
Attack methods on
privacy-preserving record linkage

Peter Christen1, Rainer Schnell2, Dinusha Vatsalan1,3, Thilina Ranbaduge1,

and Anushka Vidanage1

1 Research School of Computer Science,

The Australian National University, Canberra

2 Methodology Research Group,

University Duisburg-Essen, Germany

3 CyberPhysical Systems Research Program, Data61, Sydney

Contact: peter.christen@anu.edu.au

Data61 PPRL workshop, Feb 2019 – p. 1/18

Outline

A short introduction to record linkage and
privacy-preserving record linkage (PPRL)

Bloom filter encoding for PPRL

Cryptanalysis attack methods on Bloom filter
based PPRL

Our novel efficient cryptanalysis attack methods

1. Frequency based attack

2. Pattern mining based attack

Outlook and recommendations

Data61 PPRL workshop, Feb 2019 – p. 2/18

What is record linkage?

Increasingly, data from different sources need to

be integrated and linked

To allow analytics not possible on individual databases

To improve data quality

To enrich data with additional information

Record linkage is the process of linking records
that represent the same entity in one or more
databases (patients, customers, tax payers, etc.)

Lack of unique entity identifiers means that linking
is often based on sensitive personal information

When databases are linked across organisations,
it is crucial to ensure privacy and confidentiality

Data61 PPRL workshop, Feb 2019 – p. 3/18

Privacy-preserving record linkage

Objective: To link data across organisations
such that besides the linked records (the ones
classified to refer to the same entities) no
information about the sensitive source data
can be learned by any party involved in the
linkage, or any external party

Main challenges

Have techniques that are scalable to linking large

databases across multiple parties

Allow for approximate linking of values

Being able to asses linkage quality and completeness

Have techniques that are not vulnerable to any kind

of attack (frequency, dictionary, cryptanalysis, etc.)

Data61 PPRL workshop, Feb 2019 – p. 4/18

The PPRL process

Comparison

Matches

Non−
matches

Matches

Privacy−preserving context

Clerical
Review

Classif−
ication

processing

Data pre−

processing

Data pre−

Evaluation

Potential
Encoded data

Indexing /
Searching

Database A Database B

Data61 PPRL workshop, Feb 2019 – p. 5/18

Bloom filter encoding Schnell et al. (2009)

erteet

1 1111 0 0 0 0 1 0 0 0 1

pe

Alice

pe et te

1 1111 0 0 0 0 0 0000Bob

‘peter’: x1=7, ‘pete’: x1=5,

c=5, therefore simDice =

2×5/(7+5)= 10/12 = 0.83

Bloom filters are bit vectors initially all set to 0

Use k ≥ 1 hash functions to hash-map a set of

elements by setting corresponding k bit positions to 1

For PPRL, a set of q-grams (from strings) are

hash-mapped to allow approximate matching

Dice similarity of two Bloom filters b1 and b2 is:

simDice(b1, b2) =
2×c

(x1+x2)
, with: c = |b1∩ b2|, x i = |bi|

Single or multiple attribute values can be encoded into

one BF (known as ABF or RBF)

Data61 PPRL workshop, Feb 2019 – p. 6/18

Attacks on Bloom filter based PPRL

Publication Data set Num BF Correct Knowledge

Kuzu et al. (2011) NCVR first names 3,500 11% k, fBF/PT

Kuzu et al. (2013) Patient names 20 20% k, fBF/PT

Niedermeyer et al. (2014) German surnames 7,580 12% k, DH, fBF/PT

Kroll and Steinmetzer (’15) Names and locations 100K 44% k, DH, fBF/PT

Mitchell et al. (2017) NCVR first / last names 474K 77% all!

These cryptanalysis attacks mostly exploit the

frequencies of 1-bit patterns within and between

Bloom filters (only Mitchell et al. build a graph of

possible q-grams encoded in a BF)

They are feasible only for certain parameter
settings and assumptions, and some of them
require excessive computational resources
(making them not really practical)

Data61 PPRL workshop, Feb 2019 – p. 7/18

A novel efficient attack method

Our novel cryptanalysis attack is based on the

construction principle of Bloom filters of hashing

elements of q-gram sets into bit positions

A 1-bit at a certain position means at least one of a

set of q-grams was hashed to this position

A 0-bit at a certain bit position means no q-gram of a

set of q-grams could have been hashed to this position

The attack is independent of the hash encoding
function and its parameters used

It can correctly re-identify sensitive values even
when certain hardening techniques have been
applied (such as balancing or xor-folding)

It runs in a few seconds instead of hours
Data61 PPRL workshop, Feb 2019 – p. 8/18

Attack initialisation

Freq

231

171

109

42

Public database
First name

mary

kate

... ...

karen

mareo

BF

BF

1

2

BF3

BF4

FreqBloom filter

...

242

184

115

48

BF database

[1,1,0,0,1,0]

[0,0,1,0,1,1]

[1,0,1,1,0,1]

[0,1,0,1,1,1]
...

p 1 p 2 p 3
... p 6

We assume the attacker has access to a set of encoded

Bloom filters and attribute values, and their frequencies

As with existing attack methods, we assume the attacker

knows what attribute(s) are encoded in the Bloom filters

We frequency-align attribute values and Bloom filters

We only consider frequent attribute values and Bloom

filters as long as they have unique counts

Data61 PPRL workshop, Feb 2019 – p. 9/18

Attack step (1a)

Freq

231

171

109

42

Public database
First name

mary

kate

... ...

karen

mareo

= {ka,ar,re,en,ma,ry}

= {ka,at,te,ma,ar,re,eo}

= {ma,ar,ry,re,eo}

= {ka,ar,re,en,at,te}

= {ka,ar,re,en,at,te}

= {ma,ar,ry,re,eo}
......

(1a) Position candidate sets
+c

+c
c
+c
c−

1

2

3

1

2

3

[p]

[p]

[p]

[p]

[p]

[p]
−

−

cBF

BF

1

2

BF3

BF4

...

p 1 p 2 p 3
... p 6

FreqBloom filter

...

242

184

115

48

BF database

[1,1,0,0,1,0]

[0,0,1,0,1,1]

[1,0,1,1,0,1]

[0,1,0,1,1,1]

For each bit position p in the Bloom filters, for all attribute

values that have this bit set to 1 we add their q-grams to the

set c+[p] of possible q-grams for that position (at least one

q-gram of an attribute value was hashed to this position)

For each bit position p in the Bloom filters, for all attribute

values that have this bit set to 0 we add their q-grams to

the set c−[p] of not possible q-grams for that position (no

q-gram of an attribute value can be mapped to this position)

Data61 PPRL workshop, Feb 2019 – p. 10/18

Attack step (1b)

Freq

231

171

109

42

Public database
First name

mary

kate

... ...

karen

mareo

BF

BF

1

2

BF3

BF4

=

=

=
...

(1b) Position q−gram sets
\ = {en,ry}

\ = {ma,ry,eo}

\ = {ka,en,at,te}

c c c−

c−

c−+c

+cc
c 3 3 3

222

111[p]

[p]

[p]

[p]

[p]

[p]

[p]

[p]

[p]

+
FreqBloom filter

...

242

184

115

48

BF database

[1,1,0,0,1,0]

[0,0,1,0,1,1]

[1,0,1,1,0,1]

[0,1,0,1,1,1]
...

p 1 p 2 p 3
... p 6

For each position p we obtain the set c[p] = c+[p] \ c−[p]

Each c[p] is the set of possible q-grams that potentially

have been hashed to position p

We can now use the list C = [c[p1], . . ., c[pl]] (where l is

the length of the Bloom filters) to reconstruct attribute

values mapped into a certain Bloom filter (based on the

Bloom filter’s 0 / 1 bit pattern)

Data61 PPRL workshop, Feb 2019 – p. 11/18

Attack step (2)

= { }

Freq

231

171

109

42

Public database
First name

mary

kate

... ...

karen

mareo

BF

BF

1

2

BF3

BF4

.
.

1(BF)

G = {karen, mary, kate, mareo}

g
g

=

= g
G = {karen, mary}c

c
1

3

(2) Re−identify attribute values

[p]

[p]
3

1

1

p

p p

FreqBloom filter

...

242

184

115

48

BF database

[1,1,0,0,1,0]

[0,0,1,0,1,1]

[1,0,1,1,0,1]

[0,1,0,1,1,1]
...

p 1 p 2 p 3
... p 6

karen

Given a set G of attribute values which we aim to map to

Bloom filters (i.e. aim to re-identify)

We analyse each frequent Bloom filter, and remove from

G those attribute values that are not possible matches

according to C because they do not contain any q-grams

that would have been hashed to a certain 1-bit

For example, kate is not possible for BF 1 because for the

1-bit in position p1 it would need to contain either ‘en’ or ‘ry’

(from c[1] = {en, ry})
Data61 PPRL workshop, Feb 2019 – p. 12/18

A pattern mining based attack

Based on the following observation:

Assuming a q-gram q occurs in nq < n records
in a plain-text database V that contains n = |V|
records, and k ≥ 1 independent hash functions
are used to encode q-grams from V into the
encoded database B of n BFs, i.e. |V| = |B|.
Then:

1. each BF bit position that can encode q must
contain a 1-bit in at least nq BFs in B, and

2. if k > 1 then up to k bit positions must contain
a 1-bit in the same subset of BFs Bq ⊆ B, with
nq = |Bq|, that encode q.

Data61 PPRL workshop, Feb 2019 – p. 13/18

Attack example (1)

b

b

b

b

b

1

2

3

4

5

Encoded Bloom filter database B
0

0
0
0

0

0 0 0 0 0
0 0 0

0 0 0 0

0 0

0 0 0 0 00
0 0 0 0 0 0 0

000000
0 0 0 0

0
0

0 0

0
0

0
0

0
0

1
1

1
1 1

1
1

1

1
1

1

1

1

1
1 1

Q−gram counts:

3: ma

1: an, ar, au, ax,

jo ar oh ry jo ar au ma ax hn ry de hnoh
de ax

maude
mary
max

john
joan

de, hn, oa, oh,

ry, ud

oa oa ma au udud
an

1 1 1 1 111 100 0 0
1 11 1 1 00000000000000

an

0

2: jo

Plain−text database V

(only shown for illustration,

but not known to the attacker) p 1 5 p 13p p 10

Using frequent itemset mining, we first find bit positions p5

and p13 have co-occurring 1-bits in the same three BFs

(b1, b3, and b4) and therefore must encode ‘ma’ which is

the only q-gram that occurs in three plain-text values.

Next, we find that p1 and p10 must encode ‘jo’ because they

have co-occurring 1-bits in the same two BFs (b2 and b5)

and ‘jo’ is the only q-gram that occurs in two plain-text

values.

Data61 PPRL workshop, Feb 2019 – p. 14/18

Attack example (2)

p
3

p
7

p
10

p
2

p
4

p
9

p
1

p
6

p
12

p
4

p
9

p
11

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

11

1

1

1

1

1

0

0

0

0

0

0

0

0 1

11 1

1

1

0

1

1

1

0

0

1

1

1

0

0

0

11

0

0

0

1

1

1

00

1

1

1

0

0

0

1

0

1

1

0

0

1 1

0

0

1

1

0

1 1 1

Iteration 3

1

01

10

1 0010

1 0 10

1

1

1 0 1 0 0 1 1

1

1

001

0

0 1

1

0

1

1 1

0

0

00

1

1

1

0 0

1 1

1 0

10 1

1 0

0 0

0

Iteration 1

0

0

0

1

0

1

0

1

1

0

1

0

0

1

0

0

1

0

1

0

0

0

0

0

0

0

1

0

1

1

0

1

1

0

1

1

0

0

1

0

1

1
1
1

1 1

1
1
1

1 1

1
1
1

1

1

1

0

0

1

0

1

1

1

0

00

1

1

1

11

00 0 0

1

1

1

1

1 1

1

1

1

0

0

0

0

0

11

00

0

0

0

1

1

1

1

0

0

1

0

0

0

1

1

1

0

1

1

1 1

1 1

1

1

11 1

0

0 0 0

1

0

1

1

0

1 11

1

1

1

1

0

1

1 0

1

1

1

1

000

0

00

0 0

0 0

0

000

0

0 0

0

0

0

1

1

0

1 0

1

1 0 1

10

1 1

11

1

1

1

1

1 1

1

1
0

1

1
1

1

1

1
1

1

1
1

111 1

1

1

1

1

1

1

1

00

1

0

1

1 0

0

1 11

0

0

0

0

0 0 0

00 1

0

1

1

1

0

0

1

1

1

0

0

0

11

0

0

0

1

1

1

00

1

1

1

0

0

1

0

1

1

0

0

1 1

0

0

1

1

0

1 1 1

00

1

1 1 0 0

0

10

10

0 1 0 1

0110

1 0 1

1

1

0

0 0

0 0

1

1 0

1 0

0

10

1 0

0

10

10

1 01

0

1

0

0

1

0

1

0 1

1

1

1

1

1

11 1

Iteration 4

0 1 0

00 1 0 1 1 0 0 0

11100

1 1 0 1 0 1 0 1 0

1

1 1 1

111

1 1

1

111

1 1

0

1

1

1 1

1

1 1

1

11

1

Iteration 2

0

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

0

0

0

0

1

0 0 0

11

0

0

0

0

0

00

1

1

1

1

10

0 0 0

00 1

0

1

1

1

0

0

1

1

1

0

0

0

11

0

0

0

1

1

1

00

1

1

1

0

0

1

0

1

1

0

0

1 1

0

0

1

1

0

1 1 1

00

1

1 1 0 0

0

10

10

0 1 0 1

0110

1 0 1

1

1

0

0 0

0 0

1

1 0

1 0

0

10

1 0

0

10

10

1 01

0

1

1

1

1

1
1

0

0

1

0

1

0

1

1

1

1 1

1

1

1

11

0 1 0

0 0 1

001

1

1

1

1

1

1

11 1

1

1

1

1

1. We apply pattern mining on all Bloom filters and all positions

2. Consider only those BFs with a 1-bit in positions p1, p7, and

p10 (partition encoding the frequent qf from Iteration 1)

3. Consider only those BFs with a 0-bit in positions p1, p7, and

p10 (partition not encoding the frequent qf from Iteration 1)

4. And so on until a given minimum partition size reached

Data61 PPRL workshop, Feb 2019 – p. 15/18

Experimental evaluation

We have run a variety of experiments on different
data sets (UK census and North Carolina voter)

Both attacks can correctly identify q-grams and
also re-identify encoded values

The frequency based attack even works with
certain hardening technique (balancing and XOR

folding)

The pattern mining attack can identify q-gram
positions with very high precision even when
each BF in a database is unique!

The larger the data sets the more successful
these attacks are

Data61 PPRL workshop, Feb 2019 – p. 16/18

Recommendations

First Bloom filter based PPRL systems are now
being employed in real-world record linkage
applications in the health domain
(including in Australia, Germany, Wales, Canada,
Brazil and Switzerland)

To limit the vulnerability of such PPRL systems

to known attack methods we recommend to:

1. Use record-level Bloom filter encoding

2. Apply advanced Bloom filter hardening methods

3. Reduce the frequency of bit patterns by, for example,

salting to prevent any frequency based analysis

Data61 PPRL workshop, Feb 2019 – p. 17/18

Key insight and outlook

Bloom filters are one single hash step from
q-gram to bit array, therefore bit patterns contain
information directly relating to q-grams

Some form of two-step hashing, or further
hardening, obfuscation, encoding, or encryption
is required

Future attack ideas: Similarity graph matching,
language models, correlation clustering

Ideally we can attack (identify vulnerabilities)
for any PPRL method (for different scenarios)

Data61 PPRL workshop, Feb 2019 – p. 18/18

	Outline
	What is record linkage?
	Privacy-preserving record linkage
	The PPRL process
	Bloom filter encoding ~ {	iny Schnell et al. (2009)}
	Attacks on Bloom filter based PPRL
	A novel efficient attack method
	Attack initialisation
	Attack step (1a)
	Attack step (1b)
	Attack step (2)
	A pattern mining based attack
	Attack example (1)
	Attack example (2)
	Experimental evaluation
	Recommendations
	Key insight and outlook

