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Abstract
In many data mining projects in the health sector information from multiple
data sources needs to be cleaned, deduplicated and linked in order to allow
more detailed analysis. The aim of such linkages is to merge all records relat-
ing to the same entity, such as a patient. Most of the time the linkage process
is challenged by the lack of a common unique entity identifier. Addition-
ally, personal information, like names and addresses, are frequently recorded
with typographical errors, can be formatted differently, and parts can even
be missing or swapped, making the duplication or linkage task non-trivial.
A special case of linkage is geocoding, the process of matching user records
with geocoded reference data, allowing spatial data analysis and mining, for
example of disease outbreaks, or correlations with environmental factors.
In this paper we present an overview of the Febrl (Freely extensible biomed-
ical record linkage) project, which aims at developing improved algorithms
and techniques for large scale data cleaning and standardisation, record link-
age, deduplication and geocoding. We discuss new probabilistic techniques
for data cleaning and standardisation, approximate geocode matching, par-
allelisation of blocking and linkage algorithms, as well as a probabilistic data
set generator.

Record Linkage and Geocoding in Health
The health sector produces and collects massive amounts of data on a daily basis, in-
cluding administrative Medicare and PBS data, emergency and hospital admission data,
clinical data, as well as data collected in special databases like cancer registries. The
mining of such data has attracted interest both from academia and governmental organ-
isation. Often data from various sources needs to be integrated and linked in order to
allow more detailed analysis. In health surveillance systems linked data can also help to
enrich data that is used for pattern detection in data mining systems. Linked data also
allows re-using of existing data sources for new studies, and to reduce costs and efforts
in data acquisition for research studies. Linked data might contain information which is
needed to improve health policies, and which traditionally has been collected with time
consuming and expensive survey methods.

Of increasing interest in the health sector is geocoding, the linking of a data source with
geocoded reference data (which is made of cleaned and standardised records contain-
ing address information plus their geographical location). The US Federal Geographic
Data Committee estimates that geographic location is a key feature in 80% to 90% of



governmental data collections [29]. In many cases, addresses are the key to spatially
enable data. The aim of geocoding is to generate a geographical location (longitude and
latitude) from street address information in the user data. Once geocoded, the data can
be used for further processing, in spatial data mining projects, and it can be visualised
and combined with other data using geographical information systems (GIS). The ap-
plications of spatial data analysis and mining in the health sector are widespread. For
example, geocoded data can be used to find local clusters of disease. Environmental
health studies often rely on GIS and geocoding software to map areas of potential ex-
posure and to locate where people live in relation to these areas. Geocoded data can
also help in the planning of new health resources, e.g. additional health care providers
can be allocated close to where there is an increased need for services. An overview of
geographical health issues is given in [4]. When combined with a street navigation sys-
tem, accurate geocoded data can assist emergency services find the location of a reported
emergency.

In this paper we present an overview of the Febrl (Freely extensible biomedical record
linkage) project, and we discuss our future research plans. Febrl is implemented in the
object-oriented open source language Python1 (which is open source itself) and available
from the project web page. Due to the availability of its source code, Febrl is an ideal
platform for the rapid development, implementation, and testing of new and improved
record linkage algorithms and techniques.

A Short Overview of Record Linkage
If unique entity identifiers or keys are available in all the data sets to be linked, then
the problem of linking or deduplication at the entity level becomes trivial, a simple join
operation in SQL or its equivalent is all that is required. However, in most cases no
unique identifiers are shared by all of the data sets, and more sophisticated linkage tech-
niques need to be applied. These techniques can be broadly classified into deterministic
or rules-based approaches (in which sets of often very complex rules are used to classify
pairs of records as links, i.e. relating to the same entity, or as non-links), and probabilistic
approaches (in which statistical models are used to classify record pairs). Probabilistic
methods can be further divided into those based on classical probabilistic record link-
age theory as developed by Fellegi & Sunter [11], and newer approaches using machine
learning techniques [6, 9, 10, 13, 15, 19, 21, 28, 30].

Computer-assisted record linkage goes back as far as the 1950s, when most linkage
projects were based on ad hoc heuristic methods. The basic ideas of probabilistic record
linkage were introduced by Newcombe & Kennedy [22] in 1962 while the theoretical foun-
dation was provided by Fellegi & Sunter [11] in 1969. The basic idea is to link records
by comparing common attributes, which include person identifiers (like names and dates
of birth) and demographic information. Pairs of records are classified as links if their
common attributes predominantly agree, or as non-links if they predominantly disagree.
If two data sets A and B are to be linked, record pairs are classified in a product space
A × B into M , the set of true matches, and U , the set of true non-matches. Fellegi &

1 See: http://www.python.org



Sunter [11] considered ratios of probabilities of the form

R =
P (γ ε Γ|M)

P (γ ε Γ|U)

where γ is an arbitrary agreement pattern in a comparison space Γ. For example, Γ
might consist of six patterns representing simple agreement or disagreement on (1) given
name, (2) surname, (3) date of birth, (4) street address, (5) suburb and (6) postcode.
Alternatively, some of the γ might additionally consider typographical errors, or account
for the relative frequency with which specific values occur. For example, a surname value
‘Miller’ is much more common in Australia than a value ‘Dijkstra’, resulting in a
smaller agreement value. The ratio R or any monotonically increasing function of it
(such as its logarithm) is referred to as a matching weight. A decision rule is then given
by

if R > tupper, then designate a record pair as link
if tlower ≤ R ≤ tupper, then designate a record pair as possible link
if R < tlower, then designate a record pair as non-link

The thresholds tlower and tupper are determined by a-priori error bounds on false links
and false non-links. The class of possible links are those record pairs for which human
oversight, also known as clerical review, is needed to decide their final linkage status (as
often no additional information is available the clerical review process becomes one of
applying human intuition, experience or common sense to the decision based on available
data).

Probabilistic Data Cleaning and Standardisation
The cleaning and standardisation of raw input data is important for record linkage, as
data can be encoded in different ways in the various data sources. Most real world data
can contain noisy, incomplete, out-of-date and incorrectly formatted information. Data
cleaning and standardisation are important preprocessing steps for successful record
linkage, and before such data can be loaded into data warehouses or used for further
analysis [27].

The main task of data cleaning and standardisation is the conversion of the raw input
data into well defined, consistent forms, and the resolution of inconsistencies in the way
names and addresses are represented or encoded. Febrl includes a probabilistic data
standardisation technique [8] based on hidden Markov models (HMMs) [26]. A HMM is
a probabilistic finite-state machine consisting of a set of observation or output symbols,
a finite set of discrete, hidden (unobserved) states, a matrix of transition probabilities
between those hidden states, and a matrix of probabilities with which each hidden state
emits an observation symbol. We use one HMM for names and one for addresses, and the
hidden states of the HMMs correspond to the output fields of the standardised names
and addresses.

Our approach to data cleaning and standardisation for names and addresses consist of
the following three steps2.

2 Febrl also contains rules-based standardisation methods for dates and telephone numbers.
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Figure 1: Simple example address hidden Markov model.

1. The user input records are cleaned. This involves converting all letters to lower-
case, removing certain characters (like punctuations), and converting various sub-
strings into their canonical form, for example ‘c/-’, ‘c/o’ and ‘c.of’ would all
be replaced with ‘care of’. These replacements are based on user-specified and
domain specific substitution tables, which can also contain common misspellings
of names and address words, and thus help to increase the linkage quality.

2. The cleaned input strings are split into a list of words, numbers and characters,
using whitespace marks as delimiters. Look-up tables and some hard-coded rules
are then used to assign one or more tags to the elements in this list. These tags
will be the observation symbols in the HMMs used in the next step.

3. The list of tags is given to a HMM (either name or address), and assuming that each
tag (observation symbol) has been emitted by one of the hidden states, the Viterbi
algorithm [26] will find the most likely path through the HMM. The corresponding
sequence of hidden states will give the assignment of the elements from the input
list to the output fields.

Consider for example the address ‘73 Miller St, NORTH SYDENY 2060’, which will be
cleaned (‘SYDENY’ corrected to ‘sydney’), split into a list of words and numbers, and
tagged in steps 1 and 2. The resulting lists of words/numbers and tags looks as follows.

[‘73’, ‘miller’, ‘street’, ‘north sydney’, ‘2060’]

[‘NU’, ‘UN’, ‘WT’, ‘LN’ , ‘PC’ ]

with ‘NU’ being the tag for numbers, ‘UN’ the tag for unknown words (not found in
any look-up table or covered by any rule), ‘WT’ the tag for a word found in the wayfare
(street) type look-up table, ‘LN’ the tag for a sequence of words found to be a locality
name, and ‘PC’ the tag for a known postcode. In step 3 the tag list is given to a HMM
(like the simple example shown in figure 1), which has previously been trained using
similar address training data. The Viterbi algorithm will then return the most likely
path through the HMM which will correspond to the following sequence of output fields.

‘wayfare number’: ‘73’

‘wayfare name’: ‘miller’

‘wayfare type’: ‘street’

‘locality name’: ‘north sydney’

‘postcode’: ‘2060’

Details about how to efficiently train the HMMs, and experiments with real-world data
are given in [8]. Training of the HMMs is quick and does not require any specialised
skills. For addresses, our HMM approach produced equal or better standardisation accu-
racies than a popular commercial rules-based system. However, accuracies were slightly
worse when used with simpler name data [8].



We are planning to investigate the use of the Baum-Welch forward-backward algo-
rithm [26] to re-estimate the probabilities in the HMMs, and to explore techniques that
can be used for developing HMMs without explicitly specifying the hidden states. We
are also planning to modify our address standardisation so the same output fields as
used by G-NAF [7, 23] are created, which should result in improved geocode matching
accuracy (see section on geocoding below).

Blocking
If two data sets A and B are to be linked, the number of possible comparisons equals
the product of the number of records in the two data sets |A|× |B|. As the performance
bottleneck in a record linkage system is usually the expensive evaluation of the similarity
measures between record pairs [1], it is computationally not feasible to consider all pairs
when the data sets are large. Linking two data sets with 100, 000 records each would
result in ten billion possible comparisons. On the other hand, the maximum number of
linked record pairs that are possible corresponds to min(|A|, |B|), assuming a record can
only be linked to one other record. Thus, the space of potential links becomes sparser
when linking larger data sets, while the computational efforts increase exponentially.

To reduce the large amount of possible record pair comparisons, traditional record link-
age techniques [11, 30] work in a blocking fashion, i.e. they use one or a combination
of record attributes to split the data sets into blocks. Only records having the same
value in such a blocking variable are then compared (as they will be in the same block).
This technique becomes problematic if a value in a blocking variable is recorded wrongly,
as the corresponding record is inserted into a different block. To overcome this prob-
lem, several passes (iterations) with different blocking variables are normally performed.
While the aim of blocking is to reduce the number of comparisons made as much as
possible (by eliminating comparisons between records that obviously are not links), it is
important that no potential link is overlooked because of the blocking process. There is
a trade-off between the reduction in number of record pair comparisons and the number
of missed true matches (accuracy) [1].

Febrl currently contains three different blocking methods, with more to be included in
the future. The first method is the standard blocking [11, 30] applied in traditional
record linkage systems. The second method is based on the sorted neighbourhood [15]
approach, where records are sorted alphabetically according to the values of the blocking
variable, then a sliding window is moved over the sorted records, and record pairs are
formed using all records within the window. The third method uses bigrams (sub-strings
of length 2) and allows for fuzzy blocking. The values in the blocking variable are con-
verted into lists of bigrams, and permutations of bigram sub-lists are used as keys in an
inverted index, which is then used to retrieve the records in a block [1].

Experiments [1] showed that innovative blocking methods can improve upon the tradi-
tional method used in record linkage, but further research needs to be conducted. The
exploration of improved blocking methods is one of our major research areas. We aim
to further explore alternatives, in terms of their applicability as well as their scalability
both in data size and parallelism. Techniques include, for example, high-dimensional
approximate distance metrics to form overlapping clusters [19], inverted indices, and
improved fuzzy n-gram indices [1, 6].



Table 1: Available field comparison functions.

Exact string (either field value strings are the same or not)
Truncated string (only consider beginning of strings)
Approximate string (using Jaro, Winkler, Edit distance, Bigram etc. algorithm [25])
Encoded string (using Soundex, NYSIIS, Phonex etc. algorithm [17])
Keying difference (allow a certain number of different characters)
Numeric percentage (allowing percentage tolerance)
Numeric absolute (allow absolute tolerance)
Date (allow day tolerance)
Age (allow percentage tolerance)
Time (allow minute tolerance)
Distance (allow kilometre tolerance, for example for postcode centroids)

Record Pair Classification and Assignment Restrictions
Each record pair produced in the blocking process is compared using a variety of field
(or attribute) comparison functions (which are shown in table 1), resulting in a vector
of matching weights. Frequency based weight calculation is currently supported for all
string and the keying difference comparison functions. The weight vectors are then used
to classify record pairs as either a link, non-link, or possible link (in which case the deci-
sion should be done by a human review). Classifiers currently implemented in Febrl are
the classical Fellegi & Sunter [11] classifier (which sums all weights in a vector into one
final matching weight), and a flexible classifier that allows the calculation of the final
matching weight using various functions.

The original Fellegi & Sunter approach is closely related to a Naive Bayes classifier,
and it assumes independence of the attributes. The conditional independent assumption
efficiently deals with the curse of dimensionality, which becomes a major computational
challenge when conditional dependencies are considered. In real world data, attributes
are often dependent on each other (e.g. a change of address often results in changed street
name, street number, postcode and suburb name). We aim to improve upon the classical
probabilistic linkage method by combining them with deterministic and, in particular,
machine learning and data mining techniques. Improvements in the linkage quality are
paramount in order to reduce the time consuming and labour intensive clerical review
process for possible links. Techniques like clustering [13] and active learning [28] have
shown to be promising for this task.

In many linkage projects one is often only interested in the best linked record pairs, and
one-to-one assignments need to be enforced. The simplest way to do this would be to
use a greedy algorithm working on the sorted linked record pairs, but this would result
in some assignments being not optimal due to the transitive closure problem. A linear
sum assignment procedure based on the Auction algorithm [2] is thus used in Febrl to
produce an optimal one-to-one assignment of linked record pairs.

Geocoding
Many commercial GIS software packages provide for street level geocoding. As a recent
study shows [5], substantial differences in positional error exist between addresses which
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Figure 2: Example geocoding using property parcel centres (numbers 1 to 7)
and street reference file centreline (dashed line and numbers 8 to 13, with
the dotted lines corresponding to a global street offset).

are geocoded using street reference files (containing geographic centreline coordinates,
street numbers and names, and postcodes) and the corresponding true locations. The
use of point property parcel coordinates (i.e. the centres or centroids of properties),
derived from cadastral data, is expected to significantly reduce these positional errors.
Figure 2 gives an illustrative example. Even small discrepancies in geocoding can result
in addresses being assigned to, for example, different census collection districts, which
can have huge implications when doing small area analysis.

A comprehensive property based database is now available for Australia: the Geocoded
National Address File (G-NAF) [23]. Approximately 32 million address records from
13 organisations were used in a five-phase cleaning and integration process, resulting in
a database consisting of 22 normalised files. G-NAF is based on a hierarchical model,
which stores information about address sites separately from locations and streets. It
is possible to have multiple geocoded locations for a single address, and vice versa, and
aliases are available at various levels. Three geocode files contain location (longitude
and latitude) information for different levels (address, street and locality).

The geocoding process can be split into the preprocessing of the reference data files and
the matching with user-supplied addresses. The preprocessing step takes the G-NAF
data files and uses the Febrl address cleaning and standardisation routines to convert
the detailed address values into a form which makes them consistent with the user data
after Febrl standardisation. The cleaned and standardised reference records are inserted
into a number of inverted index data structures. Positional n-gram indices can be built
for attributes like street and locality names, allowing for approximate matching when
the user data contains typographical errors (which are common in health data sets). Us-
ing auxiliary data with postcode and suburb boundary information, look-up tables with
neighbouring region are built for suburbs and postcodes, allowing to search for addresses
in adjacent regions if no exact match can be found. Experience shows that people often
record a neighbouring postcode or suburb value if it has a higher perceived social status
(e.g. ‘Double Bay’ and ‘Edgecliff’), or if they live close to the border of such regions.

The Febrl geocode matching engine [7] is based on the G-NAF inverted index data
and takes a rule-based approach. It tries to find an exact match first. If none can be
found it uses approximate matching, and if still no match can be found it extends its
search to neighbouring suburb and postcode regions. First direct neighbouring regions
are searched, then direct and indirect neighbouring regions, until either an exact match
or a set of approximate matches can been found. In the latter case, either a weighted



Table 2: Geocoding results for 1,000 NSW LPI addresses.

Match type Number of matches Percentage

Exact address 759 75.9%
Average address 19 1.9%
Many address 11 1.1%
Exact street 125 12.5%
Many street 9 0.9%
Exact locality 68 6.8%
Many locality 9 0.9%

average location (if the matches are within a small area) is returned, or a ranked (ac-
cording to a matching weight) list of the found matches. User input records are cleaned
and standardised before geocoding is attempted. Table 2 shows some matching results
for addresses from a NSW Land and Property Information data set. Our future efforts
will be directed towards the refinement of the geocode matching engine to achieve more
accurate matching results.

Parallelisation
Although computing power has increased tremendously in the last few decades, large-
scale data cleaning, standardisation and record linkage are still resource-intensive pro-
cesses. In order to be able to process massive data sets, parallel processing becomes
essential. Issues that have to be addressed are efficient data distribution, fault tolerance,
dynamic load balancing, portability and scalability (both with the data size and the
number of processors used).

Confidentiality and privacy have to be considered as record linkage often deals with par-
tially identified data, and access restrictions are required. The use of high-performance
computing centres (which traditionally are multi-user environments) or grid computing
becomes problematic. An attractive alternative are networked personal computers or
workstations which are available in large numbers in many businesses and organisations.
Such office based clusters can be used as virtual parallel computing platforms to run
large scale linkage tasks over night or on weekends.

Parallelism within Febrl is currently implemented based on the Message Passing Inter-
face (MPI) [20] standard. Cleaning and standardisation, as well as geocoding is em-
barrassingly parallel (assuming the data is available distributed), as each record can be
processed independently. The main parallel bottleneck is the blocking process which is
not scalable in the number of processors, as access to the complete data sets is needed to
build the blocking indices. The comparison of record pairs (which is the most compute
intensive step) and classification steps are again scalable.

As an example, deduplication of 200, 000 records from a real world health data set on
a SUN Enterprise 450 shared memory (SMP) server with four 480 MHz Ultra-SPARC
II processors and 4 Giga Bytes of main memory resulted in run times of 106 hours on
one and 29 hours on four processors (speedup of 3.66). More than 95% of the time was
spent in the comparison of record pairs. Communication times for this experiment were
less than 0.35% of the total run times.



We will continue to improve upon the parallel processing functionalities of Febrl with
an emphasis on running large linkage processes on clusters of personal computers (PCs)
and workstations. Confidentiality and privacy aspects will need to be considered as well,
as record linkage in many cases deals with identified data.

Probabilistic Data Generation
As record linkage and deduplication is often dealing with data sets that contain partially
identified data (like names and addresses) it can be difficult to acquire data for testing
and evaluation of new linkage algorithms and techniques. It is also hard to learn how to
use and customise record linkage systems effectively without data sets where the linkage
or deduplication status of record pairs is known.

In recent record linkage literature, a variety of data sets were used for experimental stud-
ies, some publicly available [3, 9, 19, 28], others proprietary [3, 10, 28]. This makes it
difficult to validate the presented results, as well as to compare newly developed linkage
algorithms.

What is needed is a collection of publicly available real test data sets for deduplication
and record linkage, which can be used as a standard test bed for developing and compar-
ing algorithms (similar to standard data sets used in information retrieval or machine
learning). However, due to privacy and confidentiality issues it is unlikely that such data
will ever become publicly available. De-identified data unfortunately cannot be used as
the real values of names and addresses, for example, are at the core of many linkage
algorithms.

An alternative is the use of artificially generated data sets. They have the advantages
that the amount of errors introduced, as well as the linkage status of record pairs, are
known. Controlled experiments can be performed and replicated easily. A first such
data set generator (DBGen) was presented by [14] and has been used by others in a
number of studies. This generator allows the creation of databases containing duplicates
records. It uses lists of names, cities, states, and postcodes (all from the USA), and
provides a large number of parameters, including size of the database to be generated,
percentage and distribution of duplicates, and the amount and types of errors introduced.

We have improved upon DBGen by using frequency tables for name and address val-
ues taken from Australian telephone directories, and dictionary look-up tables with real
world spelling variations of a large number of words, as well as user controlled maximum
number of errors introduced per attribute and per record. User provided parameters
also include the number of original and duplicate records to be created, the maximum
number of duplicates for one original record, and the probabilities for introducing various
errors to create the duplicate records (like inserting, deleting, transposing and substitut-
ing characters; swapping an attribute value with another value from the same look-up
table; inserting or deleting spaces; setting an attribute value to missing; or swapping
the values of two attributes). The position of where errors are introduced, as well as
the types of errors introduced, are modelled according to studies on typographical and
related errors [16, 24]. Each created record is given a unique identifier, which allows the
evaluation of error rates (false linked non-duplicates and non-linked true duplicates).



Related Work
The processes of data cleaning, standardisation and record linkage have various names
in different user communities. While statisticians and epidemiologists speak of record
or data linkage [11], the same process is often referred to as data or field matching,
data scrubbing, data cleaning, preprocessing, or as the object identity problem [12, 18, 27]
by computer scientists and in the database community, whereas it is sometimes called
merge/purge processing [14], data integration [9], list washing or ETL (extraction, trans-
formation and loading) in commercial processing of customer databases or business mail-
ing lists. Historically, the statistical and the computer science community have developed
their own techniques, and until recently few cross-references could be found.

Improvements [30] upon the classical Fellegi & Sunter [11] approach include the appli-
cation of the expectation-maximisation (EM) algorithm for improved parameter estima-
tion [31], and the use of approximate string comparisons [25] to calculate partial agree-
ments when attribute values have typographical errors. Fuzzy techniques and methods
from information retrieval have recently been used to address the record linkage prob-
lem [6]. One approach is to represent records as document vectors and to compute
the cosine distance [9] between such vectors. Another possibility is to use an SQL like
language [12] that allows approximate joins and cluster building of similar records, as
well as decision functions that decide if two records represent the same entity. Other
methods [18] include statistical outlier identification, pattern matching, clustering and
association rules based approaches.

In recent years, researchers have also started to explore the use of machine learning and
data mining techniques to improve the linkage process. The authors of [10] describe a
hybrid system that in a first step uses unsupervised clustering on a small sample data
set to create data that can be used in the second step to classify record pairs into links
or non-links. Learning field specific string-edit distance weights [21] and using a binary
classifier based on support vector machines (SVM) is another approach. A system that
is capable to link very large data sets with hundreds of millions of records – using special
sorting and preprocessing techniques – is presented in [32].

Conclusions and Future Work
Written in an object-oriented open source scripting language, the Febrl record linkage
system is an ideal experimental platform for researchers to develop, implement and eval-
uate new record linkage algorithms and techniques. While the current system can be
used to perform smaller data cleaning, standardisation, linkage and geocoding tasks (up
to several thousand records), further work needs to be done to allow the efficient pro-
cessing of very large data sets.
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