Outline

Parallel Techniques for High-Performance Record Linkage (Data Matching)

Peter Christen

In collaboration with: Tim Churches, Markus Hegland, Kim Lim, Ole M. Nielsen, Stephen Roberts and Justin Zhu

Data Mining Group, Australian National University Epidemiology and Surveillance Branch, NSW Department of Health

Contact: peter.christen@anu.edu.au Project web page: http://datamining.anu.edu.au/linkage.html

Copyright © 2002 Peter Christen - p.1/27

Copyright © 2002 Peter Christen - p.3/27

Record Linkage – A Definition

Record linkage is the task of linking together information from one or more data sources that represent the same entity.

- Record linkage is also called...
 - data linkage, record matching or database matching
 - data cleaning, data scrubbing or data standardisation
 - ETL (extraction, transformation and loading), or the merge/purge problem
- Data standardisation is an important first step (well defined, clean and standardised fields needed)

- Record linkage in a nutshell
 - Applications
 - Privacy and ethics
 - Techniques
- Our project: Open source record linkage
 - Aim, approach and status
 - Python prototype
 - Parallelisation
 - Using machine learning and data mining

THE AUSTRALIAN MATIONAL UNIVERSITY

Copyright © 2002 Peter Christen - p.2/27

Applications

- Two applications
 - De-duplicate a data set
 - Link two data sets (merge into a master data set)
- Widespread use of record linkage
 - Epidemiology (patient oriented and longitudinal studies)
 - Census statistics
 - Business mailing lists (cleaning and updating)
 - Crime and fraud detection

Record linkage is often an initial step in epidemiological studies and in data analysis / data mining projects.

Privacy and Ethics

- For some applications, personal information is not of interest and is removed from the linked data set (e.g. epidemiology, census statistics, data mining)
- In other areas, the linked information is the aim (e.g. business mailing lists, crime and fraud detection)
- Personal privacy and ethics is most important
 - Privacy Act, 1988
 - National Statement on Ethical Conduct in Research Involving Humans, 1999

Probabilistic Record Linkage

Copyright © 2002 Peter Christen - p.5/27

Copyright © 2002 Peter Christen - p.7/27

- Computer assisted record linkage goes back as far as the 1950s (based on ad-hoc heuristic methods)
- Basic ideas of probabilistic linkage were introduced by Newcombe & Kennedy (1962)
- Theoretical foundation by Fellegi & Sunter (1969)
 - Using matching weights based on frequency ratios (global or value specific ratios)
 - Compute matching weights for all fields used in linkage
 - Summation of matching weights is used to designate a pair of records as *link*, *possible-link* or *non-link*

Record Linkage Techniques

- Deterministic or exact linkage
 - A unique identifier is needed, which is of high quality (precise, robust, stable over time, highly available)
 - Examples: Medicare number or Tax file number (are they really unique, stable, trustworthy?)
- Probabilistic linkage
 - Apply linkage using available (personal) information (can be missing, wrong, coded differently, outdated, etc.)
 - Examples: name, address, date of birth, etc.
- Other techniques
 Rule-based, fuzzy approach, information retrieval, etc.

THE AUSTRALIAN

Copyright © 2002 Peter Christen - p.6/27

Linkage Example: Month of Birth

- Assume two data sets with a 3% error in field month of birth
- Probability that two linked records (that represent the same person) have the same month is 97% (*L agreement*)
- Probability that two linked records do not have the same month is 3% (*L disagreement*)
- Probability that two (randomly picked) unlinked records have the same month is 1/12 = 8.3% (*U* agreement)
- Probability that two unlinked records do not have the same month is 11/12 = 91.7% (U disagreement)
- Agreement weight (L_{ag}/U_{ag}) : log₂(0.97/0.083) = 3.54 Disagreement weight (L_{di}/U_{di}) : log₂(0.03/0.917) = -4.92

THE AUSTRALIAN NATIONAL UNIVERSITY

Value Specific Frequencies

Example: Surnames

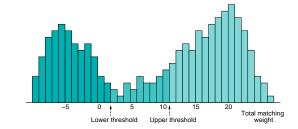
- Assume the frequency of Smith is higher than Dijkstra (NSW Whitepages: 25,425 Smith, only 3 Dijkstra)
- Two records with surname *Dijkstra* are more likely to be the same person than with surname *Smith*
- The matching weights need to be adjusted
 - Difficulty: How to get value specific frequencies that are characteristic for a given data set
 - Earlier linkages done on same or similar data
 - Information from external data sets (e.g. Australian Whitepages)

Our Record Linkage Project

- Why this project?
 - Commercial software is expensive
 - It often doesn't provide the flexibility a user wants
 - No use of high-performance and parallel computing
 - No use of machine learning and data mining techniques (specially for the manual *clerical review* process)
- Project aim
 - Develop improved techniques for probabilistic record linkage
 - Implement open source prototype software

Final Linkage Decision

- The final weight is the sum of weights of all fields
 - Record pairs with a weight above an upper threshold are designated as a link
 - Record pairs with a weight below a *lower threshold* are designated as a *non-link*
 - Record pairs with a weight between are possible link



THE AUSTRALIAN MATIONAL UNIVERSITY

Copyright © 2002 Peter Christen - p.10/27

A Collaborative Research Project

- ANU Data Mining Group
 - Department of Computer Science
 - Mathematical Sciences Institute
 - Australian Partnership for Advanced Computing (APAC)
- New South Wales Department of Health
 - Epidemiology and Surveillance Branch

Equally funded by ANU and NSW Health under an ANU Industry Collaboration Scheme (AICS)

THE AUSTRALIAN

TIONAL UNIVERSITY

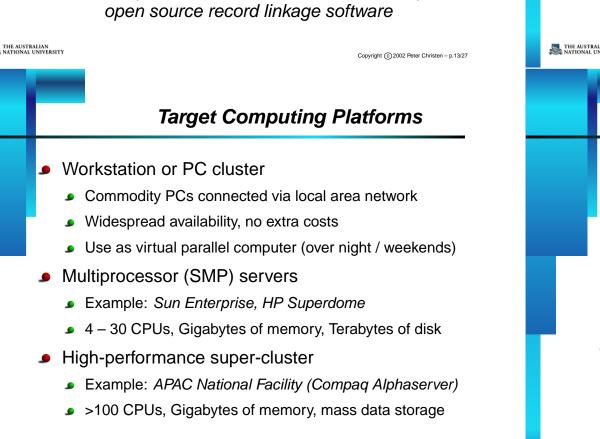
Copyright © 2002 Peter Christen – p.11/27

Copyright © 2002 Peter Christen - p.9/27

Project Aim and Description

- The aim is to facilitate (epidemiological) research with free and improved tools for record linkage
 - 1. Implement prototype software for data standardisation and record linkage \Rightarrow Feedback from (test) users
 - 2. Develop high-performance and parallel computing techniques \Rightarrow Faster linkage of larger data sets
 - 3. Explore machine learning and data mining techniques for record linkage \Rightarrow **Better linkage guality**

Use of open source software tools to develop open source record linkage software



Copyright © 2002 Peter Christen - p.15/27

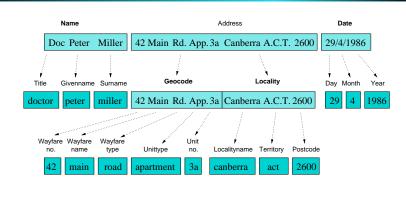
Open Source Software Tools

- Scripting language Python
 - Easy and rapid prototype software development
 - Provides lists and dictionaries (great for lookup-tables)
 - Can handle large data sets stable and efficiently
 - Many external modules, easy to extend
 - Available from www.python.org (Unix, Windows, Mac)
- Parallel libraries MPI and OpenMP
 - Widespread use in high-performance computing $(quasi standards) \Rightarrow Portability and availability$
 - Parallel Python extensions: PyRO (Remote Objects) and PyPar (MPI; Ole Nielsen, MSI/APAC)

THE AUSTRALIAN

Copyright © 2002 Peter Christen - p.14/27

Standardisation



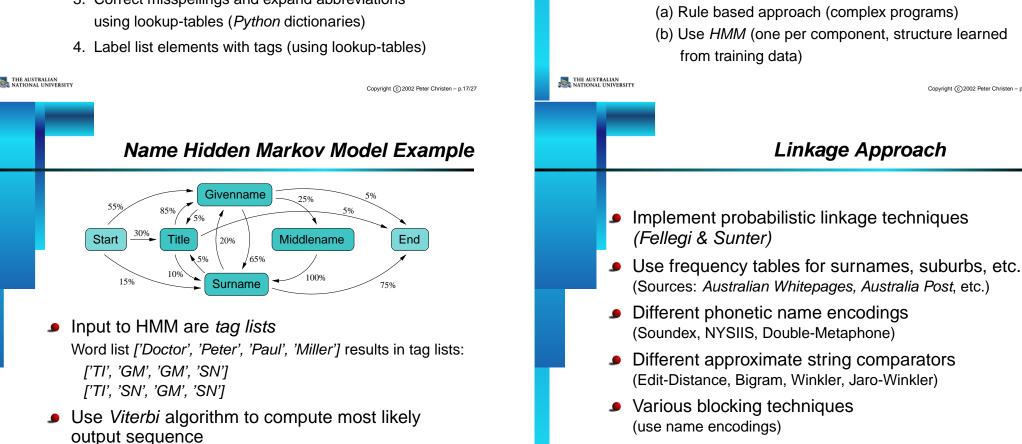
Two different approaches

- Rules based (traditional) [e.g. AutoStan software]
- Probabilistic Hidden Markov Models (HMM) [new] (standardised training data needed)

Standardisation Approach

- Four different components of a record: Name, Geocode, Locality and Date
- Assign words and numbers into 20 output fields
- Five processing steps...
 - 1. Clean (make lowercase, remove unwanted characters and replace certain characters with others)
 - 2. Split into a list of words, numbers and separators
 - 3. Correct misspellings and expand abbreviations using lookup-tables (Python dictionaries)

(for each tag list we get a probability, take the highest)



Standardisation Approach (cont.)

- Example:
 - Input: "Peter Miller-Meyer PhD", "42 Miller St (3A)"
 - Cleaned and tagged:
 - Name word list: ['peter', 'miller', '-', 'meyer', 'doctor']
 - Name tag list: ['GM/SN', 'SN', 'HY', 'SN', 'TI']
 - Geocode word list: ['42', 'miller', 'street', 'l', '3a', 'l']
 - Geocode tag list: ['NU', 'UN', 'WT', 'VB', 'AN', 'VB']
- Last processing step
 - 5. Assign list elements to output fields
 - (a) Rule based approach (complex programs)
 - (b) Use HMM (one per component, structure learned

Copyright © 2002 Peter Christen - p.18/27

Linkage Approach

THE AUSTRALIAN

Copyright © 2002 Peter Christen - p.19/27

Phonetic Name Encoding

 Bringing together spellings variations of the same name

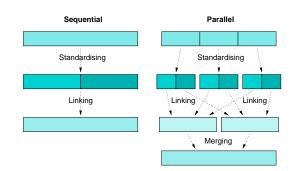
Examples:

Name	Soundex	NYSIIS	Double-Metaphone	
peter	p360	pata	ptr	
christen	c623	chra	krst	
nielsen	n425	nals	nlsn	
markus	m622	marc	mrks	
hegland	h245	hagl	hkln	
stephen	s315	staf	stfn	
steve	s310	staf	stf	

THE AUSTRALIAN

Copyright © 2002 Peter Christen – p.21/27

Parallelisation Approach



- Each record can be standardised independently
- Linkage is done using *blocking* (each block can be processed independently)

Approximate String Comparison

- Account for partial agreement between strings
- Return score between 0.0 (totally different) and 1.0 (exactly the same)
- Examples:

String_1	String_2	Winkler	Bigram	Edit-Dist
tanya	tonya	0.880	0.500	0.800
dwayne	duane	0.840	0.222	0.667
sean	susan	0.805	0.286	0.600
jon	john	0.933	0.400	0.750
itman	smith	0.567	0.250	0.000
lst	ist	0.778	0.500	0.667
peter	ole	0.511	0.000	0.200

THE AUSTRALIAN

THE AUSTRALIAN

Copyright © 2002 Peter Christen – p.22/27

Data Mining Approach

- Data mining and machine learning techniques to learn data characteristics
 - Clustering (as alternative for blocking?)
 - Predictive modelling
 - Decision trees and rules (for matches / non-matches?)
- Training data needed to build model (pairs of known matches and known non-matches)

ANU Data Mining group has several years of experience in predictive modelling, handling of health data sets, data processing, etc.

Project Plan and Status

- Project started in January 2002 (officially March)
- Project plan
 - Standardisation (January July)
 - Probabilistic Linkage (August September)
 - Parallelisation (September October)
 - Data Mining and Machine Learning (November March)
- Free Python prototype software is available online
 - Routines for Name, Address and Date standardisation
 - Routines for approximate string comparison and name encodings (Soundex, NYSIIS, Metaphone, etc.)

THE AUSTRALIAN

Outlook

- A new approach to probabilistic record linkage
 - Free open source software
 - High-performance and parallel computing
 - Data mining and machine learning techniques
- Future extension of this project likely
 - ARC Linkage grant for 2003
- Further collaborations are welcome
- Free prototype software available online:

http://datamining.anu.edu.au/linkage.html

Copyright © 2002 Peter Christen - p.25/27

- Real-world data sets are needed to develop and test record linkage software
- Data sets provided by NSW Department of Health under confidentiality agreement and ethics approval
- In epidemiological research, personal information is only needed for linkage, not for analysis, so it is removed after linkage is done (as opposed to *big brother* type of linkage for crime and fraud detection, anti-terrorism, business lists, etc.)

THE AUSTRALIAN

Copyright © 2002 Peter Christen – p.26/27