 randomly selected names, around 85% were
of the simple form ‘givenname surname’, and further 9% of
either the form ‘givenname givenname surname’ or ‘given-
name surname surname’. Thus the trained HMMSs had very
few non-zero transition probabilities, and many HMM states
were not linked (with non-zero transitions) to the active
HMM part.

Table 7 shows accuracy results of the HMM and a rules-
based name standardisation algorithm which is also imple-
mented in the Febrl prototype software. Given the sim-
ple form of most names, the rules based approach was very
accurate, achieving 97% and better. The variations in the
HMM approach were much higher, with up to 17% of names
wrongly standardised. There were almost no differences in
the effect of the smoothing method, therefore we only re-
port results based on the unsmoothed HMM here. In many
cases the same errors in standardisation occurred for both
unsmoothed and smoothed HMMSs, with a maximum of less
than five records standardised differently per 1,000 records.

Min | Max | Average | StdDev
HMM 83.1 | 97.0 92.0 +4.7
Rules | 97.1 | 99.7 98.2 +0.7

Table 7: Name standardisation with 10-fold cross-validation
(all numbers are percentages).

Especially problematic seemed to be names with either two
given names or two surnames. Often the HMMs misclassi-
fied the middle name as first surname instead of second given
name. This is due to the large number of names with the
simple form ‘givenname surname’ which results in a very
high transition probability from the first given name state
‘gnamel’ to the first surname state ‘snamel’. A second
given name therefore is often assigned as a first surname,
and the real surname as a second surname. Other problems
were surnames that were listed in a given name look-up table
only and thus tagged with a given name tag (‘GF’ or ‘GM’),
in which case the HMMs wrongly assigned the second name
to the given name instead of the surname output field.

It is clear from these results that some additional rules could
usefully be added to the rules-based name standardisation,
as well as some rule-based post-processing to the HMM seg-
mentation process. One simple example (both for the rules
and HMM approaches) is: “f no surname is given, but two
given name are present, re-assign the second given name
word to surname’ (assuming given names are generally writ-
ten before surnames, otherwise the opposite way).

5. RELATED WORK

The terms data cleaning (or data cleansing), data standardi-
sation, data scrubbing, data pre-processing and ETL (extrac-
tion, transformation and loading) are used synonymously
to refer to the general tasks of transforming source data
(often derived from operational, transactional information
systems) into clean and consistent sets of records which are
suitable for loading into databases and data warehouses, and
for linking with other data sets [21]. Once the data has been
standardised, the central task of data linkage is to identify
records in the source data sets that represent the same real-

The Australasian Data Mining Workshop Copyright © 2002

world entity. In the computer science literature, this process
is also called the object identity or merge/purge problem [9].
Fuzzy techniques and methods from information retrieval
have been used to address the data linkage problem, with
varying degrees of success. One approach is to represent
text (or records) as document vectors and compute the co-
sine distance [3] between such vectors. Another possibil-
ity is to use an SQL like language [6] that allows approxi-
mate joins and cluster building of similar records, as well as
decision functions that decide if two records represent the
same entity. Other methods [13] include statistical outlier
identification, pattern matching, clustering and association
rules based approaches. Sorting data sets (to group simi-
lar records together) and comparing records within a sliding
window [9] is a technique similar to blocking as applied by
traditional record linkage approaches. The accuracy of the
linkage can be improved by having smaller window sizes and
performing several passes over the data using different (often
compound) keys, rather than having a large window size but
only one pass. This corresponds to applying several blocking
strategies in a record linkage process.

Machine learning techniques have been applied to data link-
age in recent years. The authors of [4; 24] describe a hybrid
system that in a first step uses unsupervised clustering on
a small sample data set to create data that can be used
by a classifier in the second step to classify records into
links and non-links. The authors do not directly address the
problem of data cleaning and standardisation, rather they
use approximate string comparison algorithms to be able
to deal with variations in strings. Clustering of large and
high-dimensional data sets with applications to matching is
discussed in [15]. The authors propose a two step cluster-
ing algorithm that in the first step uses cheap approximate
distance metrics to form overlapping canopies, which are in
a second step clustered using traditional approaches. An-
other approach [16] learns field specific string-edit distance
weights and a binary classifier based on support vector ma-
chines (SVM) to find duplicate records in text databases.
Commercial software for data cleaning and standardisation
is available from various vendors (see the project web page
for a non-exhaustive list of data cleaning and data inte-
gration software). Most of these products use proprietary
technologies, but many are rules based. The AutoStan /
AutoMatch [14] suite of data cleaning and linkage software
for example improved on simple (or far-from-simple) regular
expression rules by using an initial lexicon-based tokenisa-
tion phase followed by a re-entrant rule-based parsing and
token re-writing phase. Probabilistic approaches as the one
presented in this paper on the other hand allow the creation
of training data in a much less time consuming fashion.
While hidden Markov models have traditionally been ap-
plied in areas like signal and speech processing [20], text
recognition, and image processing, only recently they have
been applied to the tasks of information extraction [22] (e.g.
extracting names, titles and keywords from publication ab-
stracts) and segmentation of addresses and bibliographic
records [2], where an input string containing an address has
to be segmented into well defined output fields. The ap-
proach discussed in this paper differs in that instead of us-
ing address words directly, only tags are given to the HMMs,
which results in a system that can handle unseen data more
robustly and is also computationally more efficient due to
its smaller dictionaries of output symbols.

6. CONCLUSIONSAND OUTLOOK

In this paper we presented a probabilistic approach for the
task of cleaning and standardising personal names and ad-
dresses using hidden Markov models. This process is not
only an important first step before data can be loaded into
databases or data warehouses, it is also necessary before
data can be linked or integrated with other data. We have
shown that the probabilistic approach is not only easier and
less cumbersome to use compared to the traditional rule
based approach, it can also result in a higher accuracy. The
methods presented are part of a prototype software sys-
tem, which is published under an open source license and
which can be downloaded from the project web page (see
http://datamining.anu.edu.au/linkage.html).

Currently we are developing new methods for data linkage
based on the probabilistic approach as developed by Fellegi
and Sunter [5] and extended by others. The two main foci
are to improve the linkage performance by applying tech-
niques from high-performance and parallel computing, as
well as improving the linkage quality by exploring machine
learning techniques like clustering and predictive modelling.
The aim is to provide researchers and users in the biomedical
and related areas with the ability to clean, standardise and
link much larger data sets at reduced costs, due to the re-
duction in human resources needed and the free availability
of the software.

Acknowledgments

This project is equally funded by the Australian National
University (ANU) and the NSW Department of Health un-
der an AICS (ANU-Industry Collaboration Scheme) AICS
#1-2001. The authors would like to thank everybody who
supported this project and helped to make it happen: Ole
Nielsen, Markus Hegland, Stephen Roberts and David Bul-
beck. We are specially grateful to Kim Lim (Centre for
Epidemiology and Research, NSW Department of Health)
for her input into the design of the prototype software and
in helping to test and debug it.

7. REFERENCES

[1] G.B. Bell and A. Sethi, Matching Records in a National
Medical Patient Indez, Communications of the ACM,
Vol. 44 No. 9, September 2001.

[2] V. Borkar, K. Deshmukh and S. Sarawagi, Automatic
segmentation of text into structured records, in Proceed-
ings of the 2001 ACM SIGMOD international confer-
ence on Management of data, Santa Barbara, Califor-
nia, 2001.

[3] W.W. Cohen, The WHIRL Approach to Integration:
An Querview, in Proceedings of the AAAI-98 Work-
shop on AI and Information Integration. AAAI Press,
1998.

[4] M.G. Elfeky, V.S. Verykios and A.K. Elmagarmid, TAI-
LOR: A Record Linkage Toolboz, Proceedings of the
ICDE’ 2002, San Jose, USA, 2002.

[5] I. Fellegi and A. Sunter, A theory for record linkage. In
Journal of the American Statistical Society, 1969.

The Australasian Data Mining Workshop Copyright © 2002

[6] H. Galhardas, D. Florescu, D. Shasha and E. Simon,
An Extensible Framework for Data Cleaning, Technical
Report 3742, INRIA, 1999.

[7] L. Gill, Methods for Automatic Record Matching and
Linking and their use in National Statistics, National
Statistics Methodology Series No. 25, London 2001.

[8] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann, 2000.

[9] M.A. Hernandez and S.J. Stolfo, The Merge/Purge
Problem for Large Databases, in Proceedings of the
SIGMOD Conference, San Jose, 1995.

[10] C.W. Kelman, Monitoring Health Care Using National
Administrative Data Collections, PhD thesis, Aus-
tralian National University, Canberra, May 2000.

[11] A.J. Lait, and B. Randell, An Assessment of Name
Matching Algorithms, Technical Report, Department
of Computing Science, University of Newcastle upon
Tyne, UK 1993.

[12] M. Lutz, Python Pocket Reference, Second FEdition,
O’Reilly and Associates, January 2002.

[13] J.I. Maletic and A. Marcus, Data Cleansing: Beyond
Integrity Analysis, in Proceedings of the Conference on
Information Quality (I1Q2000), Boston, October 2000.

[14] AutoStan and AutoMatch, User’s Manuals, MatchWare
Technologies, Kennebunk, Maine, 1998.

[15] A. McCallum, K. Nigam and L.H. Ungar, Efficient clus-
tering of high-dimensional data sets with application
to reference matching, Knowledge Discovery and Data
Mining, 169-178, 2000.

[16] U.Y. Nahm, M. Bilenko and R.J. Mooney, Two Ap-
proaches to Handling Noisy Variation in Text Mining,
in Proceedings of the ICML-2002 Workshop on Text
Learning (TextML’2002), pp.18-27, Sydney, Australia,
July 2002.

[17] H.B. Newcombe and J.M. Kennedy, Record Linkage:
Making Mazimum Use of the Discriminating Power of
Identifying Information, Communications of the ACM,
Vol. 5 No. 11, 1962.

[18] L. Philips, The Double-Metaphone Search Algorithm,
C/C++ User’s Journal, Vol. 18 No. 6, June 2000.

[19] E.H. Porter and W.E. Winkler, Approzimate String
Comparison and its Effect on an Advanced Record Link-
age System, Research Report RR97/02, US Bureau of
the Census, 1997.

[20] L.R. Rabiner, A tutorial on Hidden Markov Models and
selected applications in speech recognition, in Proceed-
ings of the IEEE, vol. 77, no. 2, February 1989.

[21] E. Rahm and H.H. Do, Data Cleaning: Problems and
Current Approaches, TEEE Bulletin of the Technical
Committee on Data Engineering, Vol. 23 No. 4, De-
cember 2000.

[22] K. Seymore. A. McCallum and R. Rosenfeld, Learning
Hidden Markov Model Structure for Information Ei-
traction, in Proceedings of AAAI-99 Workshop on Ma-
chine Learning for Information Extraction, 1999.

[23] V.S. Verykios, A.K. Elmagarmid and E.N. Houstis,
Automating the Approzimate Record-Matching Process,
Information Sciences, Vol. 126, July 2000.

[24] V.S. Verykios, A.K. Elmagarmid, M.G. Elfeky, M.
Cochinwala and S. Dalal, On the Completeness and Ac-
curacy of the Record Matching Process, in Proceedings

of the MIT Conference on Information Quality, Boston,
MA, October 2000.

[25] W.E. Winkler, The State of Record Linkage and Cur-
rent Research Problems, U.S. Census Bureach Research
Report RR99/04, 1999.

[26] W.E. Winkler, Quality of Very Large Databases, Re-
search Report RR2001/04, US Bureau of the Census,
2001.

[27] W.E. Yancey, Frequency-Dependent Probability Mea-
sures for Record Linkage, Research Report RR00/07,
Statistical Research Division, US Bureau of the Cen-
sus, July 2000.

[28] W.E. Yancey, BigMatch: A Program for Eztracting
Probable Matches from a Large File for Record Link-
age, Research Report RR 2000-01, Statistical Research
Division, US Bureau of the Census, March 2002.

The Australasian Data Mining Workshop Copyright © 2002

