
For Peer Review Only

1

Precise and Fast Cryptanalysis for Bloom Filter
Based Privacy-Preserving Record Linkage

Peter Christen, Thilina Ranbaduge, Dinusha Vatsalan, and Rainer Schnell

Abstract—Being able to identify records that correspond to the same entity across diverse databases is an increasingly important step
in many data analytics projects. Research into privacy-preserving record linkage (PPRL) aims to develop techniques that can link
records across databases such that besides the record pairs classified as matches no sensitive information about the entities in these
databases is revealed. A popular technique used in PPRL is to encode sensitive values into Bloom filters (bit vectors), which has the
advantage of allowing approximate matching using character q-grams. PPRL based on Bloom filter encoding has shown to be accurate
and scalable to large databases, and is thus now being used in real-world PPRL systems in Australia, Canada and the UK. However,
recent studies have shown that Bloom filters used for PPRL are vulnerable to cryptanalysis attacks that can re-identify some of the
sensitive values encoded in these Bloom filters. While previous such attack methods were slow and required knowledge of various
encoding parameters, we present a novel efficient attack which exploits how attribute values are encoded into Bloom filters. Our attack
method does not require knowledge of the encoding function or its parameter settings used. It is able to correctly re-identify with high
precision q-grams that could not have been hashed to certain Bloom filter bit positions, and using these re-identified q-grams it can
then re-identify attribute values with high precision. Our method is significantly faster than earlier PPRL cryptanalysis attacks, and in
our experimental evaluation it is able to successfully re-identify attribute values from large real-world databases in a few minutes.

Index Terms—Re-identification, frequency analysis, entity resolution, privacy evaluation, privacy attack.

F

1 INTRODUCTION

THERE is an increasing need in many data engineering
and analytics projects to integrate data from multiple

sources to enable more sophisticated analysis, to detect and
correct inconsistencies in data, or to enrich individual data
sources. Record linkage is the task of identifying records that
correspond to the same real-world entities across databases
when unique entity identifiers (such as social security num-
bers) are not available [1]. Instead, approximate matching
techniques have to be used to calculate the similarities be-
tween records, followed by a classification of the compared
record pairs into matches (assumed to refer to the same en-
tity) and non-matches (assumed to refer to different entities).
Applications of record linkage range from the health sector
and business analytics to national security [1].

In many applications the records to be linked refer to
people, for example patients or tax payers, and the attributes
required to calculate the similarities between such records
include names, addresses, dates of birth, and so on. These
quasi-identifiers in many applications cannot be exchanged
or shared across organizations due to privacy laws and
regulations, or for commercial reasons [2], [3].

Research in the area of privacy-preserving record linkage
(PPRL) [4], [5], [6] over the past two decades has aimed
to develop techniques that allow the linkage of databases

• P. Christen and T. Ranbaduge are with the Research School of Computer
Science, The Australian National University, Canberra ACT 2601, Aus-
tralia. E-mail: peter.christen@anu.edu.au, thilina.ranbaduge@anu.edu.au

• D. Vatsalan is with the Networks Research Group, Data61-CSIRO,
Sydney NSW 2015, Australia. E-mail: dinusha.vatsalan@data61.csiro.au

• R. Schnell is with the Methodology Research Group, University Duisburg-
Essen, 47057 Duisburg, Germany. E-mail: rainer.schnell@uni-due.de

without the need of any private or confidential informa-
tion to be shared between the organizations involved in a
linkage project. PPRL is conducted such that only limited
information about the record pairs classified as matches
(such as their record identifiers or values from selected non-
identifiable attributes) is revealed to the organization(s) that
require(s) the linkage results. The techniques used in PPRL
must also guarantee that no internal or external attacker (ad-
versary) can compromise any sensitive information about
the entities in the databases that are being linked [3], [5].

The general idea of PPRL is to encode (or encrypt) the
attribute values required for linkage at the source databases
such that approximate similarities between records can still
be calculated [4]. Various encoding techniques for PPRL
have been developed over the past decades. These can be
categorized [5] into secure multi-party computation (SMC),
perturbation, and hybrid techniques [7]. SMC based tech-
niques generally employ cryptographic operations and they
are provably secure [8]. However, to allow for approximate
matching, many SMC based techniques have high compu-
tation and communication costs, making them currently not
scalable to linking large databases [5].

Perturbation based techniques generally provide a trade-
off between linkage quality, efficiency, and privacy. Practical
PPRL applications [2], [9], [10] are mostly based on per-
turbation techniques that provide adequate privacy protec-
tion while achieving acceptable linkage quality and perfor-
mance. It is however vital that practical PPRL applications
are secure and cannot be attacked as otherwise sensitive
information can potentially be revealed [4], [5].

One popular perturbation based technique for PPRL is
Bloom filter (BF) encoding [11]. A BF is a bit vector into
which elements of a set are hashed into. As we describe in

Page 1 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

2

Section 3, textual values can be encoded into BFs by convert-
ing a string into its set of q-grams (character strings of length
q). Techniques to encode numerical values into BFs have also
been proposed [12], [13]. The similarity between two BFs can
be calculated using a set-based similarity measure [1].

BF based PPRL techniques have the advantage of be-
ing efficient and facilitate the linkage of large real-world
databases, where approximate matching is crucial due to
errors and variations in attribute values [2], [10]. Recent
research has however shown that BF based techniques can
be vulnerable to cryptanalysis attacks that aim to re-identify
the sensitive attribute values encoded in BFs [14], [15], [16],
[17], [18]. These attacks use the frequency counts and bit
patterns in a set of BFs to map frequent bit patterns to
frequent plain-text values. Existing cryptanalysis attacks are
however not practical because they assume an attacker has
knowledge of certain parameter settings used during BF
encoding, and/or they have high computational costs.

In this paper we extend our recently proposed attack
method [14] which exploits how q-grams are hashed into
BFs. For each bit position, this method identifies a set of pos-
sible and a set of not possible q-grams, and then re-identifies
attribute values using only the sets of possible q-grams.
However, as our experiments show, these sets have low
precision (i.e. they contain q-grams that were not hashed
to a certain bit position) which leads to low re-identification
accuracy. In contrast, our novel attack method uses the sets
of not possible q-grams which have higher precision.

Contributions: We contribute an efficient cryptanalysis
attack on BF encoding for PPRL which exploits bit patterns
in a set of frequent BFs that are frequency aligned with
a set of frequent plain-text attribute values. We present a
novel approach to identify q-grams that must have been
hashed to certain bit positions in a BF (we name these
assigned q-grams), and two new methods to refine and
expand the sets of possible, not possible, and assigned q-
grams. We then propose a novel approach to re-identify
attribute values based on the sets of not possible q-grams.
We experimentally evaluate our attack method on several
real-world databases, confirming its ability to re-identify q-
grams at BF bit positions with high precision. Our attack
can re-identify sensitive attribute values from databases that
contain hundreds of thousands of records in minutes.

Outline: We next provide the required background on
PPRL and describe existing attacks on BF based PPRL. In
Section 3 we discuss BF encoding for PPRL as well as
techniques that aim to make BFs more resilient to attacks.
We describe our attack method in Section 4, and analyze its
complexity and limitations in Section 5. Using real-world
databases, in Section 6 we experimentally show how our
attack method is able to re-identify attribute values with
high precision, and we provide recommendations on how to
use BF encoding securely for practical PPRL. We conclude
our work in Section 7 with possible research directions.

2 BACKGROUND AND RELATED WORK

Privacy in record linkage was first investigated in the mid
1990s and since then PPRL has been an active research field.
A variety of techniques have been developed to allow link-

age using encoded or encrypted values of quasi-identifying
attributes across two or more databases [4], [5], [6].

Because real-world data are often dirty, exact matching is
not sufficient to achieve high linkage quality in most PPRL
applications [5]. This is especially the case when personal
identifying attributes, such as names and addresses, are
used for linkage because these are prone to variations and
typographical errors [1]. Any encoding used for PPRL needs
to preserve the original similarities between values to allow
approximate matching between encoded values.

PPRL based on SMC techniques encrypt values using,
for example, homomorphic encryption [8]. Because these
techniques are often computationally expensive [8], recent
research in PPRL has developed perturbation based tech-
niques using, for example, noise addition using differential
privacy [7], generalization such as k-anonymity, or embed-
ding spaces [5], [6]. These techniques facilitate scalable PPRL
at the cost of a trade-off with privacy and linkage quality.

BF encoding is a widely used perturbation technique for
PPRL that can support approximate matching by preserving
the similarities in the BF space [5], [11], [19]. Schnell et
al. [11] introduced an approximate matching approach for
string values encoded into BFs, as we describe in Section 3,
while Vatsalan and Christen [12] and Karapiperis et al. [13]
recently proposed two approaches for encoding numeri-
cal attributes. A recent study showed that BF encoding
can achieve similar linkage quality compared to traditional
record linkage techniques on unencoded values [10].

The efficiency and effectiveness of BFs has sparked wide
ranging research using this technique, and first practical
applications of BF based PPRL are now being implemented
in several countries [2], [9], [10]. However, as we describe
next and summarize in Table 5, BFs are prone to cryptanal-
ysis attacks that aim to re-identify encoded values based on
frequency information and background knowledge.

A first such attack using a constraint satisfaction solver
was studied by Kuzu et al. [16], where plain-text attribute
values are mapped to BF bit patterns from an encoded
database that meet constraints such as frequency align-
ments. Kuzu et al. [17] then investigated the accuracy of
their attack using two real-world databases. A medical
database was used as the encoded database and a public
voter registration database as the plain-text database. The
experiments showed that the attack is less likely to be accu-
rate in many cases and required significant computational
resources with a larger number of frequent names.

Niedermeyer et al. [18] proposed a cryptanalysis attack
on BF encodings using filtering and statistical analysis tech-
niques that exploits the linear combination of the values
used to generate hash functions [11]. The attack generates a
set of possible bit patterns (so called atoms) that are aligned
with plain-text values according to their frequencies. The
experiments conducted showed that the proposed attack
was able to re-identify 934 frequent values from 7, 580
surnames before it was stopped. Kroll and Steinmetzer [15]
extended this attack for the case where values from several
attributes are encoded into one BF. Their attack was able
to correctly re-identify 44% of 100, 000 attribute values.
Both these attack methods, [18] and [15], assume the double
hashing (DH) scheme [20] used by Schnell et al. [11] for BF
encoding, which we describe in the following section.

Page 2 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

3

We recently proposed an efficient attack method [14] that
works independently of the BF encoding method used and
does not require any knowledge about the encoding param-
eter settings applied. Based on frequent attribute values that
are aligned with frequent BFs, sets of possible and not possible
q-grams are identified for each BF bit position. Using the
possible q-gram sets, attribute values are re-identified based
on BF bit patterns. While this attack is fast, for many BFs
it re-identifies wrong attribute values because the sets of
not possible q-grams are not fully used. In this paper we
substantially improve this attack as we describe in Section 4.

3 BLOOM FILTER ENCODING AND HARDENING

BFs were proposed by Bloom in 1970 as an efficient way to
represent sets [21]. A BF b is a bit vector of length l bits
where initially all bits are set to 0. A set of k independent
hash functions, h1, . . . , hk, each with range [1, . . . , l], is used
to hash each element s of a set s into a BF by setting corre-
sponding bit positions to 1: b[hj(s)] = 1, with 1 ≤ j ≤ k.
For a given query element sq , if any of the k hashed posi-
tions for sq is 0 (formally: ∃j : 1 ≤ j ≤ k : b[hj(sq)] = 0),
then sq cannot be in the set s. While the hashing of elements
into BFs cannot lead to false negatives [21], false positives
are possible due to collisions, as shown in Figure 1.

In PPRL, the (sensitive) values in the attributes used to
compare records first need to be converted into sets that
can be hashed into BFs, where string values are commonly
converted into sets of character q-grams [11]. For each
record in a database to be linked, either one BF is generated
per attribute used for the linkage (attribute-level BF), or one
combined single BF is generated where all linkage attributes
are hashed into (record-level BF) [11], [19]. Using record-level
BFs will increase privacy, however it will likely lead to re-
duced linkage quality because only a single similarity can be
calculated between two records (compared to one similarity
per attribute when attribute-level BFs are used) [5].

The BFs generated by a database owner for each record
in their database are then sent to a linkage unit (LU) that cal-
culates the similarities for pairs of BFs (as described below)
and classifies these pairs as matches or non-matches [11],
[19]. PPRL can also be conducted without a LU by exchang-
ing BF segments among the database owners to distribu-
tively calculate the similarities between BFs [22].

A set-based similarity function such as the Jaccard or
Dice coefficient [1] can be used to calculate the similarity
between two BFs. As shown in Figure 1, for two BFs, b1

and b2, the Dice coefficient is calculated as simD(b1,b2) =
2c/(x1 + x2), where c is the number of bit positions that are
set to 1 in both BFs (the common 1-bits), and x1 and x2 are
the number of 1-bits in b1 and b2, respectively [5], [11].

The initial proposal of BF encoding for PPRL used a
double hashing scheme (DH) [11], [20], where the k bit
positions for an element to be hashed are determined by the
sum of the integer representation of two independent hash
functions. However, DH has a weakness in that it generates
a much reduced number of bit patterns that can be exploited
by a cryptanalysis attack [15], [18]. As an alternative, ran-
dom hashing (RH) has recently been proposed [23], where
the random seeds for the k hash functions are based on the
actual q-grams in the value to be encoded, leading to more

= 7 1x

x2 = 6 0

el li is sa

li is sa

1 10 0 1110 0010

D
x

sim = 2 6
(7+6)

= 0.92

Number Number of
commonof 1−bits:
1−bits (bold):

c = 6
0

10100111000101

b

b

1

2

Fig. 1. The Dice coefficient similarity calculation between the names
‘elisa’ and ‘lisa’, converted into bigrams (q = 2) and encoded into two
Bloom filters b1 and b2 of length l = 14 bits using k = 2 hash functions,
as described in Section 3. The 1 shown in italics at position p = 7 in b1

is a hash collision, because both ‘el’ and ‘is’ are hashed to this position.

diverse bit patterns that could not be successfully attacked
by some previous attack methods [15], [18]. However, as our
experiments in Section 6 show, our proposed attack can be
successful on both the DH and RH encoding methods.

The vulnerability of BFs used in PPRL with regard to
cryptanalysis attacks has recently been addressed by the
development of BF hardening techniques [23]. A first ap-
proach to make BF encoding more secure is to use record-
level instead of attribute-level BFs. With record-level BFs
much less frequency information is available that could be
exploited by a cryptanalysis attack [16], [18].

Another proposed hardening approach for BFs is XOR-
folding, where a BF of length l bits is split into two halves
of length l/2 each, and then bit-wise exclusive OR (XOR)
is applied on these two shorter BFs to combine them into
one new BF [24]. The XOR operation makes it impossible to
reconstruct the actual 0 or 1 bit values in the original BF. A
different hardening approach is balancing [23], where a BF
of length l bits is concatenated with its negated copy (all bits
flipped) followed by a permutation of the 2l bits. As a result,
all BFs generated from a database will have exactly half of
their bits set to 1 (i.e. have a uniform Hamming weight of l)
and thus less frequency information is available that could
be exploited by an attack. In our experiments in Section 6
we show that our attack can be successful even when XOR-
folding or balancing has been applied.

4 PRECISE AND EFFICIENT Q-GRAM BASED
CRYPTANALYSIS ON BLOOM FILTERS

Our proposed attack consists of four steps as we describe
in detail in this section, and illustrate in Figures 2 to 6.
Compared to our previous attack [14] (described in Sec-
tion 4.1), our new methods substantially improve the quality
of the re-identified attribute values, as confirmed in the
experimental evaluation in Section 6.

As with existing attacks on BFs for PPRL [14], [15],
[16], [17], [18], we assume an attacker has access to a set
of BFs, B, and their frequencies. However, unlike earlier
attacks, our approach does not require any knowledge about
the parameters used in the encoding process, such as the
actual hash functions and their number k, nor the hashing
approach (such as DH or RH) used.

We assume B represents a set of BFs that encode sen-
sitive values from one or a few attributes. These are the
values we aim to re-identify, i.e. we want to assign plain-
text values to BFs. Based on the frequency distribution of
the Hamming weights (number of 1-bits) of the BFs in B,
an attacker can guess which attribute(s) have been encoded

Page 3 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

4

b1

b2

b3

b4

p=2

0

0

0

0

0

0

0 0

0

0

0

0

1

FreqBloom filters

...

220

184

117

78

1

1 0

0

0

1

1 1

0

1

1

0

1 01

1 0

0

0

1

0

0

0

0

0

1 10

0

0

0 0

0

0

1

Bloom filter database

1v

v2

v3

v4

Freq

kyle

tyler

peter

pedro

214

179

120

89
......

Plain−text database

First name
P

N

P

N

P

N

[1]

[1]

[2]

[2]

[3]

[3]

= c
+

=

=
+
c

=

=
+
c

=

c
−

c
−

c
−

[3]

[3]

\ c
−

\ c
−

\ c
−

[3]

= {ty,yl,le,ky}

= {ty}

= {pe,et,te,ed,dr,ro}

= {pe,et,te,er,ed,dr,ro}

= {pe,et,te,er,ed,dr,ro,ky,yl,le}

= {ty,yl,le,er,ky}C

C

C

C

C

C

Possible and not−possible q−gram sets

[1] [1]

[1]

[2] [2]

[2]

+
c

+
c

c

+
c

c
−

−

−

c

Position candidate sets

[1]

[2]

[2]

[3]

[3]

[1] = {ty,yl,le,er,ky}

= {pe,et,te,er,ed,dr,ro}

= {ty,yl,le,er}

= {pe,et,te,er,ed,dr,ro,ky,yl,le}

= {pe,et,te,er,ed,dr,ro}

= {ty,yl,le,er,ky}
...............

Fig. 2. Example of the candidate q-gram generation step, as described in Section 4.1. Based on a set of plain-text values, V, and a set of BFs, B,
that are pair-wise aligned based on their frequencies (left side of the figure), for each BF bit position p and the 0- and 1-bit patterns and generated
q-grams from aligned attribute values, the candidate sets of possible, c+[p], and not possible, c−[p], q-grams are generated (middle of figure). After
analyzing all pairs of frequent attribute values and BFs, the final set of q-grams possible at any position p, CP [p], is then the set of not possible
q-grams removed from the set of possible q-grams, CP [p] = c+[p] \ c−[p], while the final not possible q-gram set is the not possible candidate
set, CN [p] = c−[p] (right side of figure). For example, for the BF bit position p = 2 (shown in bold), ty is the only possible q-gram (CP [2] = {ty})
because the value ‘kyle’ (with q-grams {ky, yl, le}) has a 0-bit at position 2, which means the q-grams ky, yl, and le (as well as all q-grams
generated from the attribute values ‘peter’ and ‘pedro’, that also have a 0 at bit position 2) could not have been hashed to this position.

into these BFs, because different attributes (such as first
name, surname, or postcode) have distinctive distributions
of Hamming weights [23]. The attacker can sample values
from a large public database (such as a telephone directory)
and select a set of plain-text values, V, from a single or a
few attributes where their corresponding q-gram sets have
a frequency distribution that is similar to the distribution of
Hamming weights of the BF set B to be attacked.

As for notation, we use bold letters for BFs, sets and lists
(with upper-case bold letters for sets or lists of BFs, sets and
lists) and normal type letters for integer or string values. We
denote sets with curly and lists with square brackets (where
lists have an order while sets do not), the frequency of how
often a specific BF bi ∈ B occurs with bi.f , and for each
plain-text value vi ∈ V its frequency with vi.f .

4.1 Q-gram Candidate Set Generation
In this first step of our attack method we identify for each BF
bit position p the sets of q-grams that are possible and not
possible, respectively, at that position, as shown in Figure 2
and detailed in Algorithm 1 [14]. Our approach exploits the
construction principle of BFs as follows.
Theorem 1. Hashing q-grams into Bloom filters: For a given

BF, b, and set of q-grams, q, extracted from an attribute
value, v, a 1-bit in a certain position, p, in b implies that
at least one q-gram qi ∈ q from v must hash to p. On the
other hand, a 0-bit at a certain position, p, implies no
q-gram qi ∈ q from v could have been hashed to p.

Proof: As described in Section 3, the elements s of a
set s are hashed into a BF of length l bits using k ≥ 1 hash
functions h1, . . . , hk. Assuming a BF is initialized with all
bits set to 0, the bit at position p (with 1 ≤ p ≤ l), b[p], is
set to 1 if and only if b[p] = 1 ⇔ (∃s ∈ s : ∃hj , 1 ≤ j ≤ k :
hj(s) = p). A bit at position p can only be 0 if none of the k
hash functions ‘hits’ position p for any of the elements in s:
b[p] = 0⇔ (∀s ∈ s : ∀hj , 1 ≤ j ≤ k : hj(s) 6= p).

Algorithm 1 starts by initializing two empty candidate
sets for each BF position p: c+[p] of possible q-grams and
c−[p] of not possible q-grams. In lines 2 and 3 we identify
the BFs in B and the attribute values in V that occur at least
fm times and include them in two lists BF and VF . In line
4 we then sort both these lists according to their frequencies
in reverse order (most frequent first), and in line 5 we align
a BF bi and corresponding attribute value vi into the sorted

Algorithm 1: Possible and not possible q-gram set generation [14]

Input:
- V: Attribute values and their frequencies from a public database
- B: BFs and their frequencies from the sensitive database
- l: BF length
- q: Length of substrings to extract from attribute values
- fm: Minimum frequency for BFs and attribute values
Output:
- CP : List of possible q-gram sets at each BF position
- CN : List of not possible q-gram sets at each BF position
- A: Aligned tuples of frequent BFs and frequent attribute values

1: c+[p] = {}, c−[p] = {}, 1 ≤ p ≤ l// Initialize candidate q-gram sets
2: VF = {vi ∈ V : vi.f ≥ fm} // Get freq attribute values
3: BF = {bi ∈ B : bi.f ≥ fm} // Get freq BFs
4: revFreqSort(BF), revFreqSort(VF)
5: A = [(bi, vi) : bi ∈ BF , vi ∈ VF : bi.f > bj .f ∧ vi.f > vj .f :

1 ≤ i < j ≤ min(|VF |, |BF |)]
6: for (bi, vi) ∈ A do: // Loop over pairs of freq BF and attr value
7: qi = genQGramSet(vi, q) // Convert attr value into q-gram set
8: for 1 ≤ p ≤ l do: // Loop over BF bit positions
9: if (bi[p] == 1) then:
10: c+[p] = c+[p] ∪ qi // Add to set of possible q-grams
11: else:
12: c−[p] = c−[p] ∪ qi // Add to set of not possible q-grams
13: CP [p] = {}, CN [p] = {}, 1 ≤ p ≤ l // Initialize final q-gram sets
14: for 1 ≤ p ≤ l do:
15: CP [p] = c+[p] \ c−[p] // Final set of possible q-grams
16: CN [p] = c−[p] // Final set of not possible q-grams
17: return CP , CN , A

list A of pairs (bi, vi). We only consider such pairs as long
as both bi and vi have a unique frequency compared to the
next, less frequent, bj and vj . This criterion ensures we do
not have an attribute value that could correspond to two
or more BFs and vice versa, as this would likely lead to an
incorrect alignment of a BF with an attribute value and thus
incorrect mappings of q-grams to BF bit positions.

Starting in line 6, we iterate over pairs of aligned BFs
and attribute values, (bi, vi) ∈ A, and in line 7 we convert
vi into its set qi of character q-grams of length q. Then we
loop over all BF bit positions, p, in line 8 and if the bit in
BF bi at position p is 1 then in line 10 we add the q-grams
in set qi to the set c+[p] of possible candidate q-grams at
that position because this 1-bit means at least one q-gram
from qi was hashed to position p (following Theorem 1).
Conversely, if the bit in BF bi at position p is 0 then we add
all q-grams in qi to c−[p] in line 12 because no q-gram from
the set qi could have been hashed to that position.

Page 4 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

5

b1

b2

b3

b4

1v

v2

v3

v4

Freq

kyle

tyler

peter

pedro

214

179

120

89
......

Plain−text database

First name

p=8

C
N

C
P

[8] [8]= {ky} = {pe,et,tr,er,ed,dr,ro,ty,yl,le}

0

0 0

0

0

0 0

0

0

0

0

1

FreqBloom filters

...

220

184

117

78

1

1 0

0

0

1

1 1

0

1

1

0

1 0

1 0

0

0

1

0

0

0

0

0

1 10

0

0

0 0

0

0

1

Bloom filter database

0 1

Fig. 3. Example q-gram assignment based on four attribute values
aligned with four BFs, and the set of possible and not possible q-gram
sets at position p = 8 (shown in bold) as generated by Algorithm 1. For
value ‘kyle’, the only possible q-gram that could have been hashed to
position 8 is ‘ky’ because all other q-grams of ‘kyle’ are in the set CN [8].
We can therefore assign the q-gram ‘ky’ to position 8 as CA[8] = {ky}.

After initializing in line 13 the final lists of possible,
CP [p], and not possible, CN [p], q-gram sets, in lines 14 to 16
we iterate over all bit positions p and generate the final set of
possible q-grams at each position as CP [p] = c+[p] \ c−[p].
The final set of not possible q-grams at position p is equal to
the candidate set of not possible q-grams: CN [p] = c−[p].

At the end of Algorithm 1, based on the frequency
aligned frequent BFs and frequent attribute values in A,
for each BF bit position p we have the two sets of q-grams
that could have been hashed to position p, CP [p], and that
cannot have been hashed to that position, CN [p].

Note that this candidate generation step is the main
step used in our previous cryptanalysis attack method [14],
where (as we discuss in Section 4.4) the attack only makes
use of the q-gram sets in CP . However, as our experiments
in Section 6 show, the precision of these sets is low because
many of the q-grams in a set CP [p] were in fact not hashed
to position p. On the other hand, for basic BFs the sets CN [p]
are of high precision because a 0-bit specifies all those q-
grams that could not have been hashed to a certain posi-
tion. The BF hardening techniques described in Section 3
however invalidate this property of 0-bits.

4.2 Q-gram Position Assignment

In this section we propose a method that uses the list CP

of possible q-gram sets, as generated in Algorithm 1, to
identify q-grams that must have been hashed to a certain bit
position (we name these as assigned q-grams). While CP [p]
contains the q-grams that possibly have been hashed to bit
position p, so far we have not validated if any of them actu-
ally has been hashed to this position. Our method identifies
q-grams where for a given frequent BF and attribute value
pair (bi, vi) ∈ A (as generated in Algorithm 1) there is only
one single q-gram that could have generated the 1-bit for vi
at a certain position p, as illustrated in Figure 3.

Algorithm 2, which identifies assigned q-grams, starts
by initializing one empty set of assigned q-grams, CA[p],
per BF bit position p. The loop in line 2 then iterates over
the aligned pairs of frequent BFs bi and frequent attribute
values vi in A as generated by Algorithm 1. For each BF
bit position p, if the bit bi[p] is set to 1 then in line 6 we
intersect the q-gram set qi (as generated from vi in line 3)
with the set of possible q-grams at that position, CP [p]. If
the result of this intersection is a single q-gram (the test in
line 7, where | · | denotes the cardinality of a set), then this

Algorithm 2: Q-gram position assignment

Input:
- A: List of aligned frequent attribute values and BFs (from Algo. 1)
- CP : List of possible q-grams for BF positions (from Algo. 1)
- l: Length of BFs
- q: Length of substrings to extract from attribute values
Output:
- CA: List of assigned q-gram sets at each BF position

1: CA[p] = {}, 1 ≤ p ≤ l // Initialize assigned q-gram sets
2: for (bi, vi) ∈ A do: // Loop over pairs of freq BF and attr value
3: qi = genQGramSet(vi, q) // Convert attr value into q-grams
4: for 1 ≤ p ≤ l do: // Loop over BF bit positions
5: if (bi[p] == 1) then:
6: qp = qi ∩CP [p] // Get set of possible q-grams at position
7: if (|qp| == 1) then: // Only one possible q-gram
8: CA[p] = CA[p] ∪ qp // Add to set of assigned q-grams
9: return CA

q-gram is added to the set of assigned q-grams at position
p in line 8. At the end of Algorithm 2 we have the new list
of q-gram sets CA[p] that contain those q-grams that must
have been hashed to a certain position p.

4.3 Q-gram Set Refinement and Expansion
A drawback of the candidate set generation method de-
scribed in Section 4.1 is that only a small number of frequent
attribute values, vi, can accurately be aligned in list A to the
corresponding frequent BFs, bi, that encode these values.
The reason for this is that the frequencies of the attribute
values encoded into BFs are likely somewhat different from
the frequencies in a plain-text database that an attacker has
access to, as illustrated in the left side of Figure 2.

A frequency based ordering of values in the same at-
tribute from two similar databases will likely lead to the
same ordering of the top most frequent values. However,
for less frequent values the ordering at some point will
likely become different. For example, if ‘smith’ is the most
frequent surname in a population and it is considerably
more frequent than ‘miller’, then it is likely that ‘smith’
is also more frequent than ‘miller’ in two large databases
that are samples of this population. However, in one of
these databases the surname ‘williams’ might be ranked
20th and ‘rendell’ 21st, while in another database their order
is reversed. Note that most existing attacks on BF encoding
for PPRL make this assumption of aligning frequent BFs and
frequent plain-text values [15], [16], [17], [18].

Therefore, as frequencies become lower and the differ-
ences between the respective frequencies of two BFs or
two attribute values become smaller, wrong assignments
of attribute values to BFs (that encode a different value)
can happen. Because the list A in Algorithm 1 likely only
includes a small number of attribute values, the number
of q-grams in those values is likely only a fraction of all
possible q-grams that occur in a domain. In our experiments
only around 5% of all possible q-grams for first names and
surnames are included in the values vi ∈ A.

Our first improvement identifies new not possible posi-
tions for q-grams that are in the sets of possible q-grams,
while the second improvement expands the sets of possible,
not possible and assigned q-grams with additional q-grams.
Both improvements are based on analyzing the q-gram sets

Page 5 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

6

b1

b2

b3

b4

pete

pet

petersen

(freq)peter

peters

0

0

0

0

0

0

0

0

0

0

0

1

1

0 0

00

10

0

00

p=12

b5

p=11

01 0 1 1 0 0

1 0

1 0 1 10

0

0

100 0

1 0 0 1 1 101 0

10 1 1 0 1 1 0

0

p=6 p=7p=4

Fig. 4. Example q-gram refinement and expansion for the frequent
attribute value ‘peter’ (in bold) and four not frequent shorter and longer
values. For the shorter values, from the bit patterns in BFs b2 and b5,
it becomes clear that position p = 7 must encode q-gram ‘er’ because
both b2[7] and b5[7] are 0 and only ‘pet’ and ‘pete’ do not contain ‘er’.
Similarly, p = 6 must encode ‘te’ because only b2 with value ‘pet’ does
not contain ‘te’. For the longer values, p = 4 and p = 12 can only
encode the q-grams ‘se’ and ‘en’ because only b3 with value ‘petersen’
(containing both ‘se’ and ‘en’) has a 1-bit in these two positions, while
p = 11 can also encode ‘rs’ as it occurs in both ‘peters’ and ‘petersen’.

and bit patterns between frequent (as included in the list A
in Algorithm 1) and not frequent attribute values and BFs,
respectively, as detailed in Algorithm 3.

We use the example shown in Figure 4 to illustrate our
refinement and expansion methods. For each frequent value
vi ∈ A (as returned by Algorithm 1), we identify the not
frequent values vj ∈ V\VF (with VF the set of all frequent
attribute values in A) where their q-gram sets qj are either
a proper subset of the q-gram set qi of the frequent value
vi, or a proper superset of qi. For example, in Figure 4, the
q-gram sets of ‘pet’ and ‘pete’ are subsets of the q-gram set
of ‘peter’, while the q-gram sets of ‘peters’ and ‘petersen’
are supersets of the q-gram set of ‘peter’.

This refinement and expansion process depends upon
the availability of sub- and supersets of q-gram sets as
generated from attribute values; which is dependent on
data characteristics such as the size of alphabets, the length
of attribute values, and their frequency distributions. As
Table 1 shows, in our experimental data sets such sub- and
supersets seem to be quite common even in attributes where
all values are of the same length or where attribute values
have a large variety. For example, even when all Zipcodes in
a data set have the same length, some have a q-gram set that
is a sub- or superset of others. When using q = 2, Zipcode
‘28725’, {28,87,72,25}, is a superset of ‘28728’, {28,87,72}.

Let us denote the set of all not frequent attribute values
with VN , with VN = V\VF . For a given frequent attribute
value vi ∈ VF , we find the set of all shorter attribute values
VS

i ⊂ VN where their q-gram sets are proper subsets of the
q-gram set qi of vi (with qi = genQGramSet(vi, q)), and
the set of all longer attribute values VL

i ⊂ VN where their
q-gram sets are proper supersets of qi. More formally:

VS
i = {vj ∈ VN : genQGramSet(vj , q) ⊂ qi}

VL
i = {vj ∈ VN : genQGramSet(vj , q) ⊃ qi}

Similarly, for each frequent BF bi ∈ A, we can identify
candidate BFs in the set of not frequent BFs, BN (where
BN = B \ BF and BF is the set of all frequent BFs in A),
that potentially can encode a value vj ∈ VS

i as those BFs
bj ∈ BN that have less 1-bits than bi, and all 1-bits of bj

are also set to 1 in bi. If a BF bj has even a single 1-bit in a
position where bi has a 0-bit then bj cannot encode a value
in VS

i . Similarly, candidate BFs bj that could encode a value
vj ∈ VL

i are those BFs that have 1-bits in all the positions

TABLE 1
The number and percentage of attribute values (based on their q-gram

sets, with q = 2) in the NCVR data set (as described in Section 6.1)
that are a sub- and superset of at least one other attribute value.

Attribute Unique values Subsets Supersets
First name 22,101 5,321 / 24.08% 9,104 / 41.19%
Surname 40,089 8,707 / 21.72% 15,459 / 38.56%
Address 210,154 3,436 / 1.64% 3,551 / 1.69%
City 735 27 / 3.67% 14 / 1.90%
Zipcode 824 24 / 2.91% 111 / 13.47%

where bi also has a 1-bit, plus they need to have at least
one extra 1-bit (but likely more) at a position where bi has
a 0-bit. If there is a single position where bj has a 0-bit but
bi has a 1-bit then bj cannot encode an attribute value in
VL

i because this 0-bit in bj means the corresponding value
vj does not contain all q-grams that vi contains.

For a given frequent BF bi ∈ A, we define BS
i and BL

i

to be the candidate sets of not frequent BFs that can encode
shorter and longer values in VS

i and VL
i , respectively:

BS
i = {bj ∈ BN : (bi ⊗ bj = bj) ∧ hw(bi) > hw(bj)}

BL
i = {bj ∈ BN : (bi ⊗ bj = bi) ∧ hw(bi) < hw(bj)}

The ⊗ operator denotes the bit-wise logical AND, and
the function hw(b) counts the number of 1-bits in a BF b,
i.e. returns its Hamming weight.

Because of collisions, it might be possible that an extra
q-gram that only occurs in a value vj ∈ VL

i is hashed to
the same bit positions as the q-grams in vi. Given k > 1
hash functions are used this is highly unlikely. The expected
fraction of 1-bits in a BF of length l after n = |q| q-grams
have each been hashed k times is f1 = 1− (1− 1/l)kn (see
page 111 in [25]). The probability P for one extra q-gram to
be hashed k times to bit positions that have already been set
to 1 by other q-grams is therefore P = fk

1 . For example, for
a BF that has 60% 1-bits and k = 30 hash functions are used,
this probability becomes P = 2.21∗10−7. Even if this would
happen, it would only mean that a BF bj ∈ BN would not
be included into BL

i , however it would not lead to a wrong
refinement or expansion of q-gram sets.

If the alignment in Algorithm 1 of frequent attribute
values with frequent BFs into the list A is correct, and
if there are shorter (VS

i) and longer (VL
i) not frequent

attribute values for a given frequent value vi ∈ A, then
the BFs identified in the sets BS

i and BL
i must encode such

shorter and longer attribute values, respectively.
In our refinement and expansion approach detailed in

Algorithm 3, in lines 4 to 9, for all frequent BF and attribute
value pairs (bi, vi) ∈ A we first identify all the shorter and
longer attribute values, VS

i and VL
i , and the BFs BS

i and
BL

i . Note that if there are several shorter or longer values
and several corresponding BFs then we do not know which
shorter value vj ∈ VS

i corresponds to which BF bj ∈ BS
i ,

and which longer value vj ∈ VL
i corresponds to which BF

bj ∈ BL
i . The larger the sets VS

i , BS
i , VL

i , and BL
i are,

the less accurate the refinement and expansion process will
become because an increasing number of q-grams and bit
positions will differ between vi and the vj ’s and bi and the
bj ’s, respectively. We therefore use a parameter m to limit
the size of these sets in Algorithm 3 (lines 10 and 21).

Page 6 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

7

Algorithm 3: Q-gram set refinement and expansion

Input:
- V: Attribute values and their frequencies from a public database
- B: BFs and their frequencies from the sensitive database
- A: List of aligned frequent attribute values and BFs (from Algo. 1)
- l: Length of BFs
- q: Length of substrings to extract from attribute values
- m: Maximum size of attribute value and BF sets
Output:
- CP

r : List of possible q-gram sets at each BF position
- CN

r : List of not possible q-gram sets at each BF position
- CA

r : List of assigned q-gram sets at each BF position

1: CP
r [p] = {}, CN

r [p] = {}, CA
r [p] = {}, 1 ≤ p ≤ l

2: VF = {vi : (vi,bi) ∈ A}, BF = {bi : (vi,bi) ∈ A}
3: VN = {vj ∈ V : vj /∈ VF }, BN = {bj ∈ B : bj /∈ BF }
4: for (bi, vi) ∈ A do: // Loop over pairs of freq BF and attr value
5: qi = genQGramSet(vi, q) // Convert attr value into q-grams
6: VS

i = {vj ∈ VN : genQGramSet(vj , q) ⊂ qi}
7: VL

i = {vj ∈ VN : genQGramSet(vj , q) ⊃ qi}
8: BS

i = {bj ∈ BN : (bi ⊗ bj = bj) ∧ hw(bi) > hw(bj)}
9: BL

i = {bj ∈ BN : (bi ⊗ bj = bi) ∧ hw(bi) < hw(bj)}

10: if (0 < |VS
i | ≤ m) ∧ (0 < |BS

i | ≤ m) then: // Refinement
11: qu = ∪ genQGramSet(vj , q) ∀ vj ∈ VS

i
12: qd = qi \ qu // Q-grams that only occur in vi
13: bo = ⊕ bj ∀ bj ∈ BS

i // Bit-wise OR of BFs
14: if (qd 6= ∅) ∧ (bo 6= bi) then:
15: for 1 ≤ p ≤ l do: // Loop over BF bit positions
16: if (bo[p] == 0) ∧ (bi[p] == 1) then:
17: CP

r [p] = CP
r [p] ∪ qd // Add to possible q-grams

18: CN
r [p] = CN

r [p] ∪ qu // Add to not possible q-grams
19: if (|VS

i | == 1) ∧ (|BS
i | == 1) ∧ (|qd| == 1) then:

20: CA
r [p] = CA

r [p] ∪ qd // Add to assigned q-grams

21: if (0 < |VL
i | ≤ m) ∧ (0 < |BL

i | ≤ m) then: // Expansion
22: qu = ∪ genQGramSet(vj , q) ∀ vj ∈ VL

i
23: qs = ∩ genQGramSet(vj , q) ∀ vj ∈ VL

i
24: qd = qs \ qi // Q-grams that only occur in all vj ∈ VL

i
25: bo = ⊕ bj ∀ bj ∈ BL

i
26: ba = ⊗ bj ∀ bj ∈ BL

i
27: if (qd 6= ∅) ∧ (ba 6= bi) then:
28: for 1 ≤ p ≤ l do: // Loop over BF bit positions
29: if (ba[p] == 1) ∧ (bi[p] == 0) then:
30: CP

r [p] = CP
r [p] ∪ qd // Add to possible q-grams

31: if (|VL
i | == 1) ∧ (|BL

i | == 1) ∧ (|qd| == 1) then:
32: CA

r [p] = CA
r [p] ∪ qd // Add to assigned q-grams

33: else if (bo[p] == 0) ∧ (bi[p] == 0) then:
34: CN

r [p] = CN
r [p] ∪ qu // Add to not possible q-grams

35: return CP
r , CN

r , and CA
r

A small value of m will lead to smaller refined and
expanded q-gram sets CP

r , CN
r and CA

r (as generated by
Algorithm 3) that are of higher quality, while increasing m
will lead to larger refined and expanded q-gram sets that
however might contain more incorrectly identified q-grams
as m gets larger. We will evaluate the quality of re-identified
q-gram sets with different values of m in Section 6.

4.3.1 Refinement

Independent of the sizes of VS
i and BS

i , we observe that a
BF bit position that is 0 in all the bj ∈ BS

i but 1 in bi can
only encode a q-gram that occurs in vi but in none of the
vj ∈ VS

i . Based on this, in lines 11 and 12 in Algorithm 3
we get the union qu of all q-grams from the attribute values
vj ∈ VS

i , and then extract the set of differing q-grams, qd,
as those q-grams that only occur in vi but in none of the
vj ∈ VS

i . In line 13 we generate the bit-wise OR (⊕) of all

BFs in BS
i as bo, because any position that is 0 after this

operation (but is 1 in bi) can encode only q-grams in qd.
If qd is not empty (i.e. there are differing q-grams) and

bo differs from bi, then we loop over all bit positions in line
15 and if for a certain position p the bit in bo[p] = 0 but
bi[p] = 1 then we know that this position can only encode
the differing q-grams in qd. In line 17 we therefore add the
q-grams in qd to the set of possible q-grams at that position,
CP

r [p], and in line 18 we add the q-grams in qu (that occur in
any of the shorter attribute values) to the set of not possible
q-grams at that position, CN

r [p].
A special case to consider is if there is only one shorter

attribute value, vj , and one corresponding BF, bj , and only
one q-gram differs between vi and vj (line 19). In this case
we know that this q-gram must have been hashed to a
certain position, and therefore in line 20 we add the q-gram
to the set of assigned q-grams at that position, CA

r [p].

4.3.2 Expansion

Similar to the refinement approach, independent of the sizes
of VL

i and BL
i , a BF bit position that is 0 in bi and 1 in all

bj ∈ BL
i must encode a q-gram that occurs in all vj ∈ VL

i .
On the other hand, if none of the bj ∈ BL

i have a 1-bit
at a given position then none of the q-grams in any of the
vj ∈ VL

i could have been hashed to this position. Based on
this, in lines 22 and 23 in Algorithm 3 we generate the union
and intersection of all q-gram sets as qu and qs, respectively,
from the vj ∈ VL

i . In line 24 we identify all q-grams that
occur in all longer (not frequent) attribute values but not in
the frequent value as qd. In lines 25 and 26 we calculate the
bit-wise OR (⊕) of all BFs in BL

i as bo, and the bit-wise AND
(⊗) of all BFs in BL

i as ba. The former is required to identify
bit positions where no q-gram in qd could have been hashed
to, while the latter is needed to identify positions where the
extra q-grams in qs could have been hashed to.

In line 27, if both qd is not empty (i.e. there are differing
q-grams) and ba differs from bi, then we loop over all bit
positions (line 28) and for any position p where ba[p] = 1
and bi[p] = 0 in line 30 we add the set of extra q-grams,
qd (that occur in all longer values but not the frequent
value) to the set of possible q-grams at that position, CP

r [p].
Additionally, if there is only one longer attribute value, vj ,
and one BF, bj , and only one q-gram differs between vi and
vj (line 31), then we know this single q-gram in qd must
have been hashed to this position and so we add it in line
32 to the set of assigned q-grams, CA

r [p], at this position.
As described above, if a BF position p is 0 in all the

BFs bj ∈ BL
i and also 0 in the frequent BF bi (the test in

line 33) then we know that no q-gram in any longer value
vj ∈ VL

i could have been hashed to this position. In line 34
we therefore add the q-grams in qu to the set of not possible
q-grams, CN

r [p], at that position.

4.3.3 Merging Q-gram Sets

At the end of the refinement and expansion step we have
new sets of q-grams that can be merged with the corre-
sponding sets from Algorithms 1 and 2. If we denote the
sets of basic possible, not possible and assigned q-grams
from Algorithms 1 and 2 with CP

b , CN
b and CA

b , and the
refined and expanded q-gram sets generated by Algorithm 3

Page 7 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

8

b1

b2
P

[2]C = {ty}
P

[3]C = {pe,et,te,ed,dr,ro}
P

C [4] = {ed,dr,ro}

P
C

P
C

P
C

P
C

[6]

[5]

[7]

[8] = {ky}

= {et,tr,er,ty}

= {et,te}

= {ty,yl,le,ky}

P
C

P
C

P
C

P
C [9]

[10]

[11]

[12]

= {}

= {ed,dr,ro}

= {et,te}

= {ed,dr,ro}
p=3p=1 p=7p=6

:b2 G = {kyler,tyle} G = {kyler}p=1 G = {kyler,tyle}p=5 p=7

b1 b2

b1 : = {pete}Gp=6

Re−identification of attribute values for Bloom filters and

G = {pete,pedr}p=3

G

Candidate values Bloom filter database

0

0 01

1 0 0 1

0

0 0

0

00 0 1 0

0 0 1 1 1 0 0

Possible q−gram sets (from Fig. 2)
P

[1]C = {ty,yl,le,ky}= {kyler, pedr,

pete, tyle}

P

...

Fig. 5. Example re-identification using the sets of possible q-grams, CP , as generated in Figure 2. For a given set of candidate attribute values
which we aim to re-identify (guess), GP , and a given BF bi, for each 1-bit position p in bi we check if at least one q-gram in a candidate value
gj ∈ GP occurs in the set CP [p] at that position. If no q-gram of gj occurs in CP [p] then we can remove gj as a candidate that could be encoded
in BF bi because at least one q-gram from gj must be in CP [p] to have generated the 1-bit at this position. For example, for BF b1 and the 1-bit
at position p = 3 (shown in bold), the two candidate values ‘kyler’ and ‘tyle’ could not have been encoded into b1 because none of their q-grams
(that could have generated the 1-bit at position p = 3) occurs in CP [3]. We therefore have the set of candidate values for BF b1 at position p = 3
as Gp=3 = {pete, pedr}. For the next 1-bit in b1 at p = 6 only ‘pete’ is left as a candidate (Gp=6 = {pete}) because ‘pedr’ does not contain any
q-grams that occur in CP [6] (‘et’ or ‘te’). Similarly, for BF b2 and p = 1 we have the set of possible candidates Gp=1 = {kyler, tyle} because ‘pete’
and ‘pedr’ contain no q-grams that occur in CP [1]. Only when we consider the 1-bit at position p = 7 can we also eliminate ‘tyle’ as a possible
candidate for b2 (and so Gp=7 = {kyler}) because CP [7] does not contain any of the q-grams that occur in ‘tyle’.

with CP
r , CN

r and CA
r , then for each bit position 1 ≤ p ≤ l

the merged q-gram sets are generated as:

Not possible: CN
m[p] = CN

b [p] ∪CN
r [p]

Possible: CP
m[p] = (CP

b [p] ∪CP
r [p]) \CN

m[p]

Assigned: CA
m[p] = (CA

b [p] ∪CA
r [p]) \CN

m[p]

For each bit position, the merging first takes the union of
the not possible q-gram sets, followed by the union of the
possible q-gram sets minus the just merged not possible q-
gram sets. This ensures any q-gram that was identified to be
not possible at a certain position is not in the set of possible
q-grams at that position. The sets of assigned q-grams are
merged similarly, where no q-gram in an assigned set for a
position can occur in the not possible set at that position.

Based on these merged sets, the final step of our attack
is to re-identify attribute values, as we describe next.

4.4 Attribute Value Re-identification
Given sets of possible, CP , and not possible, CN , q-grams at
BF bit positions (as generated by Algorithms 1 to 3), we can
now try to re-identify attribute values from a set of plain-text
values V and a set of BFs B (the sets used in Algorithms 1
and 3). Our aim is to re-identify attribute values with high
precision, i.e. values where we are certain they must have
been encoded into a given BF. Note that we currently do not
exploit the assigned q-grams in the sets CA because these
are subsets of the possible sets (CA ⊂ CP).

In the following subsections we present two re-
identification approaches. The first one is our recently pre-
sented cryptanalysis attack method [14] that only exploits
the sets of possible q-grams, CP . Due to the low precision of
the q-gram sets in CP , as shown in our experimental evalua-
tion in Section 6, for many BFs more than one attribute value
is re-identified resulting in low re-identification accuracy. In
Section 4.4.2 we then propose a new approach that exploits
the sets of not possible q-grams, CN , which are of high
precision, leading to improved re-identification accuracy.

A requirement of the candidate attribute values in V
that we can re-identify is that at least one of their q-grams
must occur in either of the sets CP or CN , respectively.
Otherwise there would be no information about possible
and not possible BF bit positions that could be used in the

re-identification process. In our experiments we found that
the majority of attribute values in a domain contain at least
one q-gram that occurs in one of the sets in CP or CN .

To generate the set of candidate attribute values which
we aim to re-identify (i.e. guess), named GP ⊂ V (possible)
and GN ⊂ V (not possible), we first identify all q-grams in
the possible and not possible sets as QP = {qj ∈ CP [p] :
1 ≤ p ≤ l} and QN = {qj ∈ CN [p] : 1 ≤ p ≤ l}.
Based on those two sets of q-grams we can extract the
possible, GP , and not possible, GN , candidate attribute
values we aim to re-identify as GP = {vi ∈ V : ∃ qj ∈
genQGramSet(vi, q) : qj ∈ QP } and GN = {vi ∈ V :
∃ qj ∈ genQGramSet(vi, q) : qj ∈ QN}.

4.4.1 Re-identification using Possible Q-gram Sets
The re-identification step based on the possible q-gram
sets, CP , is detailed in Algorithm 4 and illustrated in
Figure 5 [14]. The idea is that for a 1-bit to occur at a certain
position in a BF, at least one q-gram of an attribute value
must have been hashed to that position (see Theorem 1).
Therefore, for a given candidate attribute value gj ∈ GP

and BF bi ∈ B, if the set of possible q-grams at position p,
where bi[p] is 1, does not include any q-gram of gj then gj
could not have been encoded in bi.

The inputs to Algorithm 4 are the same set of BFs, B,
used in Algorithms 1 and 3, the set of candidate attribute
values we aim to re-identify (guess), GP (generated as
described above), the list of possible q-gram sets at bit
positions, CP (as generated in Algorithms 1 or 3), and the
BF length, l. The algorithm returns a set of re-identified
attribute value(s), Gi ⊂ GP , for each BF bi ∈ B, collected
in the result list R.

After initializing R, from line 2 onwards Algorithm 4
loops over all BFs bi ∈ B, and for each bi it initializes the set
of possible candidate attribute values Gi (that potentially
have been hashed into this BF) as all values in GP in line
3. We then loop over all BF bit positions p in line 4, and for
any position that has a 1-bit (bi[p] = 1) we retrieve the set
of possible q-grams qp = CP [p] at that position in line 6.

We now check for each value gj ∈ Gi if at least one of
the q-grams in qp occurs in gj (lines 7 and 8). If a gj does
not contain any q-gram from qp then it could not have
generated the 1-bit at position p in bi, and so in line 9 we

Page 8 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

9

C
N

C

C
N

N

C
N

C
N

C
N

[7]

[8]

[9]

[10]

[11]

[12]

= {pe,ed,dr,ro,ky,yl,le}

= {pe,et,te,er,ed,dr,ro,ty,ly,le}

= {pe,er,ed,dr,ro,ty,yl,le,ky}

= {pe,et,te,er,ed,dr,ro,ty,ly,le,ky}

= {pe,et,te,er,ty,yl,le,ky}

= {pe,et,te,er,ty,yl,le,ky}

[1]C
N

[3]C

[2]C
N

N

= {pe,et,te,er,ed,dr,ro}

= {pe,et,te,er,ed,dr,ro,ky,ly,le}

= {ty,ly,le,er,ky}

N

N

C [4]
N

[5]

[6]

= {pe,et,te,er,ed,dr,ro}

= {pe,er,ed,dr,ro,ty,yl,le,ky}

= {pe,et,te,er,ty,yl,le,ky}

C

C

b1

b2

b

b

b

b

pe

et

te

er
...

1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 0 1 0 1 1 1

1 1 0 1 1 0 0 1 0 1 1 1

1 1 1 1 1 1 0 1 1 1 1

(a) Not possible q−gram Bloom filters

0

1

1 1 0 1 1 1 1 1 1

1 1 0 1 1 1

000

0 00111b

...
pedr

(b) Not possible attribute value Bloom filters

bpete

... ...

b1 b1
G = {pete}

b1
G = {pete}

...

: bpete b1

bpedr 1b 0 0 0 0 0 0 0 0 0 01 1

0 0 0 0 0 0 0 0 0 0 0 0

=

=

...

(c) Re−identification of attribute values

p=6 p=9

Candidate values Bloom filter database

pete, tyle}

= {kyler, pedr,G
N

Not possible q−gram sets (from Fig. 2)

0

0 01

1 0 0 1

0

0 0

0

00 0 1 0

0 0 1 1 1 0 0
...

Fig. 6. Example re-identification using the sets of not possible q-grams, CN , as generated in Figure 2. (a) For each q-gram qj ∈ CN we generate
a BF bqj that has 1-bits in all positions where qj cannot be hashed to based on the sets in CN . For example, p = 3 (bold in BF bpe) is the only
position where q-gram ‘pe’ possibly can be hashed to (and thus this bit is 0) based on the sets CN [1] to CN [12] (only CN [9] does not contain ‘pe’).
(b) We then combine these q-gram BFs into attribute value BFs using bit-wise AND (conjunction, ⊗), leading to BFs that have 1-bits in all positions
where no q-gram of a given attribute value could have been hashed to. For example, the BF bpete has a 1-bit (in bold) in position p = 1 because all
its q-grams occur in CN [1], and a 0-bit at p = 3 (in bold) because ‘et’ and ‘te’ are possible at that position. (c) For a given set of candidate attribute
values which we aim to re-identify (guess), GN , and a given BF bi, a value gj ∈ GN can only be encoded in bi if the conjunction between bi and
the value’s BF bgj results in only 0-bits. For example, the conjunction of BFs b1 and bpete leads to only 0-bits, and thus b1 can encode ‘pete’. On
the other hand, b1 conjuncted with bpedr results in two 1-bits (in bold) at positions p = 6 and p = 9 and therefore b1 cannot encode ‘pedr’.

Algorithm 4: Re-identification based on possible q-gram sets

Input:
- B: Set of BFs from the sensitive database (same as in Algo. 1)
- GP : Set of candidate attribute values to be re-identified
- CP : List of possible q-gram sets at BF position (from Algo. 1 or 3)
- l: Length of BFs
Output:
- R: List of possible attribute values re-identified for each BF in B

1: R = []
2: for bi ∈ B do:
3: Gi = GP // Initialize set of candidate attribute values
4: for 1 ≤ p ≤ l do: // Loop over BF bit positions
5: if (bi[p] == 1) then:
6: qp = CP [p] // Set of possible q-grams at this position
7: for gj ∈ Gi do: // Check all candidate attribute values
8: if (∀q ∈ qp : q /∈ gj) then: // At least one q-gram must occur
9: Gi = Gi \ {gj} // Value cannot have been hashed into bi

10: R.append(Gi) // Append possible attribute values for BF bi

11: return R

remove gj from the set of candidates Gi for this BF. At the
end of this loop (line 10), the set Gi will contain only those
values from GP that possibly have generated the BF bi.

In this re-identification approach those positions with 0-
bits do not help us to remove values gj ∈ Gi because any
q-gram in a gj has likely been hashed to other positions. We
next present a more accurate re-identification approach that
exploits the not possible q-gram sets, CN .

4.4.2 Re-identification using Not Possible Q-gram Sets

As illustrated in Figure 6, for each q-gram there are bit
positions where this q-gram cannot have been hashed into
based on the sets in CN . We combine these not possible
positions for an attribute value gj ∈ GN by taking the
intersection of the sets of positions for all q-grams in gj . This
results in a BF bgj which has 1-bits in all positions where a
BF that potentially can encode gj needs to have a 0-bit. A
conjunction of bgj with any bi ∈ B must therefore result in
a BF that only has 0-bits for bi to be able to encode gj .

Algorithm 5: Re-identification based on not possible q-gram sets

Input:
- B: Set of BFs from the sensitive database (same as in Algo. 1)
- GN : Set of candidate attribute values to be re-identified
- CN : List of not possible q-gram sets at BF pos. (from Algo. 1 or 3)
- l: Length of BFs
- q: Length of substrings to extract from attribute values
Output:
- R: List of possible attribute values re-identified for each BF in B

1: R = [], BQ = {}, BG = {}
2: b0 = [0]l // A BF with only 0-bits
3: QN = {qj ∈ CN [p] : 1 ≤ p ≤ l} // All q-grams that occur in CN

4: BQ[qi] = b0, ∀qi ∈ QN // A 0-bit BF for each q-gram in QN

5: for 1 ≤ p ≤ l do: // Loop over BF bit positions
6: for qi ∈ CN [p] do:
7: BQ[qi][p] = 1 // Set positions to 1 where q-gram is not possible
8: for gj ∈ GN do:
9: qj = genQGramSet(gj , q) // Convert attr value into q-grams
10: if (∀qk ∈ qj : qk ∈ QN) then: // All q-grams known
11: BG[gj] = ⊗ bj ∀ BQ[qk] : qk ∈ qj // Attribute value BF
12: for bi ∈ B do:
13: Gi = {} // Initialize set of candidate attribute values
14: for gj ∈ GN do:
15: if (BG[gj]⊗ bi == b0) then: // All bits are 0
16: Gi = Gi ∪ {gj} // A re-identified attribute value
17: R.append(Gi) // Append possible attribute values for BF bi

18: return R

Algorithm 5 details the steps of this approach, where the
inputs are similar to Algorithm 4, except the not possible
q-gram sets, CN , and a corresponding set of candidate at-
tribute values, GN , are provided. As the algorithm requires
q-grams to be generated, the length q of these q-grams is
also needed. The algorithm returns in the list R for each BF
bi ∈ B a set of re-identified attribute values, Gi ⊂ GN .

In lines 1 and 2, Algorithm 5 initializes the result list,
R, the sets of BFs for q-grams, BQ, and candidate values,
BG, as well as a BF b0 of length l that only contains 0-bits.
Next, in line 3, all unique q-grams in CN are collected into
the set QN , and for each q-gram qi ∈ QN one BF that only
contains 0-bits is created in line 4, collected into the set BQ.

Page 9 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

10

In the first phase of the algorithm (lines 5 to 7), for each bit
position p and for each q-gram qi ∈ CN [p] at that position,
we set the bit at position p in the q-gram’s corresponding BF
BQ[qi] to 1, leading to one BF per q-gram with 1-bits in all
positions where this q-gram cannot be hashed to.

In the second phase, in lines 8 to 11, for each candidate
attribute value gj ∈ GN that has all its q-grams in the set
QN (of q-grams where we know their not possible positions,
the test in line 10), we generate a BF for value gj in line 11
as the conjunction (bit-wise AND, ⊗) of the BFs in BQ for
all of the value’s q-grams, qk ∈ qj , as generated in line 9.
We collect all candidate attribute value BFs in the set BG.

In lines 12 to 17, we loop over all BFs bi ∈ B and
for each in line 13 we initialize an empty set of candidate
values. In line 14 we then loop over all candidate attribute
values gj ∈ GN , and if the conjunction between the BF bi

and the candidate’s BF BG[gj] results in a BF that contains
only 0-bits then gj could have been encoded into BF bi and
therefore in line 16 we add gj to the set Gi. We then add the
candidate set for bi to the result list R in line 17.

5 COMPLEXITY ANALYSIS AND LIMITATIONS

We now discuss the complexity and limitations of our
efficient cryptanalysis attack on BFs.

Complexity: To simplify our analysis, we assume n =
|B| = |V| is the number of BFs and attribute values, with
nQ the average number of q-grams per v ∈ V, k the number
of hash functions used, and l the BF length.

In Algorithm 1, the initialization in lines 2 and 3 is
of O(n), sorting in line 4 is O(n log n), and generating
A is O(nA) assuming nA = |A| = min(|BF |, |VF |). The
complexity of lines 7 to 12 is O(nA nQ l) as a vi in each
(vi,bi) ∈ A is converted into a q-gram set and all l bit
positions are checked for the corresponding bi. In lines 14
to 16, assuming Q is the set of all unique q-grams generated
from all values vi ∈ V, then on average t = k/l |Q| q-grams
are hashed into one bit position, leading to a complexity of
O(t) for one set difference and O(t l) for all l bit positions.

Algorithm 2 loops over all (bi, vi) ∈ A, converts each
vi into its q-gram set and then iterates over all l BF bit
positions where a set intersection is conducted for each 1-
bit. Assuming that each CP [p] contains t q-grams then the
complexity of Algorithm 2 is O(nA(nQ + l t)).

The initialization in lines 2 and 3 in Algorithm 3 is
O(nA + n) as it requires loops over A, and V and B,
respectively. The first loop in lines 4 to 9 has a complexity
of O(nA n(nQ + l)) because for each (vi,bi) ∈ A q-gram
sets are generated and compared with q-gram sets from
all vj ∈ VN and bit-wise AND operations are performed
between BFs. The refinement and expansion phases in lines
18 to 42 have a complexity of O(nA(mnQ + l)) as they
require the union and intersection of small numbers (m)
of q-gram sets as well as bit-wise AND and OR of BFs of
length l for each tuple (vi,bi) ∈ A.

Algorithm 4 is of O(n l t|GP |) as it loops over all BFs of
length l in B, and for each checks if any of the candidate
values in GP can be encoded into a certain BF, where we
assume t is the average number of q-grams in a CP [p].

Finally, in Algorithm 5, the initialization in lines 3 and 4,
and the loop in lines 5 to 7, are of O(l u), where u = |Q| (1−

TABLE 2
The number of unique values in the attributes used in the experimental
evaluation. For NCVR and UKCD we used two files, where one was the

sensitive database encoded into BFs and the other the plain-text
database available to the attacker, while in a cross-state experiment

NCVR was the encoded and Michigan the plain-text database.

Data set First name Surname City / Address
NCVR 22,117 / 22,282 40,113 / 40,513 735 / 745
UKCD 624 / 813 994 / 1,638 414 / 529
Michigan 195,431 362,807 –

k/l) is the average number of q-grams that are not hashed
to a BF bit position, as they iterate over all l bit positions and
sets of not possible q-grams in QN . The second loop (lines
8 to 11) iterates over all candidate values gj ∈ GN and for
each generates a BF (line 11). As we assume an attribute
value gj in average contains nQ q-grams then this loop is of
O(|GN |nQ). The loop in lines 12 to 17 is of O(n |GN |) as it
iterates over all BFs in B and for each checks if any value
gj ∈ GN could possibly have been encoded in the BF.

Limitations: Our attack method on BFs first assumes
an attacker has access to a population database from where
the set V of plain-text attribute values and their frequencies
can be extracted. Second, we assume that the BF database
B contains a subset of BFs that occur multiple times, and
that the frequency distribution of BFs in B is similar to the
frequency distribution of a single or a subset of attribute
values in V. These two assumptions are common to earlier
published attacks on BFs [14], [15], [16], [17], [18].

6 EXPERIMENTAL EVALUATION

We evaluated our attack method with several data sets, as
we describe next together with the experimental setup used.
We then discuss the results obtained, and finally provide
recommendations on how to securely employ BFs for PPRL.

6.1 Data Sets and Experimental Setup
We conducted experiments using three data sets from two
countries, as summarized in Table 2. The first is a pair of
North Carolina Voter Registration (named ‘NCVR’) data
sets (from: ftp://alt.ncsbe.gov/data/) collected in June 2014
(the database to be attacked) and October 2016 (the plain-
text database). We extracted two subsets containing 224,073
(2014) and 224,061 (2016) records, respectively. The second
pair of data sets (named ‘UKCD’) are census records col-
lected from the years 1851 (the sensitive database) and 1861
(the plain-text database) for the town of Rawtenstall in Eng-
land [26]. These data sets contain 17,034 (1851) and 22,430
(1861) records. For both data sets we use the First name,
Surname, and City (NCVR) or Address (UKCD) attributes,
respectively, as well as the concatenation of pairs of these
attributes. A third data set was a voter database from Michi-
gan (from: http://michiganvoters.info) containing 7,408,330
records that we used as the plain-text database available to
an attacker in a cross-state attack experiment.

Following earlier attacks on BFs [14], [15], [16], we set en-
coding parameters as q-gram length q = [2, 3, 4], BF length
l = [500, 1000, 2000], and either the double or random
hashing methods [23] as described in Section 3. We set the

Page 10 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ftp://alt.ncsbe.gov/data/
http://michiganvoters.info

For Peer Review Only

11

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name for NCVR
None
Balance
XOR-folding

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Surname for NCVR
None
Balance
XOR-folding

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

City for NCVR
None
Balance
XOR-folding

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name+Surname for NCVR
None
Balance
XOR-folding

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name+City for NCVR
None
Balance
XOR-folding

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Surname+City for NCVR
None
Balance
XOR-folding

Fig. 7. Precision results of re-identified q-gram sets for the NCVR data sets for different attribute combinations, and no BF hardening as well as the
‘Balancing’ and ‘XOR-folding’ hardening techniques described in Section 3 applied. An important result is that the precision of not possible q-gram
sets is high even when BF hardening techniques have been applied. Missing bars for the ‘assigned’ q-gram sets means there were no q-grams that
could be assigned to BF positions. Similar results were obtained with the UKCD data sets (not shown due to limited space).

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name for NCVR
l = 500
l = 1000
l = 2000

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name for NCVR
k = 20
k = 30
k = opt

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name for NCVR
q = 2
q = 3
q = 4

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name for NCVR
m = 2
m = 5
m = 10

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name+Surname for NCVR
l = 500
l = 1000
l = 2000

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name+Surname for NCVR
k = 20
k = 30
k = opt

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name+Surname for NCVR
q = 2
q = 3
q = 4

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name+Surname for NCVR
m = 2
m = 5
m = 10

Fig. 8. Precision results of re-identified q-gram sets for the NCVR data sets for different settings of BF length l (left), number of hash functions k
(middle left), length of q-grams q (middle right), and maximum size of attribute value and BF sets m as used in the refinement and expansion step in
Algorithm 3 (right). The results for a given parameter were obtained by averaging over the settings of the other parameters. No hardening technique
was applied in these experiments. As can be seen our proposed attack method is robust with regard to most used parameter settings.

number of hash functions k = [20, 30] and also calculated
an optimal number (opt) for k based on l and q such that
the false positive rate is minimized [22]. We also applied the
BF hardening techniques balancing and XOR-folding [23] as
described in Section 3. We set the maximum size of attribute
value and BF sets in Algorithm 3 as m = [2, 5, 10] as these
values provided good results in a set of initial experiments,
and the number of candidate attribute values to re-identify
(as discussed in Section 4.4) to |GP | = |GN | = [100, 1000].

We implemented our attack method in Python 2.7 and
conducted experiments on a server with 64-bit 2.4 GHz
CPUs, 128 GBytes of memory and running Ubuntu 14.04.
The programs are available from the authors.

We present the precision of the possible (CP), assigned
(CA), and not possible (CN) q-gram sets averaged over
all BF bit positions, where for each position we calculate
precision as the ratio of q-grams in a set in CP , CA or CN

that were truly hashed (for CP and CA) or not hashed (for
CN) to a position. We do not report recall since each q-gram
is hashed k times, and even if not all positions of a q-gram
are found (low recall), those identified can provide valuable
information to allow re-identification of attribute values.

We evaluate the quality of the re-identification methods
from Section 4.4 as re-identification accuracy by counting the
number of BFs in the encoded database for which we were
able to (1) correctly re-identify their attribute value (labeled
‘Correct 1’), (2) correctly re-identify their attribute value but

at least one other (incorrect) value was also re-identified (la-
beled ‘Correct many’), or (3) one or several wrong attribute
value(s) were re-identified (labeled ‘Wrong’).

6.2 Results and Discussion
In Figure 7 we show the precision of the q-gram sets CP ,
CA, and CN . As can be seen, the sets of not possible q-
grams have the highest precision. Even when BF hardening
techniques are applied our attack can correctly identify
the positions where q-grams could not have been hashed
to. This provides high quality information about q-gram
assignments to bit positions that can be used in the re-
identification process. The sets of possible q-grams are of
lower precision because for many BF bit positions they
also contain q-grams that in fact were not hashed to those
positions. Using the possible sets therefore leads to more
multiple re-identified attribute values, as Figure 9 shows.

The sets of assigned q-grams are of reasonable precision
for certain attributes (but not all) and only when no hard-
ening technique has been applied. One reason that some of
these assigned sets have low precision is that any error in the
frequency alignment of BFs and attribute values in the list
A, as described in Section 4.1, leads to wrong assignments.
From Figure 7 it is clear that the best way to re-identify
attribute values is to use the not possible q-gram sets, CN .

Figure 8 shows how different parameters affect the pre-
cision of the q-gram sets in CP , CA, and CN . Note that

Page 11 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

12

First name Surname City First name
+Surname

First name
+City

Surname
+City

0

50000

100000

150000
N

um
be

ro
fr

e-
id

en
tifi

ca
tio

ns

NCVR without BF hardening
Correct 1
Correct many
Wrong

Possible
Not possible

First name Surname City First name
+Surname

First name
+City

Surname
+City

0

50000

100000

150000

N
um

be
ro

fr
e-

id
en

tifi
ca

tio
ns

NCVR with balance BF hardening
Correct 1
Correct many
Wrong

Possible
Not possible

First name Surname City First name
+Surname

First name
+City

Surname
+City

0

50000

100000

150000

N
um

be
ro

fr
e-

id
en

tifi
ca

tio
ns

NCVR with XOR-folding BF hardening
Correct 1
Correct many
Wrong

Possible
Not possible

First name Surname Address First name
+Surname

First name
+Address

Surname
+Address

0

2000

4000

6000

8000

10000

12000

14000

N
um

be
ro

fr
e-

id
en

tifi
ca

tio
ns

UKCD without BF hardening
Correct 1
Correct many
Wrong

Possible
Not possible

First name Surname Address First name
+Surname

First name
+Address

Surname
+Address

0

2000

4000

6000

8000

10000

12000

14000

N
um

be
ro

fr
e-

id
en

tifi
ca

tio
ns

UKCD with balance BF hardening
Correct 1
Correct many
Wrong

Possible
Not possible

First name Surname Address First name
+Surname

First name
+Address

Surname
+Address

0

2000

4000

6000

8000

10000

12000

14000

N
um

be
ro

fr
e-

id
en

tifi
ca

tio
ns

UKCD with XOR-folding BF hardening
Correct 1
Correct many
Wrong

Possible
Not possible

Fig. 9. Re-identification accuracy results for the NCVR (top) and UKCD (bottom) data sets based on the possible and not possible q-gram sets,
where no BF hardening (left), balancing (middle) or XOR-folding (right) was applied. The bars show the number of BFs for which attribute values
were re-identified either correctly (with only 1 or with several re-identified values), or where one or more wrong value(s) were re-identified.

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name for NCVR and Michigan
None
Balance
XOR-folding

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Surname for NCVR and Michigan
None
Balance
XOR-folding

Possible Assigned Not possible
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

First name+Surname for NCVR and Michigan
None
Balance
XOR-folding

Fig. 10. Precision results of re-identified q-gram sets where the encoded database is NCVR and the plain-text database is from Michigan. As
discussed in Section 6.2, both for first names and surnames the top most frequent values differ across these two data sets. As a result the possible
and assigned q-gram sets are of low precision, however the not possible q-gram sets still provide information about the values encoded in BFs.

only the parameter m (maximum size of attribute value
and BF sets as used in Algorithm 3) is controllable by the
attacker. As can be seen, our attack is robust with regard
to most used parameter settings, except for the precision of
the assigned q-gram sets, CA, which drops for an optimal
number of hash functions, k = opt and q-grams of length
q = 3. This indicates that the approach to identify assigned
q-grams is data and parameter specific and might not be
useful to accurately re-identify encoded values.

The values for m were selected based on the objective
of our attack to identify q-grams with high precision. With
an increase in m the refinement and expansion steps in
Algorithm 3 will lead to lower quality of the identified q-
grams and thus lower final re-identification quality. Overall,
as can be seen from Figure 8, the sets of not possible q-
grams, CN , are of much higher precision compared to the
possible and assigned q-grams, CP and CA, supporting that
CN should be used to re-identify attribute values.

As can be seen in Figure 9, for the larger NCVR data sets
the re-identification quality is higher than for the smaller
UKCD data sets. This is because a larger number of frequent
BFs and attribute values are available that can be correctly
aligned in the list A. Our attack will be more accurate
on larger BF databases as they can be aligned to large
population databases such as telephone directories.

An example where our attack fails (as would others) is
on addresses for the UKCD data set, where the alignment
in the list A is incorrect even for the most frequent address
(changing from ‘Newchurch’ in 1851 to ‘Crawshawbooth’
in 1861). This highlights, as observed earlier [17], that an
attacker needs to have access to a plain-text database that
has a similar frequency distribution as the BF database.

The new re-identification method based on the not

possible q-gram sets is able to correctly re-identify sin-
gle attribute values for more BFs compared to our pre-
vious re-identification method based on the possible q-
grams sets [14]. As Table 3 shows, our new method is also
more precise as the average number of ‘Correct many’ re-
identifications is much smaller compared to our previous
method. Furthermore, the new re-identification method is
also faster and even on the larger NCVR data sets the attack
only requires a few seconds, as shown in Table 6.

With regard to the refinement and expansion of q-gram
sets (as proposed in Section 4.3), Table 4 shows that for
the re-identification method based on possible q-grams the
proposed methods generally increase the number of cor-
rect single re-identifications while at the same time they
reduce the number of multiple re-identifications. For the
re-identification method based on not possible q-grams the
results are more mixed, with some increases in the num-
ber of single re-identifications and large decreases in the
number of multiple re-identifications. At least for the first
name attribute there is also an increase in the number of
wrong re-identifications. We plan to further investigate the
performance of the refinement and expansion methods.

To evaluate our attack in a scenario where an attacker
does not have access to a plain-text data set that has similar
frequency characteristics to the encoded BF database (a
more likely scenario in a practical attack given the availabil-
ity of large population databases in various domains [17]), in
Figure 10 we show the precision of q-gram sets using NCVR
as the encoded BF database and a voter data set from Michi-
gan as the plain-text database. These two databases are very
different with regard to their sizes, and the most frequent
first name and surname values are ranked differently. For
example, the three most frequent surnames in NCVR are:

Page 12 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

13

TABLE 3
Average number of multiple re-identified attribute values using either the re-identification approach based on possible or not possible q-gram sets
for the NCVR data sets with the number of candidate attribute values, GP or GN , set to 100 or 1, 000, respectively. Results are averaged (with
standard deviations shown) over various parameter settings. The method based on not possible q-gram sets leads to much smaller numbers of
re-identified values, making the attack more accurate. Similar results were obtained with the UKCD data sets (not shown due to limited space).

Re-identify method / Size G First name Surname City First name+Surname First name+City Surname+City
Possible, |GP | = 100 10.38 ± 0.9 5.97 ± 2.1 8.19 ± 3.2 18.44 ± 1.5 10.98 ± 3.1 26.92 ± 6.8
Not Possible, |GN | = 100 2.13 ± 0.2 2.19 ± 0.1 1.45 ± 1.0 3.37 ± 0.6 4.67 ± 1.9 2.00 ± 0.0
Possible, |GP | = 1,000 93.84 ± 11.4 43.50 ± 20.6 56.83 ± 20.0 168.12 ± 24.9 122.18 ± 75.1 239.94 ± 117.4
Not Possible, |GN | =1,000 5.94 ± 0.9 3.61 ± 0.5 3.66 ± 0.4 3.83 ± 0.6 5.33 ± 2.4 2.00 ± 0.0

TABLE 4
Average improvements in the number of re-identified attribute values
for the NCVR data sets using the refinement and expansion methods.
Smaller improvements were obtained for the UKCD data sets because
these are much smaller and contain less values that could match the

refinement or expansion requirements described in Section 4.3.

Attribute Possible Not possible
Corr 1 / Corr M / Wrong Corr 1 / Corr M / Wrong

First name +94.6% / -21.6% / +15.6% -1.6% / -23.6% / +10.0%
Surname +55.9% / -7.1% / -1.2% +13.3% / -16.2% / -0.2%
City +56.0% / -2.5% / -0.2% +3.6% / -6.9% / -3.7%

Smith (1.40%), Williams (1.05%), and Jones (0.94%), while
in Michigan they are Smith (0.98%), Johnson (0.75%), and
Williams (0.61%). These different rankings lead to wrong
alignments of plain-text values and BFs in the list A in
Algorithm 1 that results in mostly wrong identification of
possible and assigned q-grams (as Figure 10 shows) and
thus low re-identification accuracy of attribute values. How-
ever, the not possible q-gram sets identified are still highly
precise because of the commonality of q-grams in these
frequent attribute values. As a result, some information
about q-grams encoded in the BF database can be learned.

In Table 5 we compare our attack method with pre-
viously proposed cryptanalysis attacks on BFs for PPRL
in terms of accuracy and efficiency. As can be seen, our
new approach is both more efficient and effective in re-
identifying attribute values from large databases, achieving
higher precision and much reduced computational require-
ments than existing attacks on BFs for PPRL.

6.3 Recommended Use of Bloom Filters for PPRL
Given BF encoding is now being employed in real-world
PPRL applications [2], [9], [10], it is crucial to study possible
attacks on BFs to ensure their security.

Our experiments have shown the vulnerability of basic
BF encoding, as well as BFs hardened using balancing or
XOR-folding, to our attack method. Our work highlights
the need for the development of improved PPRL encoding
and hardening techniques to overcome such attacks. Our
attack provides database owners with an efficient method
to evaluate the privacy of their BF encoded databases before
using them for PPRL, and to identify weaknesses of BF
encoding that could be exploited by an attacker.

Based on our (as well as previous) attack methods,
we provide the following recommendations to mitigate the
success of such attacks. (1) Existing attacks exploit frequent
BFs that can be aligned with frequent plain-text values.

TABLE 5
Comparison of re-identification results with existing BF cryptanalysis
attack methods with regard to re-identification quality and run time.

Publication Data set and attr. Num BFs Corr 1 Time
Kuzu’11 [16] NCVR first names 3,500 400 1,000 sec
Kuzu’13 [17] Patient names 20 4 few sec

” ” 42 0 > week
Niedermeyer [18] German surnames 7,580 934 > days
Kroll [15] German surnames 100K 44K > days

and town names
Christen [14] NCVR first names 100 10 0.75 sec
Our approach NCVR diff. attr. >200K >49K < 10 min

Therefore, database owners should ensure each BF in their
encoded database is unique. This can be achieved by using
record-level BF encoding [11], [19], where several attribute
values are encoded into one BF. (2) Employ different hash
mechanisms for each attribute to further reduce frequency
information (so a q-gram will be encoded differently de-
pending upon if it, for example, occurs in a first name or a
surname). (3) Apply advanced BF hardening methods [23],
to distort any useful patterns that could be exploited even
further. Combined, these three recommendations will mean
that there are unlikely frequent BFs or even frequent bit
patterns that can be exploited by an attack method.

Although database owners need to be aware that there is
no guarantee that any encoding is secure against any future
attack methods that are based on sophisticated cryptanal-
ysis techniques [27], the proposed mitigation methods will
make attacks even more harder. However, further extensive
experiments are required to properly analyze the strengths
and weaknesses of different BF encoding and hardening
techniques and their potential vulnerabilities with regard
to different attack methods.

7 CONCLUSIONS AND FUTURE WORK

We have presented a novel efficient attack method on BFs
that contain encoded sensitive attribute values intended for
PPRL. Unlike earlier attacks on BFs for PPRL, our approach
only requires an attacker to have access to a public database
of attribute values and their frequencies, but no information
about the BF encoding used. Our attack can be successful
even when some BF hardening techniques have been ap-
plied. It is also much faster than earlier attacks, making
it feasible for database owners to efficiently validate the
security of their large encoded sensitive databases before
they are being sent to other parties for conducting PPRL.

Page 13 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

14

TABLE 6
Timing results in seconds for the complete attack using either the re-identification approach based on possible or not possible q-gram sets for the
NCVR data sets for different attribute combinations and the number of candidate attribute values, GP or GN , set to 100 or 1, 000, respectively.

Results are averaged (with standard deviations shown) over various parameter settings as described in Section 6. The re-identification approach
based on not possible q-gram sets is clearly much faster than our earlier approach which is based on possible q-gram sets [14]).

Re-identify method / Size G First name Surname City First name+Surname First name+City Surname+City
Possible, |GP | = 100 7.66 ± 2.7 11.22 ± 4.1 2.27 ± 1.1 30.29 ± 9.2 17.08 ± 5.0 156.31 ± 136.2
Not Possible, |GN | = 100 2.50 ± 1.1 3.97 ± 1.7 1.95 ± 1.0 7.09 ± 2.3 6.49 ± 2.4 5.71 ± 2.1
Possible, |GP | = 1,000 50.94 ± 17.9 78.92 ± 38.4 4.77 ± 1.9 293.09 ± 116.4 136.16 ± 49.4 1,374.93 ± 1247.6
Not Possible, |GN | = 1,000 2.79 ± 1.1 5.07 ± 2.6 1.98 ± 1.0 9.57 ± 3.5 7.71 ± 3.1 6.38 ± 2.1

We believe our attack is an important component to make
BF based PPRL more secure for practical applications.

As future work we aim to improve the refinement
and expansion steps by using all possible q-gram subsets,
including the assigned q-gram sets, CA. We also plan
to investigate how probabilistic language models [28] can
be employed to find the most likely candidate attribute
value when several candidates have been re-identified for
a certain BF. Finally, we plan to explore the risk of re-
identification when other hardening techniques, such as
BLoom-and-flIP (BLIP) or salting [18], have been applied.

ACKNOWLEDGEMENTS

The authors would like to thank the Isaac Newton Insti-
tute, Cambridge, for support and hospitality during the
programme Data Linkage and Anonymisation (EPSRC grant
EP/K032208/1). P. Christen was partially supported by the
Simons Foundation. This work was also partially funded by
the Australian Research Council under grant DP130101801.

REFERENCES

[1] P. Christen, Data Matching. Springer, 2012.
[2] J. Boyd, S. Randall, and A. Ferrante, “Application of privacy-

preserving techniques in operational record linkage centres,” in
Medical Data Privacy Handbook, 2015.

[3] R. Schnell, “Privacy-preserving record linkage,” in Methodological
Developments in Data Linkage, K. Harron et al., Eds., 2015.

[4] R. Hall and S. Fienberg, “Privacy-preserving record linkage,” in
PSD, Corfu, Greece, 2010, pp. 269–283.

[5] D. Vatsalan, P. Christen, and V. Verykios, “A taxonomy of privacy-
preserving record linkage techniques,” IS, vol. 38, no. 6, 2013.

[6] D. Vatsalan, Z. Sehili, P. Christen, and E. Rahm, “Privacy-
preserving record linkage for Big Data,” in Handbook of Big Data
Technologies. Springer, 2017, pp. 851–895.

[7] J. Cao, F.-Y. Rao, E. Bertino, and M. Kantarcioglu, “A hybrid
private record linkage scheme: separating differentially private
synopses from matching records,” in IEEE ICDE, 2015.

[8] Y. Lindell and B. Pinkas, “Secure multiparty computation for
privacy-preserving data mining,” JPC, vol. 1, no. 1, p. 5, 2009.

[9] C. Pow, K. Iron, J. Boyd, A. Brown et al., “Privacy-preserving
record linkage: an international collaboration between Canada,
Australia and Wales,” IJPDS, vol. 1, no. 1, 2017.

[10] S. Randall, A. Ferrante, J. Boyd, J. Bauer, and J. Semmens,
“Privacy-preserving record linkage on large real world datasets,”
JBI, vol. 50, pp. 205–212, 2014.

[11] R. Schnell, T. Bachteler, and J. Reiher, “Privacy-preserving record
linkage using Bloom filters,” BMC MIDM, vol. 9, no. 1, 2009.

[12] D. Vatsalan and P. Christen, “Privacy-preserving matching of
similar patients,” JBI, vol. 59, pp. 285–298, 2016.

[13] D. Karapiperis, A. Gkoulalas-Divanis, and V. S. Verykios, “FED-
ERAL: A framework for distance-aware privacy-preserving record
linkage,” IEEE TKDE, vol. 30, no. 2, pp. 292–304, 2017.

[14] P. Christen, R. Schnell, D. Vatsalan, and T. Ranbaduge, “Efficient
cryptanalysis of Bloom filters for privacy-preserving record link-
age,” in PAKDD, Jeju, Korea, 2017, pp. 628–640.

[15] M. Kroll and S. Steinmetzer, “Who is 1011011111...1110110010?
Automated cryptanalysis of Bloom filter encryptions of databases
with several personal identifiers,” in BIOSTEC, Lisbon, 2015.

[16] M. Kuzu, M. Kantarcioglu, E. Durham, and B. Malin, “A constraint
satisfaction cryptanalysis of Bloom filters in private record link-
age,” in PET, Waterloo, 2011.

[17] M. Kuzu, M. Kantarcioglu, E. Durham, C. Toth, and B. Malin, “A
practical approach to achieve private medical record linkage in
light of public resources,” JAMIA, 2013.

[18] F. Niedermeyer, S. Steinmetzer, M. Kroll, and R. Schnell, “Crypt-
analysis of basic Bloom filters used for privacy preserving record
linkage,” JPC, vol. 6, no. 2, pp. 59–79, 2014.

[19] E. Durham, M. Kantarcioglu, Y. Xue, C. Toth, M. Kuzu, and
B. Malin, “Composite Bloom filters for secure record linkage,”
IEEE TKDE, vol. 26, no. 12, pp. 2956–2968, 2014.

[20] A. Kirsch and M. Mitzenmacher, “Less hashing, same perfor-
mance: building a better Bloom filter,” in ESA, 2006, pp. 456–467.

[21] B. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Comm ACM, vol. 13, no. 7, 1970.

[22] D. Vatsalan and P. Christen, “Scalable privacy-preserving record
linkage for multiple databases,” in ACM CIKM, Shanghai, 2014.

[23] R. Schnell and C. Borgs, “Randomized response and balanced
Bloom filters for privacy preserving record linkage,” in ICDMW
DINA, Barcelona, 2016.

[24] ——, “XOR-folding for Bloom filter-based encryptions for privacy-
preserving record linkage,” German Record Linkage Center, no. WP-
GRLC-2016-03, 2016.

[25] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[26] Z. Fu, P. Christen, and J. Zhou, “A graph matching method for

historical census household linkage,” in PAKDD, Tainan, 2014.
[27] K. M. Martin, Everyday Cryptography: Fundamental Principles and

Applications. New York: Oxford University Press, 2012.
[28] C. Manning and H. Schütze, Foundations of Statistical Natural

Language Processing. MIT Press, 1999.

Peter Christen is a Professor at the Australian National University
(ANU) Research School of Computer Science (RSCS). He graduated
with a PhD in Computer Science from the University of Basel, Switzer-
land, in 1999. His research interests are in record linkage and data
mining, with a focus on privacy and machine learning aspects of record
linkage. He has published over 130 articles in these areas, including in
2012 the monograph ”Data Matching” published by Springer.

Thilina Ranbaduge is a PhD post-doctoral fellow at the ANU. His
research interests are in data mining, and in multi-database and privacy-
preserving record linkage. He received his PhD in Computer Science
from the ANU in 2018 and completed his PG.Dip and BSc (Hons) at the
University of Moratuwa, Sri Lanka, in 2013 and 2009, respectively.

Dinusha Vatsalan is a Research Scientist at Data61-CSIRO, Australia,
and an Honorary Lecturer in the ANU RSCS. She completed her PhD
in Computer Science at the ANU in 2014 and her BSc (Hons) at the
University of Colombo, Sri Lanka, in 2009. Her research interests are
in privacy in data matching and mining, privacy in social media, privacy
risk evaluation and prediction, and health informatics.

Rainer Schnell is Professor at the University of Duisburg-Essen and
holds the Chair in Research Methodology in the Social Sciences. He
graduated with a postdoctoral degree (habilitation) in Research Method-
ology at the University of Mannheim in 1996. He is a Survey Method-
ologist with a research focus on nonsampling errors, applied sampling,
census operations, and privacy preserving record linkage.

Page 14 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

