Automated Probabilistic Address Standardisation and Verification

Peter Christen and Daniel Belacic

Data Mining Group, Australian National University Contact: peter.christen@anu.edu.au

Project web page: http://datamining.anu.edu.au/linkage.html

Funded by the ANU, the NSW Department of Health, and the Australian Research Council (ARC) (LP #0453463)

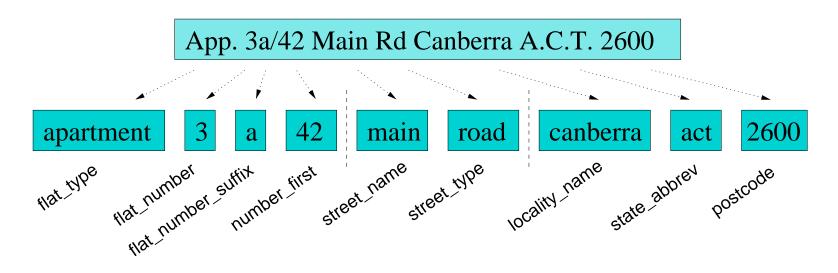
Outline

- Address cleaning and standardisation
- Probabilistic standardisation approaches
- Hidden Markov models for data segmentation
- Our probabilistic approach
- Automated Hidden Markov model training
- Experimental results
- Conclusions and outlook

Why address standardisation?

- Real world data is often *dirty*
 - Typographical and other errors
 - Different coding schemes
 - Missing values
 - Data changing over time
- Addresses (and names) are especially prone to data entry errors
 - Scanned, hand-written, over telephone, hand-typed
 - Same person often provides her/his details differently
 - Different correct spelling variations for proper names (e.g. Gail and Gayle, or Dixon and Dickson)

Address standardisation tasks



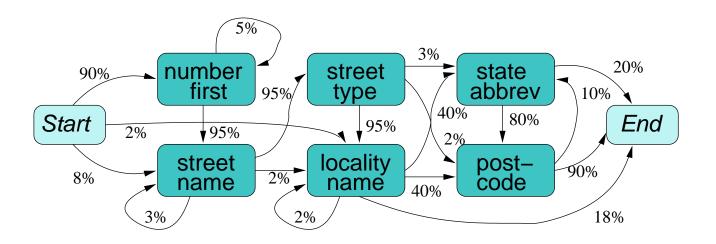
- Clean input
 - Remove unwanted characters and words
 - Expand abbreviations and correct misspellings
- Segment address into well defined output fields
- Verify if address (or parts of it) exists

Address standardisation approaches

- Traditionally: Rules based
 - Manually developed parsing and transformation rules
 - Time consuming and complex to develop and maintain
- Recently: Probabilistic methods
 - Mainly based on hidden Markov models (HMMs)
 - More flexible and robust with regard to new unseen data
 - Drawback: Training data needed for most methods

HMMs are widely used in natural language processing and speech recognition, as well as for text segmentation and information extraction.

What is a Hidden Markov model?



- A HMM is a *probabilistic* finite state machine
 - Made of a set of states and transition probabilities between these states
 - In each state an observation symbol is emitted with a certain probability
 - In our approach, the states correspond to output fields

Probabilistic address standardisation

- Segmentation of Indian and US addresses (Borkar, Deshmukh, Sarawagi, 2001)
 - Hierarchical features and nested HMMs
 - Allow the integration of external hierarchical databases for improved segmentation
 - Presented results better than rules-based system Rapier
- Attribute recognition models (Agichtein, Ganti 2004)
 - Automatic system only using an external database
 - Based on HMMs, capture the characteristics of values in database
 - Feature hierarchies are used to learn the HMM topology and probabilities

Our standardisation approach

- Based on our previous work (Churches'02)
 - Uses lexicon-based tokenisation rather than original values as HMM observation symbols
 - Manually compiled look-up tables
 - Manual preparation of training data needed
 - Better results than rule-based system AutoStan
- New contributions (AusDM'05)
 - Build initial HMM structure from postal guidelines
 - Automatically create HMM training data using initial HMM structure and a national address database
 - Automatically create look-up tables from address database

Address standardisation steps

- Three step approach
 - 1. Cleaning
 - Based on look-up tables and correction lists
 - Remove unwanted characters and words
 - Correct various misspellings and abbreviations
 - 2. Tagging
 - Split input into a list of words, numbers and separators
 - Assign one or more tags to each element of this list (using look-up tables and/or features)
 - 3. Segmenting
 - Use a trained HMM to assign list elements to output fields

Tagging step

- Tags are based on look-up tables and features
 - If found in look-up tables for street name (SN), street type (ST), locality name (LN), postcode (PC), etc.
 - Otherwise according to more general features
- Features characterise values
 - If a value contains letters (L), numbers (N), alphanumerics (A), or is mixed (M)
 - The length of a value (1, 2, ..., 6_8, 9_11, 12_15, 16+)

Examples:

`avenue' will be tagged with `ST' and `L6_8'

- `2602' will be tagged with `PC' and `N4'
- `12b' will be tagged with `A3'

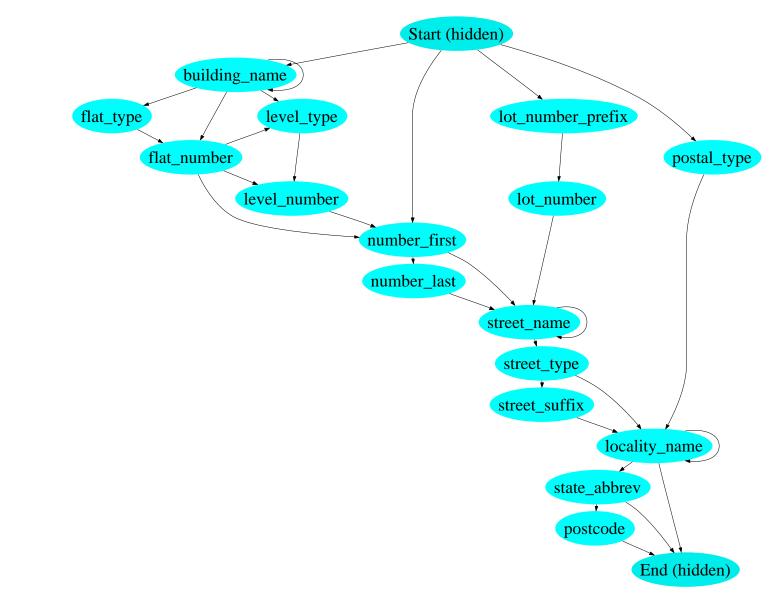
Example address standardisation

- Raw input address: `42 meyer Rd COOMA 2371'
- Cleaned into: `42 meyer road cooma 2371'
- Tagged (both look-up tables and feature tags):
 [`42',`meyer',`road', `cooma', `2371']
 [`N2',`SN/L5',`ST/L4',`LN/SN/L5',`PC/N4']
- Segmented by HMM into *output fields*:
 - number_first : `42'
 - street_name : `meyer'
 - street_type : `road'
 - locality_name : `cooma'
 - postcode : `2371'

Preparation and training phase

- Initial HMM structure is built using national postal guidelines (Australia Post, AS4212-1994, AS4590-1999)
 - Currently manual, in future XML scheme likely
- Records from a comprehensive address database are used as HMM training records
 - We use G-NAF (Geocoded National Address File) with around 4.5 million addresses from NSW
 - Contains clean and segmented records (26 attributes)
 - Missing are postal addresses and many postcodes, as well as characters like slash (/) and hyphen (–)

Initial HMM structure (simplified)

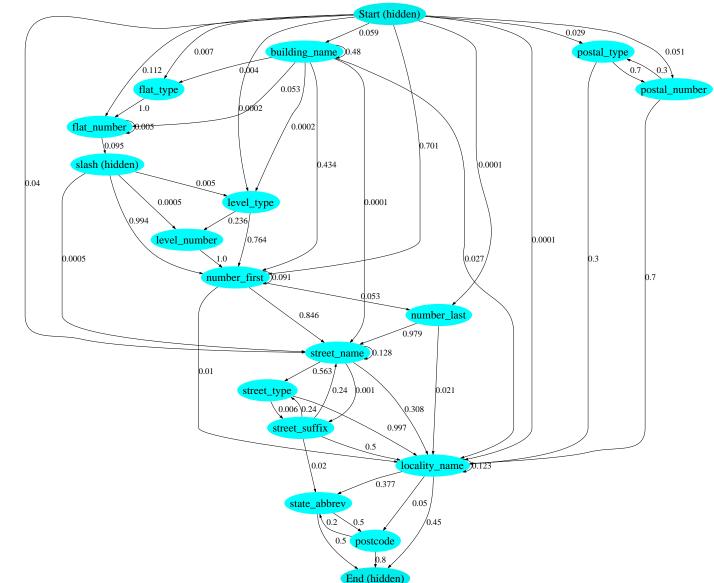


THE AUSTRALIAN

Automated HMM training

- Address records are re-ordered according to topologically sorted initial HMM structure
- Various tweaks need to be done (insert postcodes, postal addresses, slash, hyphen, etc.)
- HMM observation symbols are tags (either features only (F), look-ups only (LT) or both look-ups and features (LT&F))
- Processed records are then used for HMM training (smoothing is used to make HMM more robust towards unseen data in the standardisation phase)
- Look-up tables are built for name attributes (and merged into existing tables)

Final HMM (simplified)



THE AUSTRALIAN

First experiments

- Three smaller data sets
 - NSW Midwives data (500 records, randomly selected)
 - Nursing homes (600 records, randomly selected)
 - Unusual addresses (150 records, manually selected)
- HMMs generated for F, LT, and LT&F
- Compared to manually generated HMM using earlier Febrl approach (Churches'02)
- Measurements
 - Correctness: Exact and *close* standardisation accuracy
 - Number of easy addresses (with simple structure, like [street num, name, type; loc, state, pc])

Results for Midwives data collection

	F	LT	LT&F	Febrl
Easy addresses	89.0%	87.6%	89.2%	82.0%
Accuracy	96.6%	95.4%	97.4%	96.8%
Close accuracy	97.0%	97.4%	98.0%	97.6%
Time per record	6 ms	11 ms	92 ms	7 ms

_

Results for Nursing homes data

	F	LT	LT&F	Febrl
Easy addresses	90.3%	89.7%	90.3%	88.2%
Accuracy	92.7%	98.5%	96.7%	96.0%
Close accuracy	96.5%	98.5%	97.8%	98.3%
Time per record	7 ms	18 ms	445 ms	9 ms

Results for unusual addresses

	F	LT	LT&F	Febrl
Easy addresses	20.6%	18.0%	20.6%	14.7%
Accuracy	79.3%	72.7%	92.7%	96.0%
Close accuracy	80.7%	80.0%	94.7%	96.0%
Time per record	7 ms	37 ms	720 ms	10 ms

150 manually selected unusual address records (like rural addresses, corner addresses, building and institution addresses, etc.)

Conclusions and outlook

- Automated address standardisation
 - Important for data mining pre-processing and linkage
 - Can be achieved using national address guidelines and a comprehensive address database
 - Accuracy comparable to hand-trained systems
- Current and future work
 - Fine-tune training data preparation
 - Add address verification (use inverted indices and hash-encodings like MD5 or SHA)
 - Further testing and comparison experiments
 - Full integrate into data linkage system Febrl