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Abstract

Record linkage techniques are used to link together records from one or
more data sets relating to the same entity, e.g. patient or customer. As
data is often not primarily collected for data analysis purposes, a com-
mon unique identifier is missing in many cases, and probabilistic linkage
techniques have to be applied. Historical collections of administrative and
other (health) data may contain many tens or even hundreds of millions of
records, with new data being added at the rate of millions of records per
year. Although improvements in available computing power have to some
extent mitigated against the effects of this accelerating growth in the size
of the data sets to be linked, large-scale probabilistic record linkage is still
a slow and resource-intensive process.

The ANU Data Mining Group is currently working in collaboration
with the Epidemiology and Surveillance Branch of the NSW Department
of Health on the development of improved techniques for probabilistic
record linkage. Our main focus is the development of techniques that
make good use of modern high-performance parallel computers, and the
exploration of data mining and machine learning techniques to reduce the
time consuming and tedious aspects of record linkage, such as the manual
clerical review process of possible links. The software under development
is published under an open source software license and can be downloaded
for free from the project web page.

*Corresponding author, E-Mail: Peter.Christen@anu.edu.au



1 Introduction

Record linkage is a rapidly growing field with applications in many areas of
health research [1, 7, 9]. It is an initial step in many epidemiological studies
and data mining projects, which aim to analyse large and complex data sets
to find patterns and rules, to detect outliers or to build predictive models of
such data sets. Because data are often not primarily collected for data analysis
purposes, a common unique identifier is missing in many cases, and probabilistic
linkage techniques as developed by Fellegi and Sunter [5] have to be applied.

Historical collections of administrative and other health data nowadays con-
tain many tens or even hundreds of millions of records, with new data being
added at the rate of millions of records per annum. Although computing power
has increased tremendously in the last decades, large-scale probabilistic record
linkage is still a slow and resource-intensive process. There have been rela-
tively few advances over the last decade in the way in which probabilistic record
linkage is undertaken, particularly with respect to the tedious clerical review
process which is still needed to make decisions about pairs of records whose
linkage status is doubtful. Unlike computers, there has been no increase in the
rate at which humans can undertake these clerical tasks.

This paper describes a project currently undertaken by the ANU Data Min-
ing Group in collaboration with the Epidemiology and Surveillance Branch of
the NSW Department of Health. The aim of the project is to develop improved
techniques for probabilistic record linkage. Our main focus is on the devel-
opment of techniques that make good use of modern high-performance paral-
lel computing platforms, such as clusters of commodity PCs or workstations
(which can be used as virtual parallel computers with some additional software
installation), multiprocessor servers or supercomputers. To our knowledge, no
probabilistic record linkage software is available for parallel computers. In a
second step we will explore data mining and machine learning techniques to
improve linkage quality and reduce the time consuming and tedious manual
clerical review process for possible links.

The software under development is published under an open source software
license. It will allow researchers and users in the health area to link much larger
data sets. Additional benefits will be reduced costs in conducting such linkages,
due to the reduction in human resources needed and the free availability of
the software. The software will be made available in stages, with the first
components scheduled for release in July 2002.

2 Record Linkage and Data Cleaning

Record linkage techniques are used to link together data records relating to the
same entities, such as patients or customers. Record linkage can be used to
improve data quality and integrity, to allow reuse of existing data sources for
new studies, and to reduce costs and effort in data acquisition.

If no unique identifier is available in the data sets to be linked, probabilistic
linkage techniques [5] have to be applied. Moreover, data may be recorded or
captured in various formats, and data items may be missing or contain errors.
A pre-processing phase that aims to clean and standardise the data is therefore
an important first step in every linkage process. Data sets may also contain



duplicate entries, in which case linkage has to be applied within a data set to
de-duplicate it before linkage with other files can be attempted.

The process of linking records has various names in different user commu-
nities. While epidemiologists and statisticians speak of record or data linkage,
the same process is often referred to as data scrubbing or data cleaning by com-
puter scientists and in the database community, whereas it is sometimes called
merge/purge processing in commercial processing of customer databases or mail-
ing lists. Historically, the statistical and the computer science community have
developed their own techniques, and until recently few cross-references could be
found. In this Section we give an overview and try to identify similarities in the
developed methods.

Computer assisted record linkage goes back as far as the 1950s. At this time,
most linkage projects were based on ad-hoc heuristic methods. The basic ideas
of probabilistic record linkage were introduced by Newcombe and Kennedy [14]
in 1962 while the theoretical foundation was provided by Fellegi and Sunter [5]
in 1969. Using frequency counts [20], agreement and disagreement probabilities,
each field of a record is assigned a match weight, and critical values of these
match weights are used to designate a pair of records either as a link, a possible
link or a non-link. Possible links are those pairs for which human oversight,
also known as clerical review, is needed to decide their final linkage status. To
reduce the number of comparisons (potentially each record in one data set has
to be compared with every record in a second data set), blocking techniques are
used. The data sets are split into smaller blocks using blocking variables, like
the postcode or the Soundex encoding of surnames. Only records within the
same blocks are then compared. To deal with typographical variations and data
entry errors, approximate string comparisons [16] are often used for name and
addresses. They usually return a score between 0.0 (two strings are completely
different) and 1.0 (two strings are the same).

In recent years, researchers have been exploring the use of machine learning
and data mining techniques [18] both to improve the linkage process and to allow
linkage of larger data sets. For very large data sets, with hundreds of millions of
records, special techniques have to be applied [19] to be able to handle such large
volumes of data. Sorting large number of records becomes the main bottleneck
so extracting possible links from an unsorted large data file [21] has to be done
as a pre-processing step before the actual linkage can be done.

The terms data cleaning, standardisation, data pre-processing and ETL (ex-
traction, transformation and loading) are used synonymously to refer to the gen-
eral tasks of transforming the source data (often derived from operational, trans-
actional information systems) into clean and consistent sets of records which are
suitable for record linkage or for loading into a data warehouse [17]. The mean-
ing of the term standardisation in this context is quite different from its use in
epidemiology and statistics. The main task of standardisation in record linkage
is the resolution of inconsistencies in the way information is represented or en-
coded in the data. Inconsistencies can arise through typographical or other data
capture errors, the use of different code sets or abbreviations, and differences in
record layouts. Once the data has been standardised, the central task of record
linkage is to identify records in the source data sets that represent the same
real-world entity. In the computer science literature, this process is also called
the object identity or merge/purge problem [8].



Fuzzy techniques and methods from information retrieval have been applied to
solve this problem. One approach is to represent text (or records) as document
vectors and compute the cosine distance [4] between such vectors. Another
possibility is to use an SQL like language [6] that allows approximate joins and
cluster building of similar records, as well as decision functions that decide if
two records represent the same entity. Other methods [11] include statistical
outlier identification, pattern matching, clustering and association rules based
approaches. Sorting data sets (to group similar records together) and comparing
records within a sliding window [8] is a technique similar to blocking as applied
by traditional record linkage approaches. The accuracy of the matching can be
improved by having smaller window sizes and performing several passes over
the data using different keys, rather than having a large window size but only
one pass. This corresponds to applying several blocking strategies in a record
linkage process.

Even though most approaches described in the computer science literature
use approximate string comparison operators and external lookup-tables to im-
prove the matching quality, none considers the statistical theory of record linkage
as developed by Fellegi and Sunter [5] and improved and extended by others.

The problem of finding similar entities not only applies to records of per-
sons. Increasingly important is the removal of duplicates in web search engines
and automatic text indexing systems, where copies of documents have to be
identified and filtered out before being presented to the user.

3 Parallel Computing

While high-performance computing was historically restricted to science and
engineering, technological advantages in the last decade allowed the dissemi-
nation into the commercial IT world. Multiprocessor servers, also called sym-
metric multiprocessors (SMP), are nowadays common in many organisations
as compute, database or web servers. These are equipped with a number of
processors (CPUs), usually numbering from two up to around 30, have a main
memory size in the one to several Gigabytes! and they often have disk arrays
(RAID) for improved availability with a capacity of several Terabytes?. These
machines normally use a version of the Unixz operating system that allows them
to run a mixture of sequential as well as parallel jobs. Parallel applications use
threads - pieces of program code that can run independently from others - for
increased performance. For example, in a database server, each transaction can
independently update records, or a web server can handle incoming requests
simultaneously by processing them on different CPUs.

While multiprocessor servers are still fairly expensive, even ordinary personal
computers (PCs) or workstations, connected by a local area network, can be
used collaboratively as a (virtual) parallel computer using appropriate software
packages. The computing power of a single PC nowadays is comparable to the
capabilities of a supercomputer just a decade ago. Office computers can easily
be left on all the time, and these idle resources can be used for compute intensive
jobs overnight and on weekends.

1 1 Gigabyte = 1,024 Megabytes.
2 1 Terabyte = 1,024 Gigabytes.



Record linkage in general, and the standardisation process especially, have a
good potential for parallelism. The standardisation of each record in a data set
can be done independently from all others, which allows efficient parallelism.
The blocking technique used in the traditional record linkage process can be
used as a starting point for a parallel record linkage system. In Section 5.3 we
will describe our approach to parallelisation in more details.

4 Open Source Software

Using open source software® instead of commercial software can have several
advantages. Not only can people get the software at no cost, they can also
access and modify the source code, and thus software can evolve and improve
as a result of contributions from various parties. This is especially helpful for
prototype software such as is the subject of this project. A rapid evolutionary
development process often produces better software than the traditional closed
model used in the development of commercial software. Examples of successful
open source projects include the operating system Linuz, the database server
MySQL, the web server Apache (the most popular web server on the Internet),
and the programming language Python.

For our record linkage project, we are using Python® as the primary pro-
gramming platform. Python is open source software, it is available for many
platforms (including Windows, Macintosh and Uniz), and it has a strong and
active user community. Python has been demonstrated to be robust and able to
handle large amounts of data efficiently [3, 15]. It provides a very easily learned
syntax while providing high-level object-oriented features which make it suit-
able for the construction of large and complex systems. Python provides a very
flexible set of built-in data structures such as general lists as well as dictionaries
(lookup-tables), which are implemented as very efficient hash-tables. Functions
can be used as templates that can be changed and extended as needed by the
user. Python is distributed with a number of extension libraries that contain
a large collection of modules for all kinds of tasks, including regular expression
parsing, array-based numerical computation, statistics, Internet and Web data
handling and encryption. Additionally, many third party modules are available
which allow accessing and controlling of other (open source) software through
a Python interface. For example, interface modules are available for most data-
base systems. It is possible to readily extend the capabilities of Python through
extension modules written in the ' programming language, as well as using the
Python language itself. Thus, existing program libraries written in C can be
seamlessly integrated into Python.

4

5 Prototype Software

In this Section we describe in more detail our approach to implement proto-
type software for parallel high-performance probabilistic record linkage. This
software is freely available and can be downloaded from the project web page at:

http://datamining.anu.edu.au/linkage.html

3 http://www.opensource.org
4 nttp://www.python.org
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Figure 1: Example standardisation

Only standard Python (Version 2.2) is used, so with the exception of Python
potential users will not have to install any other software packages. Portability
of our software should therefore be possible to all platforms where Python is
available. Data access will in a first version be limited to text files, but we are
planning to include database (SQL) functionalities using the Python database
interface later.

The prototype contains two main modules, pyStandard.py® for the stan-
dardisation process and pyLinkage.py for the actual record linkage. While the
pyStandard.py module is available for downloading, the linkage module is still
under development at the time of writing (June 2002). One aim of the software
is to simplify the configuration process. Only one file (a module called con-
fig.py) will need to be edited and customised by the user. Within this file, data
and lookup-table files, as well as standardisation and linkage parameters can
be modified and adjusted to a user’s needs. Instead of defining a new pattern
matching language, which is the approach taken by the AutoStan [12] standard-
isation or data scrubbing program, only simple lookup-tables will be used. All
other functionality, including sophisticated string handling and manipulation,
will be implemented within the Python code. Due to the open source licensing
of the software, users will be free to modify and enhance this functionality, or
to request others to do so on their behalf. In time, we expect that different
versions of the software will be developed for specific purposes or data sets.

5.1 Standardisation

Standardising a data set is an important first step for successful record linkage.
The aim of standardisation is to clean the raw input data records and assign
words and numbers to certain output fields. The standardisation module pyS-
tandard.py can process four different components of a record, namely Name,
Geocode, Locality and Date. Figure 1 shows an example standardisation.
The module opens input file(s), loads records and splits them into their con-
stituent components, handing each component off to their corresponding parsing
routines and finally combining the results into a new standardised record that
is then written into an output file. Additionally, log and error information can
be saved into files.

5 Python programs are normally given the file extension .py



Table 1: Supported output fields

Component Name Geocode Locality Date
Fields Givenname Wayfaretype Postcode Day
Middlenames Wayfarename Localityname Month
Surname Wayfarenumber  Localityqualifier Year
Title Wayfareprefix Territory
Altgivenname Wayfaresuffix
Altsurname Unittype
Gender Unitnumber

An input record is cleaned and parsed, and its words and numbers are assigned
into the output fields shown in Table 1. It is assumed that the input data is
a text file and contains one record per line, with fixed column width (i.e. each
input field occupies a well defined range of columns) or comma or tabulator
separated fields. Parsed and standardised records are written into a new text
file in comma delimited or column wise format. Other modes of input and
output, such as reading and writing from and to a database, will be added in
later versions. As the standardisation process can be done in parallel, more
than one output file can be written (see Section 5.3).

Lookup-tables are used to correct nicknames, expand abbreviations and han-
dle word spelling variations and typographical errors. Figure 2 shows a lookup-
table file with Australian state and territory words. Words in an input record
that are listed in the right part of an entry (after the colon) are replaced with the
corresponding word on the left. A user can easily edit these lookup-table files.
Once loaded, they are converted into efficient Python mapping data structures
known as dictionaries. Data for these lookup-tables can often be found on the
Internet or purchased from third party suppliers. For example, Australia Post
provides an updated list of all Australian postcode, suburb and state triplets®,
while the Australian Whitepages contain street- and surnames (which can also
be used to build frequency distributions for the linkage process), and various
other Web sites provide downloadable name and abbreviation lists.

# Australian state and territory words
australia : a, aus, aust, austr
capital : ¢, cap, capit, capitol, capt
land : 1nd
new_south_wales : nsw, new-south-wales, n_s_w
queensland : qld
tasmania : tas
territory : teritory
victoria : vic, vict
wales : wals, wal

Figure 2: Example lookup-table file for Australian state and territory words

A separate parsing routine handles each of the four input components. It is
assumed that the input to a parsing routine is a string that contains the corre-
sponding component of a record. The first step in parsing a component consists
in cleaning the input string by converting all letters into lowercase, by removing

6 http://www.post.com.au/postcodes/



unwanted characters and by replacing certain characters by others. For example,
a vertical bar | replaces all forms of brackets. In a second step, lookup-tables are
used to check for certain (component specific) abbreviations and misspellings,
which are then replaced by expanded or corrected versions. For example, us-
ing the lookup table in Figure 2, each occurrence of austr will be replaced by
australia in the locality component. In a third step, lookup-tables are used
to label words, numbers and separators with one or more tags. According to
these tags, input words are then assigned to the output fields. This can be
done in two different ways. The first — traditional — approach is to use rules
to decide to which output field a word or number is assigned to. This results
in rather complex programs with many rules to cover the various special cases.
The second approach is to use a probabilistic Hidden Markov Model (HMM).
Using standardised and labeled training data the HMM assigns probabilities
to a given input sequence. For example, a trained HMM for names would as-
sign probabilities that a name starts in 30% of all cases with a title word, in
60% with a given name and in 10% with a surname. HMMs are successfully
applied in speech recognitions and information retrieval, and first experiments
with addresses standardisation have been presented in [2]. We will present our
experiences using HMMs for name and address standardisation elsewhere.

5.2 Linkage

Once data is cleaned and standardised, the linkage process can be started us-
ing the module pyLinkage.py. Probabilistic linkage techniques as described
in Fellegi and Sunter [5] will be implemented in this module. All linkage pa-
rameters (like cut-off scores, choice of blocking variables, etc.) can be adjusted
by the user in the configuration module config.py. While some components
of the linkage process, like several phonetic name encodings as well as different
approzimate string comparators, have been implemented and tested, the main
part of this module is still in the early stages of development at the time of
writing and details will be published elsewhere. Some general comments on the
parallelisation approach of the linkage process are given in the next Section.

5.3 Parallelisation

Both the standardisation and linkage processes have good potential for par-
allelisation, as they both consist of smaller independent sub-processes. In this
Section, we describe our approach to parallelising both processes. To our knowl-
edge, no parallel record linkage software is currently available.

The standardisation of each record in the input data set(s) can be done
independently of all other records. Thus, assuming P processors (or computing
nodes) are available, each of these processors gets assigned (1/P)th of the input
records. The pyStandard.py module gets as input arguments the range of
records to standardise. For example, if 4 processors are available, and a data
set with 100,000 records has to be processed, the first processor gets records
1 to 25,000, the second processor gets 25,001 to 50,000, the third gets 50,001
to 75,000 and the forth processor gets the remaining records. Each of the
processors then opens the input file, skips to its first record and then loads and
standardises its part of the input file, before writing it into separate output files
as explained below.
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Figure 3: Sequential and parallel record linkage approach

In the linkage process, the blocking technique serves as an excellent starting
point for parallelisation. Blocking is used to reduce the number of comparisons.
Input data is split according to the values of one or more blocking variables.
For example, records with the same year of birth values are moved into separate
blocks, and only records with the same blocking values are then compared.
As no comparisons are conducted between different blocks, each block can be
processed independently from all others. For example, using year of birth as
the blocking variable can result in up to around hundred blocks that can be
processed independently. One problem with this approach is that blocks can
contain different numbers of records, which results in varying processing times.
A dynamic load balancing strategy has thus to be applied in order to distribute
the computing loads onto the processors. A master-worker approach [10] will
be developed for the parallel record linkage process, where a master Python
process will coordinate the worker processes by sending them blocks of records
to be linked.

For efficient processing, the parallel standardisation process has to write the
processed records into files to facilitate the parallel linkage process. Assuming
B different blocks for the linkage, each standardisation process writes B smaller
files, one per linkage block. If there are P parallel standardisation processes, a
total of P x B files will be written. A linkage process (linking one block) then
has to read P of these files and concatenate them to get all the records for one
block. This can be done efficiently in Python, and eliminates the need to sort
or index the files, which is a time consuming process.

Figure 3 shows the sequential and parallel processes for record standardisa-
tion and linkage. The only additional step needed in a parallel record linkage
system is to merge the final outcomes of the parallel linkage into one single file.
The exact mechanism for doing this has yet to be developed.

5.4 Automating Clerical Review

One of the most tedious and time-consuming aspects of current record linkage
practice is the clerical review process. In the probabilistic linkage model, each



pair of records that has been compared is given a match weight. Pairs whose
match weight is above a certain threshold are declared links, and pairs whose
match weight is below another, lower threshold are declared non-links. Records
whose match weight fall in the grey zone between these two critical values are
denoted as needing clerical review, i.e. review by a person who is assumed to
either have access to additional information external to the files being linked
which enables them to resolve whether the pair is a match or not, or who is
able bring to bear the power of human reasoning and perception in order to
extract any residual hints or clues contained in the pair of records which enable
a decision to be made regarding their link status.

In many circumstances additional, external information is simply not avail-
able, and thus the clerical review process involves the application of human
intuition to try to resolve the doubtful cases. This process is acceptable for
small linkage projects, but in larger projects, thousands or even tens of thou-
sands of pairs of records need to be reviewed in this manner. Apart from the
tedium involved, it is often difficult to maintain consistency and repeatability
when so many often arbitrary decisions need to be made regarding the link
status of pairs of records.

An important aim of this project is to explore the utility of supervised ma-
chine learning algorithms [13] in the partial or total automation of the clerical
review process. Supervised machine learning involves the use of examples in
a training data set in order to instruct a learning algorithm to classify data —
in this case pairs of clerical review records as either a link or as non-link. The
results of these investigations will be reported elsewhere as this work progresses.

6 Outlook

In this paper a project currently undertaken by the ANU Data Mining Group
in collaboration with the Epidemiology and Surveillance Branch of the NSW
Department of Health has been presented. The prototype software currently
under development has been described in some detail. This software is published
under an open source software license. It allows researchers and users in the
health area to link much larger data sets at reduced costs, due to the reduction
in human resources needed and the free availability of the software.
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