
Towards Scalable Real-Time Entity
Resolution using a Similarity-Aware

Inverted Index Approach

Peter Christen 1 and Ross Gayler 2

1 Department of Computer Science,
ANU College of Engineering and Computer Science,

The Australian National University,
Canberra ACT 0200, Australia

2 Veda Advantage,
Melbourne VIC 3000, Australia

Contact: peter.christen@anu.edu.au

Peter Christen and Ross Gayler, November 2008 – p.1/20



Outline

Introduction to entity resolution
Applications and challenges

Entity resolution techniques

Real-time entity resolution

Indexing for real-time entity resolution

1. Standard blocking

2. Similarity-aware inverted index

3. Materialised similarity-aware inverted index

Experimental evaluation

Conclusions and future work

Peter Christen and Ross Gayler, November 2008 – p.2/20



What is entity resolution?

The process of matching and aggregating records
that represent the same entity (such as a patient, a

customer, a business, an address, or an article)

Also called data matching, record or data linkage,

data scrubbing, object identification, merge-purge, etc.

Challenging if no unique entity identifiers available
For example, which of these three records refer to the

same person?

Dr Smith, Peter 42 Miller Street 2602 O’Connor

Pete Smith 42 Miller St, 2600 Canberra A.C.T.

P. Smithers 24 Mill Street; Canberra ACT 2600

Peter Christen and Ross Gayler, November 2008 – p.3/20



Applications of entity resolution

Health, biomedical and social sciences

Census, taxation, social security

Deduplication of (business mailing) lists

Bibliographic databases and online libraries

Geocode matching (‘geocoding’) of addresses
for spatial analysis

Crime and fraud detection, national security

Identity verification
For example, credit card applications

Match applicant’s details with large databases that

contain existing identities
Peter Christen and Ross Gayler, November 2008 – p.4/20



Entity resolution challenges

Often no unique entity identifiers are available

Real world data is dirty
(typographical errors and variations, missing and
out-of-date values, different coding schemes, etc.)

Scalability

Naïve comparison of all record pairs is O(n × m)

Some form of blocking, indexing or filtering is required

Privacy and confidentiality
(because personal information, like names and addresses,
is commonly required for matching)

No training data in many application areas
(no record pairs with known true match status)

Peter Christen and Ross Gayler, November 2008 – p.5/20



Entity resolution techniques

Traditional approaches only consider attribute
similarities (using various similarity functions)
Record A: [‘dr’, ‘peter’, ‘paul’, ‘miller’]

Record B: [‘mr’, ‘john’, ‘’, ‘miller’]

Matching weights: [0.2, -3.2, 0.0, 2.4 ]

Classify record pairs using matching weights
(into matches, non-matches, and maybe possible matches,
for which clerical review is needed)

Recently, collective entity resolution techniques
have been developed

Use relational information (connections between

entities), rather than just attribute similarities

Peter Christen and Ross Gayler, November 2008 – p.6/20



Real-time entity resolution (1)

Traditionally, match two static databases
(only one approach for query-time entity resolution: 31
sec for matching a query record with 831,000 records)

Today, many applications require real-time
matching

Identity verification during credit application,

government services and benefits, e-Health, etc.

Crime detection and terrorism prevention systems

Health surveillance systems (disease outbreaks)

A task similar to large-scale Web search (match
a record to a large database, return most similar results)

Peter Christen and Ross Gayler, November 2008 – p.7/20



Real-time entity resolution (2)

Objectives:
Process a stream of incoming query records with

one or several large databases

Match these query records as quickly as possible

Generate a match-score (allows setting a threshold)

Challenges:
Large databases with many million records

Dynamic database updates

User constraints (like black-lists, or known name

variations of people who have changed names)

Multiple databases with different information content

Peter Christen and Ross Gayler, November 2008 – p.8/20



Indexing for real-time entity
resolution

Combine inverted index approach with similarity
calculations (like approximate comparisons of names)

Two phases of real-time entity resolution:
1. Build index on database (insert all database records

into index)

2. Query index with incoming records (who’s values

might be in the index or not)

We have implemented three index variations
Similarity functions return values from 0 (for total

dissimilarity) to 1 (for exact similarity)

Use phonetic encoding (such as Soundex) to

group record values into blocks
Peter Christen and Ross Gayler, November 2008 – p.9/20



Standard blocking (inverted) index

m460 p360 s530

r2

r4

r6

r8

r3 r1

r5

r7

Record ID Surname Soundex encoding

r1 smith s530
r2 miller m460
r3 peter p360
r4 myler m460
r5 smyth s530
r6 millar m460
r7 smith s530
r8 miller m460

Peter Christen and Ross Gayler, November 2008 – p.10/20



Similarity-aware inverted index

r1r2

0.9

millar miller myler peter smith smyth

0.9

r7

r5r3r6 r4

r8

0.8

0.7

Record ID Surname Soundex encoding

r1 smith s530
r2 miller m460
r3 peter p360
r4 myler m460
r5 smyth s530
r6 millar m460
r7 smith s530
r8 miller m460

Peter Christen and Ross Gayler, November 2008 – p.11/20



Materialised similarity-aware
inverted index

0.7 0.9

peter smith smythmyler

0.9

millermillar

0.8

1.0

1.0

1.0r5

r2

r4

r6

r8

r2

r4

r6

r8

r2

r4

r6

r8

r3 r1

r5

r7

r1

r71.0

1.0

1.0

1.0

0.9

0.9

0.90.9

0.7

0.9

0.8

0.9

0.8

1.0

0.8

0.7

Record ID Surname Soundex encoding

r1 smith s530
r2 miller m460
r3 peter p360
r4 myler m460
r5 smyth s530
r6 millar m460
r7 smith s530
r8 miller m460

Peter Christen and Ross Gayler, November 2008 – p.12/20



Optimisations

There is a large body of research on optimisation
of inverted index techniques for search engines
(not all of it published, most work commercial)

Based on sorting or filtering of index elements

We have implemented a threshold based filtering
In real applications, an index is built on several

attributes (like in the following experiments)

Similarities are summed over attributes (for example:

simname = 0.6, simsuburb = 0.3, simpostcode = 0.9)

Filter records that are guaranteed not to reach overall

threshold (like with threshold t = 2.2, the above record

can be removed after suburb similarity is calculated)
Peter Christen and Ross Gayler, November 2008 – p.13/20



Experimental evaluation

Australian Number Number of unique values

state/territory of records Postcodes Suburbs Surnames

NT 48,754 28 171 15,887
ACT 115,558 31 132 28,599
TAS 184,158 118 868 20,430
SA 544,562 342 1,304 63,288
WA 653,167 394 1,395 77,325

QLD 1,309,744 432 2,945 110,028
VIC 1,738,216 708 3,030 175,045

NSW 2,323,355 624 4,223 207,403

Using ‘Australia on Disk’ data set (November 2002)

Randomly selected two times 100 records per
data set (as query records)

1. One single modification in one of the three attributes

2. One or more modifications in all the three attributes
Peter Christen and Ross Gayler, November 2008 – p.14/20



Matching accuracy (as percentages)

Australian Standard- Sim-Aware- Mat-Sim-Aware-
state/territory blocking Inv-Index Inv-Index

One modification only per record

NT 97 / 97 99 / 99 97 / 99
ACT 92 / 92 95 / 95 95 / 95
TAS 94 / 94 93 / 93 93 / 93
SA 95 / 95 97 / 97 97 / 97
WA 96 / 96 95 / 95 95 / 95

QLD 98 / 98 94 / 94 –
VIC 95 / 95 92 / 92 –

NSW 91 / 91 87 / 87 –

Three modifications per record

NT 85 / 85 67 / 66 67 / 66
ACT 78 / 78 60 / 65 60 / 65
TAS 75 / 75 55 / 54 55 / 54
SA 78 / 78 39 / 52 39 / 52
WA 73 / 73 48 / 54 48 / 54

QLD 69 / 69 30 / 41 –
VIC 72 / 72 36 / 56 –

NSW 79 / 79 45 / 65 –
Peter Christen and Ross Gayler, November 2008 – p.15/20



Timing results (1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

NSWVICQLDWASATASACTNT

A
ve

ra
ge

 ti
m

e 
pe

r 
qu

er
y 

(in
 s

ec
on

ds
)

One modification per query record (without optimisation)

Standard-Blocking
Sim-Aware-Inv-Index

Mat-Sim-Aware-Inv-Index

Peter Christen and Ross Gayler, November 2008 – p.16/20



Timing results (2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

NSWVICQLDWASATASACTNT

A
ve

ra
ge

 ti
m

e 
pe

r 
qu

er
y 

(in
 s

ec
on

ds
)

One modification per query record (with optimisation)

Standard-Blocking
Sim-Aware-Inv-Index

Mat-Sim-Aware-Inv-Index

Peter Christen and Ross Gayler, November 2008 – p.17/20



Timing results (3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

NSWVICQLDWASATASACTNT

A
ve

ra
ge

 ti
m

e 
pe

r 
qu

er
y 

(in
 s

ec
on

ds
)

Three modifications per query record (without optimisation)

Standard-Blocking
Sim-Aware-Inv-Index

Mat-Sim-Aware-Inv-Index

Peter Christen and Ross Gayler, November 2008 – p.18/20



Timing results (4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

NSWVICQLDWASATASACTNT

A
ve

ra
ge

 ti
m

e 
pe

r 
qu

er
y 

(in
 s

ec
on

ds
)

Three modifications per query record (with optimisation)

Standard-Blocking
Sim-Aware-Inv-Index

Mat-Sim-Aware-Inv-Index

Peter Christen and Ross Gayler, November 2008 – p.19/20



Conclusions

Real-time entity resolution is of significance in
many applications (but not much work done so far)

We have combined inverted index approaches
with similarity calculations

Our approach is between 1.3 and 27 (no optimisation)

and 2.6 to 100 (with optimisation) times faster than

standard blocking

However, accuracy is suffering with our approach

More work needed on optimisation, as well as
combining real-time indexing with advanced
classification for entity resolution

Peter Christen and Ross Gayler, November 2008 – p.20/20


	Outline
	What is entity resolution?
	Applications of entity resolution
	Entity resolution challenges
	Entity resolution techniques
	Real-time entity resolution (1)
	Real-time entity resolution (2)
	Indexing for real-time entity resolution
	Standard blocking (inverted)
index
	Similarity-aware inverted index
	Materialised similarity-aware \ inverted index
	Optimisations
	Experimental evaluation
	Matching accuracy {scriptsize (as percentages)}
	Timing results (1)
	Timing results (2)
	Timing results (3)
	Timing results (4)
	Conclusions

