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ABSTRACT

Modern processors and computer systems are designed to
be efficient and achieve high performance with applications
that have regular memory access patterns. For example,
dense linear algebra routines can be implemented to achieve
near peak performance. While such routines have tradi-
tionally formed the core of many scientific and engineering
applications, commercial workloads like database and web
servers, or decision support systems (data warehouses and
data mining) are one of the fastest growing market segments
on high-performance computing platforms. Many of these
commercial applications are characterised by more complex
codes and irregular memory access patterns, which often
result in a decrease of performance that is achieved. Due
to their complexity and the lack of source code, perfor-
mance analysis of commercial applications is not an easy
task. Hardware performance counters allow detailed analy-
sis of program behaviour, like number of instructions of var-
ious types, memory and cache access, hit and miss rates,
or branch mispredictions. In this paper we describe experi-
ments and present results conducted with various KDD ap-
plications on an UltraSPARC-III platform, and we compare
these applications with an optimised dense matrix-matrix
multiplication. We focus on compiler optimisations using
the -fast flag and discuss differences in un-optimised and
optimised codes.
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1. INTRODUCTION

Commercial applications like database and web servers, or
decision support systems (data warehouses and data min-
ing) represent one of the most rapidly growing segments in
the high-performance computing market. Modern proces-
sors and memory systems are designed to be efficient and
achieve high performance with applications that have regu-
lar memory access patterns (like dense linear algebra soft-
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ware). They often perform purely when running commer-
cial applications. Complex codes, irregular memory access
patterns, dynamic data structures and dynamic memory al-
location schemes characterise such applications. This paper
aims to analyse the characteristics of such commercial ap-
plications, especially to give an insight into their cache and
memory access behaviour.

A rapidly growing segment of commercial applications is
data mining or KDD (Knowledge Discovery in Databases)
[14], which deals with the analysis of large and complex data
sets. KDD combines techniques from machine learning, sta-
tistics, databases and high-performance computing. Tasks
involved are data cleaning and pre-processing, data explo-
ration, clustering, predictive modelling, association rules gen-
eration, decision tree induction, and others. Three common
characteristics of these applications are (1) they operate on
large data sets, (2) they are compute and memory intensive,
and (3) they involve irregular memory access patterns which
is due to their dynamic and often recursive data structures
(like hash tables and trees, index or linked lists). The first
two characteristics make them attractive for implementation
on high-performance platforms, specially for shared memory
multiprocessors (SMPs), where all CPUs have access to the
same memory system, while the last characteristic is an ob-
stacle for efficient system utilisation and high performance.
Traditional compiler optimisation techniques (based on ar-
rays and data locality), which proved to be successful for
many scientific and engineering applications, can only be
applied with limited success to such data structures.
Hardware performance counters are an easy to use instru-
ment and they can provide detailed analysis of application
performance behaviour at instruction level. Such counters
are available on most modern microprocessors, including
UltraSPARC, Pentium and Alpha. They can count vari-
ous events, including different types of instructions (loads,
stores, branches or floating-point operations), cache hits and
misses, TLB! misses, branch mispredictions, cycles and in-
structions completed, and others. Machine and operating-
system dependent libraries (like the Solaris libepe [12])
provide access to hardware counters on a specific platform
and operating system. Platform independent counter li-
braries are currently under development in various research
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projects. Two such libraries are the Performance Counter
Library (PCL) [4] and the Performance Application Pro-
gramming Interface (PAPI) [7]. Their aim is to provide a
set of platform independent counters, that allow easy porta-
bility of programs instrumented with these libraries, and to
allow inter-platform performance comparisons. As we cur-
rently restrict our research to a Solaris/UltraSPARC plat-
form, we use the libepc [12]. Although we have made initial
experiments with PAPI we have turned to the libcpc as it
was the only library available to support UltraSPARC-III
counters at the time.

In the next section we present the four applications and
the data sets chosen for our experiments, and in Section 3
we discuss our experimental setup, the Solaris/UltraSPARC
platform used and give an example of how source code can
be instrumented with calls to hardware performance counter
libraries. Results are then presented in Section 4 and con-
clusions are given in Section 5. Related work in the area
of performance analysis of KDD and other commercial ap-
plications is presented in Section 6, and finally we give an
outlook on future plans in Section 7.

2. APPLICATIONS AND DATA SETS

We choose three KDD applications and one vendor opti-
mised linear algebra code for hardware counter performance
analysis using the libcpc [12] library on a Solaris/Ultra-
SPARC platform. We only counted events in the core com-
putation routines, i.e. without file in- or output. The KDD
programs we analysed use mainly input from text files (which
is generally slow). Commercial versions of such programs
would either read data from binary files or access them di-
rectly from a database server. We now present the analysed
programs and subsequently discuss the data set we used.

2.1 DecisionTreelnduction —C4.5

The freely available popular decision tree induction program
C4.5% [19] was chosen as a typical KDD application. This
program has already been analysed in its memory access
behaviour using a machine simulator [5; 6].

C4.5 is written in ANSI C, it reads data from text files and
then builds a decision tree. Only the tree building routine
(i-e. the function BestTree()) was analysed, with the com-
plete primary data set (the table loaded from disk) stored
in main memory. This data is stored in an array with point-
ers to vectors, with each vector (one data record) having
a length corresponding to the number of attributes. Every
element in this vector consists of a short and a float vari-
able. In the case of a categorical type attribute, the category
number is stored as a short, while a continuous attribute
(a real number) is stored as a float. Thus one of the two
variables is always unused. The decision tree is a complex
recursive data structure that is built dynamically in the tree
building routine.

2.2 AssociationRule Induction — APRIORI

Mining association rules is a popular data mining algorithm.
It is for example used to analyse market basket data to find
frequent item sets and extract rules like ‘if a customer buys
milk then she will most likely also buy cheese.’ For our per-
formance analysis we use a freely available implementation

2http://www.cse.unsw.edu.au/~quinlan/
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of the APRIORI?® algorithm [2]. An older version of this
program is incorporated in the data mining tool Clemen-
tine 5.0. The program is written in C, it reads a text file
with transactional data and writes the resulting rules ei-
ther into a text output file or displays them. The items
in the input transactions are stored in a vector data struc-
ture as integer numbers. Once all data is loaded, the items
are sorted with descending frequency, and a prefix tree is
built, which is then modified and updated for item sets of
increasing length. Besides pointers to parent and (variable
number of) child nodes, the prefix tree contains a counter
vector, stored as integer numbers. Once all frequent item
sets are found, they are sorted and the extracted rules are
displayed or saved. The code analysed includes the sorting
and recoding of the items, the creation of the item set tree,
the checking of the subset size, and finally the sorting of the
transactions (in order to find the frequent item sets).

2.3 Additi ve Models— ADDFIT

The ADDFIT algorithm [9] was developed by the ANU
Data Mining group and implemented sequentially and on
distributed memory platforms (using C/MPI) [10]. This al-
gorithm builds an additive model of the data by assembling
a dense symmetric linear system in a first step, which is then
solved in a second step using either a sequential or parallel
solver [10; 21]. For the performance analysis we are only
interested in the first step, as it involves reading the data
from (binary) files once and assembling each data record
into a matrix and vector at data dependent locations. The
primary data structure (the table from disk) is loaded first
and then the assembly is started. Only the assembly rou-
tine is analysed using hardware performance counters. The
data dependent assembly results in irregular memory access
patterns. For each continuous attribute in a data record
four non-zero values are added into the matrix, while for
a categorical attribute only one value is added. The loca-
tions where these values are added is data dependent and
can be anywhere in the matrix. As the assembled linear
system is symmetric, only a dense upper triangular matrix
with a corresponding vector is allocated, whereby each en-
try is a double sized floating-point value. The size of this
linear system is determined by the number of categories for
categorical attributes, and the resolution of the model for
continuous attributes, but it is completely independent from
the size (i.e. number of records) in the primary input data
set.

2.4 DenseMatrix-Matrix Multiplication —
BLAS (SUNPERF)

To allow a comparison with a platform optimised application
with regular memory access patterns we also instrumented
a dense matrix-matrix multiplication (the BLAS routine
dgemm() as implemented in Sun’s SUNPERF library) with
calls to the 1ibcpc hardware counter library. The dgemm()
routine is typically used in the core of various scientific
and engineering applications. For the performance analysis
two Hilbert matrices were created and dense matrix-matrix
multiplications of two such matrices where performed and
analysed.

3http://fuzzy.cs.uni-magdeburg.de/~borgelt/



Characteristic Level-1 Instruction Level-1 Data Level-2 Unified D-TLB I-TLB
Size 32 KB 64 KB 8192 KB 512x8 KB 128x8 KB
Associativity 4-way 4-way 1-way 2-way 2-way
Line length 32 Bytes 32 Bytes 512 Bytes - -
Latency (cycles) 2 2 15 - -
Miss cost (cycles) 15 15 75 - -
Write policy Write-invalidate Write-through ‘Write-back - -

Table 1: UltraSPARC-III cache, D-TLB and I-TLB characteristics.

2.5 Data Setsand Data Structures

For C4.5 and ADDFIT we used the Census-Income data
set which is freely available from the UCI KDD Archive*.
This data consists of a training file which contains 199, 523
records and a test set with 99, 762 records. For our purpose
we concatenated both files into one to get a large enough test
data. The Census-Income data set contains 5 continuous
and 37 categorical attributes.

For APRIORI we created synthetic data sets of various size
and complexity using a data set generator as described in [2].
For the tests we then choose a smaller data set with 10,000
records and a larger one with one million records.

The primary data structures used by the KDD applications
hold the input data. They are mostly of arrays or vectors,
and their size and dimension usually increases linearly with
the size of the input data set. In the case of ADDFIT,
this data is only used once (i.e. each data record is accessed
once), but for C4.5 and APRIORI usually several iterations
are needed each accessing the primary data structure.

The size of the secondary data structures built by the KDD
applications, i.e. the decision tree in C4.5, the prefix tree in
APRIORI, and the dense matrix used by ADDFIT, are not
directly proportional to the size of the input data. Rather,
they are data dependent (e.g. a C4.5 decision tree) or their
size is determined by some parameters (e.g. model resolu-
tion in ADDFIT). The size of the prefix tree for APRIORI
depends both on the data as well as on parameters like sup-
port and confidence, which have to be set by the user. It is
therefore often very hard to specify the amount of memory
some KDD applications will use.

3. EXPERIMENT AL SETUP AND
PROCEDURES

A common way to obtain detailed, performance related data
at the level of architectural units, i.e. at the level of cache,
memory, integer and floating point units, is to use full ma-
chine simulators. Although indispensable to evaluate new
alternative architectural designs, full machine simulators are
slow and often provide a simplified view of a real architec-
ture [11]. Another, more convenient way to gather such
data is to use specialised registers called hardware perfor-
mance counters or simply hardware counters. Today, nearly
all general purpose microprocessors on the market have such
counters and provide user level interfaces via specialised li-
braries. In the next few sections we describe our hardware
platform and give some more insight into how to use hard-
ware counters.

“http://kdd.ics.uci.edu/
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3.1 HardwarePlatform

The presented experiments throughout this report were con-
ducted on a Sun-Blade-1000 workstation with two Ultra-
SPARC-III (US-III) processors running at 750 MHz, and
having in total 2 GBytes of main memory. The summary of
characteristics for both Level-1 Data and Instruction caches
as well as the unified Level-2 cache are presented in Table 1.
Cache latencies where established experimentally using the
Calibrator® tool and averaged as their exact value depends
on the SDRAM model [22], prefetch cache operation and the
instruction mix. We do not provide TLB latencies in Table 1
as in the US-III processor the D-TLB is an integral part of
the data cache unit (DCU) and the I-TLB and the instruc-
tion cache are part of the instruction issue unit (IIU). Thus,
both TLBs latencies are hidden by Level-1 cache latencies.
Because of the complexity of software-managed TLBs only
a range of the miss costs can be given. It lies somewhere
between one hundred and a few hundred cycles. At this
stage we will not go into the analysis of the UltraSPARC-
IIT prefetch and write caches behaviour. However, we ac-
knowledge that such an analysis will assist in formulating
a more accurate representation of the quite sophisticated
UltraSPARC-III on-chip memory system.

The test workstation is running SunOS Version 5.8 with
Forte Developer 7 Compiler and Development Tools Col-
lection. We have chosen a Sun-Blade-1000 workstation as
test platform because of its modern UltraSPA RC-IIT micro-
processor and wide range of events that can be monitored
using performance counters. In the future we would like to
undertake similar study on Intel Pentium and other proces-
sors.

3.2 Performance Counters

All run time measurements of the various hardware events
were obtained by using UltraSPARC-III hardware perfor-
mance counters. Two specialised processor registers are used
for this purpose. The Performance Control Register (PCR)
controls which event and which mode (user, system or both)
of operation is selected for a pair of 32-bit Performance
Instrumentation Counters (PICs). There are over seventy
possible events that can be counted, logically gathered into
the following groups: instruction execution rates, integer
unit statistics and stall counts, pipeline R-stage stall counts,
recirculate counts, memory access statistics, system inter-
face, floating point operation and memory controller statis-
tics. To name just a few typical events: both Level-1 and
Level-2 cache references and misses, D-TLB (Data Transla-
tion Lookaside Buffer) and I-TLB (Instruction Translation
Lookaside Buffer) misses, pipeline stalls, branch mispredic-
tions, floating point addition and multiplication pipe com-

Shttp://www.cwi.nl/~manegold/Calibrator/



/*

The example code measures instruction and cycle counts while transposing a matrix.
Compilation and execution:

sun) cc -x02 -o simple_cpc simple_cpc.c -lcpc

sunj, simple_cpc

picO=Cycle_cnt,picl=Instr_cnt,sys,nouser: 6114336263, 3157421639 cpi=1.94
sun¥

*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <inttypes.h>
#include <libcpc.h>

void transpose512(){
static int x[512][512];
static int y[512]1[512];

}

void main() {
charx* eventnames = "picO=Cycle_cnt,picl=Instr_cnt,sys,nouser";
int cpuver;
cpc_event_t event, before, after;

unsigned long long picO, picl;

/* Get processor version and check if hardware counters are available */

if ((cpuver = cpc_getcpuver()) == -1) exit(EXIT_FAILURE) ;

/* Translate event string into data structure */

if (cpc_strtoevent(cpuver, eventnames, &event) != 0) exit(EXIT_FAILURE);
/* Bind events to process */

if (cpc_bind_event (&event, 0) == -1) exit(EXIT_FAILURE);

(void) cpc_count_usr_events(1); /* Enable user mode counting */

(void) cpc_count_sys_events(1); /* Enable system mode counting */

/* Sample counters to get start values */
if (cpc_take_sample(&before) == -1) exit(EXIT_FAILURE);

transpose512(); /* Do some computations... */

/* Sample counters to get stop values */

if (cpc_take_sample(&after) == -1) exit(EXIT_FAILURE);
(void) cpc_count_usr_events(0); /* Disable user mode counting */
(void) cpc_count_sys_events(0); /* Disable system mode counting */

picO = after.ce_pic[0] - before.ce_pic[0]; /* Get user count value */
picl = after.ce_pic[1] - before.ce_pic[1]; /* Get system count value */

printf ("Ys: %11d, %11d cpi=)f\n", eventnames, picO, picl,(float)picO/(float)picl);

Figure 1: Simplified example code augmented with calls to Sun Performance Library libcpec.
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Option

Comment

-fns
-fsimple=2

-fsingle
-ftrap=%none
-xalias_level=basic

-xarch=v8plusb

-xbuiltin=%all
-xcache=64/32/4:8192/512/1
-xchip=ultra3

-xdepend

-xlibmil

-xmemalign=8s

Disable gradual underflow for improved performance.
Enable non-IEEE 754 standard, aggressive floating-point
operations that may lead to different numeric results.

Use single-precision arithmetic.

Disable the floating-point traps.

Pointers to different C basic data types do not alias each
other. References using char pointers may alias any other type.
Generate 32-bit subset of SPARC-V9 ISA including the
VIS 1.0 and US IIT extensions. Runs only on US III.

Inline or substitute intrinsic functions for system functions.
Definition of cache properties passed to the compiler.
Specifies target processor to ultra3.

Loop dependency analysis and optimisation.

Inline selected libm math routines for optimization.
Assume 8-byte data alignment.

-x05
-xprefetch=auto,explicit
-xvector=no

-depend

Set optimisation to the highest possible level.

Enable automatic generation of prefetch instructions.
Disable vectorised mathematical library functions.
Perform dependency analysis to optimise loops.

Table 2: Expansion of -fast macro for Forte Developer 7 C 5.4 Sun compiler release.

pletions and many others. Events can be counted in user
and/or system mode.

Access to these counters is obtained via function calls to the
libepe and libpetx [12] libraries which have to be embed-
ded into the application’s source code. The main feature
of these libraries is the very low overhead. For example
the counter start and stop calls have overheads of less than
3,000 cycles as measured on a Sun-Blade-1000. In paral-
lel with performance counter libraries, Sun0OS 5.8 provides
two monitoring tools: cputrack and cpustat that display
counter statistics. While cputrack gathers such statistics for
a particular process, cpustat provides system-wide statistics
hence requires super user privileges.

An example of a simple code which was augmented by calls
to the performance counter library is presented in Figure 1.
In this code there are the following function calls to the
libcepe library: cpc_getcpuver() is used to determine if the
processor provides any performance counters. It returns an
abstract description of the processor which is used by every
other function in libepe. The function cpc_strtoevent ()
translates the event specification from a string representa-
tion into the appropriate set of control bits for the proces-
sor and stores them in a cpc_event_t structure. Calls to
cpc_bind_event () bind the selected two events to the cur-
rent light-weight process (LWP). The counters can then be
sampled at any time by using cpc_take_sample() and read-
ing the ce_pic[] fields of the cpc_event_t structure.

3.3 Methods

Each experiment was performed on a dedicated CPU wholly
reserved to the test application. This isolation of the code
being measured from the activity of the other processes be-
ing run on the system ensured good reproducibility of the
results particularly in the system mode.

The -fast option in the C Forte Developer 7 Compiler Suite
is most likely to be used by many programmers as a start-
ing point for compiler optimisations. We wanted to see and
measure the effects of this option on the four applications to
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be evaluated. This option is in fact a macro which combines
many different optimisations that benefit in a wide range
of programs [12]. We can not explain in detail every option
used but we have expanded the -fast macro in Table 2 with
comments. It is worth to note that the content of the -fast
macro depends on the release of the Sun compiler. The
one shown here is for the Forte Developer 7 C 5.4 release.
In the un-optimised or default mode the compiler assumed
a generic UltraSPARC architecture and 4-byte data align-
ment.

We need to stress that our goal is not to perform optimi-
sations of the selected applications, merely to comment on
their performance in two situations, i.e. when compiled with
and without the -fast optimisation flag.

All tests were run over weekends or night times when the
machine was otherwise idle. Table 3 shows the character-
istics of the test programs and data sets we used. For the
three KDD applications we choose a smaller and a larger
data set each that resulted in a heap size (i.e. size of the
data structure in main memory) between 4 and 19 MBytes
and between 62 and 100 MBytes, respectively. For our com-
parison application BLAS we added a small problem size
which resulted in a 1 MByte heap size. All results for a
given program/data set pair in Table 3 are averaged over
the number of iterations listed, and both run times and user
code percentages are given for the codes compiled without
optimisation.

4. RESULTS

‘We performed experiments with the four selected applica-
tions ADDFIT, APRIORI, C4.5 and BLAS both with the
-fast optimisation turned on and off, and we report them
here as optimised and un-optimised. As can be seen from
Table 3, all of the applications — with the exception of C4.5
with the large data set — do spend more than 90% of their
time in user space. We therefore only report results in user
space. The measurements in the system (or kernel) space
were performed and will be reported in the near future. The



Program BLAS (SUNPERF) ADDFIT
small medium large small large
Data 209 x 209 660 x 660 2090 x 2090 Census with Census with
matrices matrices matrices 10,4858 records 209,715 records
Run time 0.03 sec 1.10 sec 44.03 sec 1.09 sec 5.89 sec
Iterations 100 10 10 10
Heap size 1 MB 10 MB 100 MB 10,024 KB 90,408 KB
User code 99.46% 97.09% 93.03% 99.64% 96.36%
Program APRIORI C4.5
small large small large
Data T5I4D10K with T10I8D1000K with Census with Census with
10,000 records 1,000,000 records 8,322 records 266,305 records
Run time 3.36 sec 31.78 sec 2.35 sec 421.04 sec
Iterations 10 1 5 1
Heap size 19,776 KB 70,512 KB 3,960 KB 62,152 KB
User code 89.37% 94.30% 98.43% 75.93%
Table 3: Program and test characteristics.
Program BLAS (SUNPERF) ADDFIT APRIORI C4.5
small medium large small large small large small large
Loads Un-optimised 23.1 23.1 23.2 38.2 38.7 28.1 27.0 34.5 33.7
Optimised 23.1 23.1 23.2 30.2 31.9 21.5 21.3 30.0 24.0
Change 0 0 0 -21 -18 -24 -21 -13 -29
Stores Un-optimised 1.3 1.0 1.0 12.5 13.4 9.5 14.0 8.4 8.5
Optimised 1.3 1.0 1.0 11.2 11.6 6.7 9.3 9.7 5.1
Change 0 0 0 -11 -13 -29 -34 +16 -39
Branches | Un-optimised 4.2 4.1 4.1 6.7 5.6 15.2 13.1 7.2 10.2
Optimised 4.2 4.1 4.1 9.8 8.4 19.7 22.8 11.6 20.7
Change 0 0 0 +46 +49 +30 +74 +60 +103
FP ops Un-optimised 58.7 59.1 59.1 3.5 3.8 0.02 0.0 8.4 7.7
Optimised 58.7 59.1 59.1 5.6 7.7 0.04 0.0 14.7 16.1
Change 0 0 0 +62 +104 +93 491 +76 +110
Others Un-optimised 12.7 12.7 12.6 39.1 38.5 47.2 45.9 41.5 39.9
Optimised 12.7 12.7 12.6 43.2 40.4 52.1 46.6 34.0 34.1
Change 0 0 0 +10 +5 +10 +2 -18 -15

Table 4: Percentile values of loads, stores, branches, floating point operations and other instructions present in optimised
and unoptimised codes. The relative change of instruction mix between optimised and unoptimised codes, also expressed in

percentages, is given in bold fonts.

use of the -fast optimisation moderately increased the per-
centage of time spent in system space.

4.1 Instruction Mix

Ideally, an execution time breakdown into computation, mem-
ory stalls, branch misprediction and resource stalls would be
desirable. Due to interdependencies in the measured hard-
ware events, a reliable and meaningful breakdown into these
components is impossible using the data we have collected
(even assuming average latencies per counted event would
be grossly inaccurate). However, we were able to count
the number of different instructions types in an application,
and Table 4 shows the percentage values of loads, stores,
branches, floating-point operations and all other (mainly in-
teger operations) instructions in user mode. The numbers
are given for both the un-optimised and the optimised com-
pilations, and the corresponding percentage change (positive
means an increase, negative a decrease).
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No changes can be seen for the BLAS test runs because
they are basically a simple call to a SUNPERF library rou-
tine (which is part of the operating system) and thus not
affected by compilation options. For the three KDD appli-
cations we can clearly see that the ratio of loads and stores
is generally reduced (one exception is C4.5 with the small
data set which has a noticeable increase in store instruc-
tions), while the percentages of all other instruction types
are mostly increased. This can be explained due to compiler
optimisations, like using register variables for loop counters
and other frequently used variables, which reduces the num-
ber of loads and stores to access these variables.

The three main differences between the BLAS application
and the KDD applications is the larger percentage of stores
in KDD applications, their very small number of floating-
point operations compared to the dense matrix-matrix mul-
tiplication, and finally the much larger percentage of all
other instructions, which are mainly integer computations,



Program BLAS (SUNPERF)

small medium large

ADDFIT
small large | small large | small large

APRIORI C4.5

Un-optimised | 30.15 9.39 2.44
Optimised 30.13 9.38 2.44

9.05 15.56 | 6.45 229 | 1.67 0.19
19.03 35.09 | 10.26 3.76 | 2.51  0.22

Improvement | 0% 0% 0%

53% 56% | 37% 39% | 33% 14%

Table 5: Ratio of allocated memory per execution time (MB/sec).

for KDD programs. This larger amount of input and output
results in a higher load on the cache and memory system,
but also in almost unused floating-point units. One possible
improvement for KDD applications might be a re-design of
algorithms to increase their use of floating-point operations.

4.2 Memory Allocation

As the memory imprint has a significant impact on appli-
cation performance we have tested each of the applications
with different data sets as indicated in Section 2.5.

Memory allocation for APRIORI

20000 -
W
18000 p—

16000 #21w
14000 F:
12000 jg’
10000
8000 *ff
6000 ;ff

/
4000 -
2000 p

Heap size (in KBytes)

Run time (totally 3.1 seconds)

Memory allocation for C4.5
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Figure 2: Dynamic memory allocation for APRIORI and
C4.5

The maximal allocated memory for data (the heap size) is
listed in Table 3. While BLAS and ADDFIT allocate all
the memory they need (basically the dense matrices plus
some buffers for input and temporary data) at the begin-
ning, both APRIORI and C4.5 dynamically allocate smaller
memory blocks at run time. Figure 2 shows the heap sizes
as measured with the Unix command pmap (and a small
Python script filtering the output) with the smaller data
sets for both C4.5 and APRIORI. Two phases are clearly
distinguishable, the first being the loading of the input data
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(steeper slope of the graphs), while the second being the
computation of the decision tree or the frequent item sets
(prefix tree), respectively. Such dynamic memory alloca-
tion and re-allocation results in many system calls and also
prevents good data locality.

It is interesting to see the ratio of number of megabytes al-
located by each application per execution time measured in
seconds, as displayed in Table 5. This indicates the over-
all capacity of a particular application to process the given
amount of data. Of course this “megabyte throughput” de-
pends on the complexity of the operations performed on a
given data set but it gives an idea on relative performance
of the tested applications.

The improvement factors between the un-optimised and op-
timised codes are similar to those presented in Table 6,
which were based on execution times only. We see rather
poor performance of C4.5 and most of the applications with
larger data sets. The only exception from this is ADDFIT.
For the large data set it achieves 35 MB/sec “megabyte
throughput”, larger than for the smaller data set which was
19 MB/sec. This is explained by the fact that the size of the
linear system being assembled by ADDFIT is determined by
the number of categories for categorical and the resolution of
the model for continuous attributes. Since these attributes
didn’t change as we went from the small to the large data
set the overall throughput has increased.

4.3 Overall Performance

The reduction in run times between un-optimised compila-
tion and using the -fast compiler optimisation is listed in
Table 6. As can be seen all KDD applications gain between
around 10% and up to 50% with ADDFIT’s run time almost
reduced to half. Optimised compilation does not affect the
run time of the BLAS dense linear algebra code, because
the library used for this application is already compiled and
is unaffected by compiler optimisations.

MIPS and MFLOPS are popular measures to show the over-
all performance mainly for scientific and engineering codes.
In Figure 3 one can clearly see that only the BLAS dense
matrix-matrix multiplication is actually dominated by float-
ing-point operations. The three KDD programs perform
mainly integer and other operations (which is consistent
with the results from Table 4), which is what one can expect
from applications working on strings and integer numbers.
It is also interesting to see that for all four applications the
MIPS numbers decrease with larger data sizes (except BLAS
which has a peak performance with a medium sized matrix).
For all tested applications, most of the time is spent in user
mode, with around 90% (and more) in most cases. The only
exception is C4.5 with the large data set, in which case the
user proportion is reduced to around three quarters of the
total run time (see Table 3).



Program BLAS (SUNPERF) ADDFIT APRIORI C4.5
small medium large | small large | small large | small large
Un-optimised | 0.03 1.10 44.03 | 1.09 5.89 | 3.36 31.78 | 2.35 421.04
Optimised 0.03 1.10 44.03 | 052 2,79 | 223 1993 | 1.56 375.50
Improvement | 0% 0% 0% 52% 53% | 34% 37% | 34% 11%

Table 6: Run times (in seconds).
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Figure 3: Overall performance indicators: MIPS, MFLOPS
and CPI.

While compiler optimisations clearly help in reducing the
run times of applications (the most important performance
aspect from a user’s point of view), for some applications this
results in actually a poorer performance. The MIPS rate for
both APRIORI and C4.5 is smaller for the optimised code,
and their CPI (cycles per instruction) rate is higher. This
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means that even though the program runs faster, the system
utilisation is less and more time is wasted on resource stalls.
The question now is where? Because the reduction in run
time is larger than the reduction in e.g. load, store or branch
instructions, the “density” of these instructions is higher
(i.e. the ratio of loads, stores and branches per instruction
is higher). This results in higher miss and stall rates in most
cases, as can be seen in the figures in the following sections.

4.4 CachePerformance

The cache concept makes sense for applications which ex-
hibit temporal and spatial locality. What about applica-
tions with irregular memory access patterns where tradi-
tional cache optimisation techniques simply will not work?
In this section we describe performance of all four test ap-
plications at both the Level-1 and the Level-2 cache as well
as the TLB.

Data cache miss rate
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Figure 4: Data and instruction cache miss rates.



441 Level-1

Figure 4 shows Level-1 cache performance for the data and
instruction cache. BLAS and ADDFIT exhibit small Level-
1 cache misses of 3% and around 1% for the small data sets.
Both APRIORI and C4.5 have cache misses of 10% and
more for the un-optimised versions. This behaviour is typ-
ical for irregular memory access patterns. Although, after
optimisations, both applications’ execution times were re-
duced the Level-1 cache misses were significantly increased.
We are not surprised by good cache performance of BLAS
for which the dgemm() matrix-matrix multiplication routine
provided by the SUNPERF library is “cache friendly”. How-
ever, it is unexpected that ADDFIT exhibits such good
cache utilisation for un-optimised runs. The plausible ex-
planation is that during the assembly stage (which perfor-
mance we are measuring) the new data added to the dense
symmetric matrix mostly are no further than a Level-1 cache
size apart so the cache updates are rare. The instruction
cache miss ratios are very small which reflect the fact of rel-
ative small number of branches and a lack of procedure calls.
The increase in instruction cache miss ratios for APRIORI
and C4.5 is well correlated with their higher percentage of
branch instructions as seen in Table 4.

We know that the main improvement in execution times af-
ter the introduction of the -fast compiler flag comes from
the significant reduction in number of instructions. For
ADDFIT this amounted to 39% reduction for the small data
size (51% for large), for APRIORI 48% (46%) and for C4.5
42% (52%). On the same Figure 4 we see a dramatic increase
in Level-1 cache misses for all applications except BLAS for
which -fast option had no effect. Aggressive optimisations,
and as such we should regard those introduced by using the
-fast option, will lead to complete alteration of application
characteristics such as data and instruction flow. It will be
incorrect to try to relate new memory performance metrics
to the old ones as the optimised (read new) application have
nothing to do with the un-optimised (read old) except that
both produce the same results.

Having said this, we still should try to understand why op-
timisations bring such drastic cache performance penalty.
This is particularly visible in ADDFIT where Level-1 data
cache miss ratio rose 8.5 fold for the small and 7.3 fold for
the large data set. For ADDFIT we see particularly high
number of counts for the instruction queue being empty due
to a refetch of a second branch within a fetch group type
of event and also very high number of counts for the stalls
in the store queue due to the store instruction being first
in the group. Although significant for overall performance,
these type of events can not cause such Level-1 data cache
miss increase. In order to bring light into this we had to re-
sort to the inspection of the disassembled codes of both the
un-optimised and optimised ADDFIT. Despite of the over-
whelming complexity of the code a large number of consecu-
tive double loads greater than the cache line size are prevail-
ing in the optimised code and they are most likely to cause
such high incidents of Level-1 cache misses. At this point
immediately another question can be raised — why does the
compiler introduce such inefficient loads distribution? We
can only presume that the optimisations based on data flow
analysis combined with interprocedural analysis yield higher
performance gains than some “on the way inefficiencies” in-
troduced by the compiler.
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Level 2 cache miss rate
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Figure 5: Level-2 cache miss rates.

The results for Level-2 (external) unified cache are presented
in Figure 5. The Level-2 cache is large (8 MB), hence the
number of misses is relatively low for most of the applica-
tions except C4.5 with the large data set for which the miss
rate is 8% for the un-optimised code and extraordinarily
high 18% for the optimised version. Inspection of D-TLB
misses in Figure 6 also reveal very high miss ratio for C4.5
with the large data set. It is unlikely that such high miss ra-
tio will be caused by inefficient instruction placement. Most
likely this has to be due to the sorting of entire categorical
attributes (using recursive quicksort) in C4.5, which results
in almost no locality for data access. The problem propa-
gates throughout the whole memory hierarchy. In this case
we have observed high rate of stalls to memory banks which
can possibly be reduced by exploring an alternative sorting
method to deal with particularly large data sets.

One of the possible solution for large data sets will be to
resign from quicksort and try another specifically designed
sorting algorithm, or alternatively use quicksort on a smaller
subsets of the categorical attributes. The guide to possible
success of such an approach is the performance of C4.5 for
the small data set.

4.4.3 D-TLB

Overall D-TLB (Figure 6) and I-TLB (not shown) miss rates
are very small. A problematic D-TLB miss rate only appears
with C4.5 executed with the large data set. Apart from
earlier proposed remedy we could try to increase the page
size from 8KB to 4MB and see how this single approach will
work.

4.4.4 DataStall

One of the more indicative metrics is data stall rate. It is
a measure of the fraction of a CPU cycle which was wasted
in waiting for data. This wait fraction is measured for both
arriving and departing data from the CPU core. Most often
the high percentages in this measure indicate cache misses
or TLB misses but may also depend on instruction grouping
and scheduling [12].

In Figure 7 we present data stall rates for all four test ap-
plications. Both APRIORI and C/.5 show that over 50%
of the CPU cycles were used for data coming or departing
from the CPU core. This fact well correlates with the high
Level-1 data cache misses for both applications.



Data TLB miss rate

l‘m-op‘limise‘d —
16 optimised  m—
14
12
Q
g 10
[=
@
c 8
[
o
6
4 ]
2 ]
0
(s) m O (s) O (ORN0] (s) O
BLAS ADDFIT APRIORI C4.5
Figure 6: Data TLB miss rates.
Data stall rate
80 [~ Un-optimised '
optimised  m—
70
60 |
& 50
g
g 40 |
@
& 30
20
10

(s) m) O (OO (ORN0) (s) 0
BLAS ADDFIT APRIORI cas

Figure 7: Data Stall rates.

It is interesting to point out that the biggest contribution
to the data stall rates comes from the Rstall_storeQ event
which means that the store queue is full and that the store
instruction is the first instruction in a group. This is the
case mostly for large data sets.

45 Branches

In Section 4.1 about instruction mix (Table 4) we saw that
except for BLAS the optimised codes displayed increased
number of branches as compared with un-optimised codes.
The highest figures were for APRIORI and C/.5 with large
data sets. The increased frequency of branches can clearly
be seen in the lower plot of Figure 8 (branch rate).

It is surprising or rather revealing how well branch predic-
tion works in modern CPUs. Despite the relatively large
increases in number of branches the branch miss rates re-
mained almost unchanged for all tested applications but
APRIORI for small data set. At this moment it is unclear
to us why there is such a discrepancy in branch miss rate
for APRIORI only.

5. CONCLUSIONS

In general we conclude that the performance counters proved
to be a reliable and invaluable source of information about
many aspects of applications performance. However, we see
that the deep understanding of hardware and the measured
code is essential to correctly interpret the results. We also
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Figure 8: Branch miss rate and branch rate.

see that smaller sections of code are better candidates for
performance evaluation using hardware counters as their im-
pact on hardware components can be easier understood and
hence altered to remove performance bottlenecks.

Ways to improve the performance of KDD and similar appli-
cations is to try to use algorithms and data structures which
follow as close as possible current computer architectural de-
signs, and — if possible — redesign algorithms to better utilise
the floating-point capabilities of modern processors. De-
signers of processors, computer and operating systems, and
compilers on the other hand should be aware of the emerging
class (and market) of commercial applications that do not
have regular memory and I/O access patterns and that are
not mainly performing floating-point operations. As such
applications become more and more important in the future,
there is a need for computing platforms that are optimised
for them.

Another, quite separate issue, is the use of compiler flags.
With the advancements of optimising compilers various com-
piler flags, in our opinion, often will have more bearing on
performance than hand placed changes in the code. Is is not
to say that we should not search for better algorithms. It
merely points out the fact that todays compilers “are more
aware” of underlaying hardware than the average user and
are able to do optimisations on larger and larger sections of
source code.

‘While many people simply compile their programs with a
-0, -02, -fast or a similar option, one question that arises
is how well such compiler optimisations work on commercial
applications that have dynamic and irregular data struc-



tures. Let us quote words from the ultimate reference on
Sun compilers [12]:

“The -fast option is a good starting point for
compiler optimization of well-behaved programs.”

Most compiler options were designed with regular applica-
tions in mind. Modern compiler have tens up to hundreds
of different flags, that can change the run time of a given
application tremendously. Many options are designed to im-
prove floating-point intensive applications, but the question
arises how good they help KDD and other commercial ap-
plications.

6. RELATED RESEARCH

There is much ongoing research in dedicated KDD and data
mining algorithms and in their parallel implementations. In
contrast, we are only aware of a small number of publica-
tions dealing with the performance analysis of KDD appli-
cations [5; 6; 16; 18]. More work has been done on analysing
database servers and related commercial applications [1; 3;
15; 23]. To our knowledge, no performance analysis of KDD
applications has previously been done using hardware coun-
ters.

The memory behaviour of a parallel association rule algo-
rithm is discussed in [18]. The authors looked at custom
memory placement scheme and found that simple schemes
(like the different hash tree building blocks being allocated
in a single memory region) can be quite efficient — improv-
ing the execution time for some data sets up to a factor of
two. They state that the data structures used by association
rules algorithms (hash trees and lists) exhibit poor locality,
and the arbitrary allocation of memory makes it difficult
to detect and eliminate false sharing. A run time memory
allocation library based on the Unix malloc() library is pre-
sented, which allows customised memory allocation.
Memory characteristics of a parallel implementation of the
self-organising map (SOM) neural network model is dis-
cussed in [16]. Four characteristics were examined and com-
pared. First, the working set size (temporal locality), second
the spatial locality and memory block utilisation, third the
communication characteristics and scalability, and fourth
the TLB performance. The authors use a simulation tool
adapted from the Augmint toolkit. They conclude that the
size of the working set is not sensitive to the number of input
records.

In [5; 6] the popular decision tree induction algorithm C4.5
is analysed in its memory and parallelisation characteristics.
The authors are using RSIM [17] simulating three different
instruction level parallelism (ILP) processors. One of their
conclusions is that such an algorithm is limited by the mem-
ory latency and bandwidth, and cache size has a significant
effect on performance as well. In [6] a parallel version of
C4.5 optimised for a c¢cNUMA is presented and analysed.
This parallel version puts significantly less pressure on the
memory hierarchy, and has a larger working set.

The memory system characteristics of some commercial work-
loads is studied in [3]. The authors present detailed perfor-
mance studies of three different important classes of work-
loads: Online transaction processing (OLTP), decision sup-
port systems (DSS) and Web index search. They use mon-
itoring experiments and SimOS [20] to study the effects of
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architectural variations. One of their findings is that op-
erating system activity and I/O latencies do not dominate
the behaviour of well-tuned database workloads. For OLTP
a large off-chip cache is in favour, while DSS and the Web
index search are primarily sensitive to the size and latency
of on-chip caches.

A performance analysis of the TPC-C benchmark on a four-
processor Pentium based SMP is presented in [23]. The au-
thors analytically model the performance and then validate
their results with simulations (using S9mO0S) and hardware
counter experiments. They conclude that experimentally
based evaluation of complex commercial applications is time
consuming, and that analytical modelling is a feasible alter-
native.

The authors of [8] discuss methods to make pointer-based
data structures cache conscious. They present three dif-
ferent methods. First, clustering (packing data structures
that a program is likely to access at the same time into a
cache block), secondly coloring (place elements in memory
such that elements accessed at the same time map to non-
conflicting cache regions) and thirdly compression (com-
pressing data structures so that more elements fit into a
cache block). They also propose structure splitting into hot
and cold parts (with the hot parts being accessed more fre-
quently than cold parts), and show the suitability of these
approaches and the resulting performance improvements.
Four commercial database systems are compared in a study
[1] on an Intel Xeon processor using hardware counters. The
authors used memory resident databases and basic opera-
tions (simple queries) to identify common trends in the per-
formance and memory access behaviour. One conclusion is
that almost half of the time is spent on stalls. Detailed
analysis presented show that 90% of the memory stalls are
due to second-level cache data misses (while first-level data
stalls are not important) and first-level instruction cache
misses (while second-level instruction cache misses are not
important). These results therefore suggest that database
developers should pay more attention to the data placement
(layout) in the second-level cache, and also focus on opti-
mising the critical path for the instruction cache.

An earlier study [13] uses traces and simulations from an
IBM Power architecture to contrast the differences between
technical and commercial workloads. Six commercial ap-
plications (including TPC benchmarks, file servers, etc.)
are compared to eight technical and scientific applications
(which included computational chemistry codes, various sim-
ulations, etc.). The findings include that commercial appli-
cations are often multi-user and contain many processes,
and thus have more operating system calls. The branch
behaviour is much less predictable (no long loops, but more
decision type branches), they also contain less floating-point
operations and have different I/O characteristics. Commer-
cial applications also have larger instruction foot-prints com-
pared to technical applications, which means they can profit
more from larger (instruction) cache sizes than technical ap-
plications. The authors also state that commercial data is
not, and cannot be, very cache efficient because data is of-
ten private to processes. Process switching also increases the
likelihood that cache contents are overwritten by the time a
process is re-scheduled after context switching.

A simulator study using SimICS using two database engines
is presented in [15]. The authors analyse and then model the
size of working-sets for various database queries for decision



support systems (thee queries from TPC-D). Their results
show that the most performance critical working-sets are
small even for large databases and they do not grow with
the size of a database. These working-sets are caused by
the instructions and private data that are needed to access
a single tuple.

7. OUTLOOK

In this paper we presented experiments of analysing KDD
applications with hardware counters on an UltraSPARC-IIT
platform. To better understand the memory access char-
acteristics of KDD applications further experiments with
various data sets and other hardware event counters are
needed. Running KDD applications on a machine simulator
(e.g. SPARC Sulima [11]) will allow us to change machine
parameters like cache size and access times, and thus help to
find bottlenecks in such applications. We are also planning
to port our experimental setup to different processors (e.g.
Fugjitsu Primepower SPARC server or Intel Pentium).

The vast number of options and switches present in opti-
mising compilers is overwhelming. Most of them were de-
signed to assist scientific and engineering applications but
not KDD and similar commercial applications. Changing a
particular option and tracing the effects of such change on
the behaviour of the application (using performance coun-
ters) will lead to better understanding of the compiler op-
tions/application performance relation. It can also bring
more light on which non-trivial changes in architecture could
benefit KDD type applications. In future research we are
therefore planning to conduct systematic tests with KDD
applications using various possible compiler optimisations,
to see which ones are favourable for such applications.
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