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Abstract. Record linkage is the process of identifying and matching
records from different datasets that refer to the same entity. This pro-
cess can be framed as a pairwise binary classification problem, where a
classification model predicts if a pair of records match (i.e., refer to the
same entity) or not. Even though training data is paramount in model
building and the subsequent predictions, there is a lack of reporting in
the literature on training data details, especially the ratio of matching to
non-matching examples. The absence of adequate reporting has a signif-
icant impact on both the model building and reproducibility of research
studies. In this paper we demonstrate how the performance measures
commonly used in record linkage (precision, recall, and F1-measure) vary
with respect to this ratio. Specifically, we show that different class im-
balance ratios in training data have a substantial impact in classifier
performance, with more imbalanced training data resulting in lower per-
formance. Furthermore, we examine the impact on performance when
the class ratio between the test data and the training data is changed.
Our extensive experimental study allows us to offer practical advice for
constructing training data, building record linkage models, measuring
performance, and reporting on the training data details.
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1 Introduction

Record linkage, also known as deduplication and entity resolution, is the process
of finding records or entities which refer to the same underlying entity across a
single or multiple datasets [7]. Record linkage is a challenging problem partic-
ularly for datasets that are heterogeneous and contain records with poor data
quality [15,17], which is the norm with most real-world applications. Considering
the complexity of the record linkage problem and its associated data challenges,
research continues in this field with new models being proposed and investigated
across diverse research and application domains [1, 2, 5, 6, 9, 21].

The record linkage problem is often framed as a binary classification problem
[20], where every pair of records in the input space is assessed and predicted
to either be a match (two records referring to the same entity) or a non-match
(two records referring to two different entities). The supervised machine learning
models that perform this task are trained on pairs of records that have been
labeled as either matching or non-matching, and it is from these labeled record
pairs that the classification models are able to learn patterns and form decision
boundaries to make predictions about previously unseen pairs of records. Thus,
it is this training data that is the pivotal factor in model building and subsequent
making of predictions. Yet there is a lack of reporting on training data details in
the literature [11,19,23,25], even though solutions have been proposed for data
and model reporting [12,13,24].

This gap has significant implications for understanding the true performance
of models, as well as for ensuring reproducibility and transparency. More re-
cently, conferences and journals have started to recommend or require checklists
for reproducibility [27]. This is a step in the right direction, but to our knowledge
there has not been a checklist or a requirement to report class ratios. A large
study on reproducibility [18] in a variety of domains where supervised classifica-
tion is employed reports many articles that do not report on the training/testing
split(s) used.

Training data is costly to collect, particularly in the context of record linkage.
In addition, for record linkage, most of the available training data consists of
positive examples and that is what is usually described in publications; the
number and selection process for negative examples is not so commonly detailed.
This is significant, as in record linkage it is natural for the number of negative
examples to vastly exceed the number of positive examples [7].

In this paper we investigate how the training data class ratio affects the
performance of classification models. Is it possible to reliably report higher per-
formance on domain standard performance measures (such as the F1-measure
[8,29]) by varying the number of labeled non-matching examples relative to the
number of labeled matching examples during training and/or testing? Should
the impact of varying these class ratios be negligible or random, this would not
be an issue. If, on the other hand, varying these ratios biases the reported per-
formance in a predictable fashion, then it is problematic to not report these
numbers.



Class ratio implications for reproducibility/performance in record linkage 3

We demonstrate through our extensive experimental study that both the
training and testing class ratios matter, and we investigate the effect of these
ratios on different deployment scenarios. Our study allows us to offer practi-
cal advice for constructing training data, building record linkage models, and
reporting on the training data details.

2 Methodology

In this section we provide a description of the methodology used to assess the
impact of varying the number of matching pairs to non-matching pairs in the
training and testing data on the performance of a record linkage model. Our
methodology involves performing supervised record linkage on multiple bench-
mark datasets. Our focus is on building and measuring the performance for the
classification models. We assume that cleaning, standardization, blocking and
feature engineering have already been performed [7].

2.1 Data Partitioning

We start by separating a dataset of labeled pairs into the setsM (matches, where
the two records in each pair refer to the same entity) and N (non-matches, where
the records in each pair refer to different entities). We randomly sample record
pairs from N such that the number of sampled pairs does not exceed 5 × |M |
(this is an upper bound dictated by the datasets we explore in our experimental
study, shown in Table 1). From these sampled non-matching record pairs and
the full set of matching record pairs M , we form 10 stratified folds for 10 fold
cross validation [16]. We use a 8:1:1 ratio, where in each of the 10 runs 8 folds
are used for training, 1 fold is used for validation, and 1 fold is used for testing.

The classification problem in record linkage is generally framed as a single
label binary class prediction. During the training stage we build our classification
model on different class ratios. We subset the non-matching examples within each
fold to achieve the desired ratio of matching to non-matching pairs, considering
five ratios of matching to non-matching pairs: 1:1, 1:2, 1:3, 1:4, and 1:5.

We consider the ratio of matching to non-matching pairs separately in both
training and testing phases, performing a 5 × 5 grid search. In most research
applications, models are evaluated on a test set that contains the same class
imbalance as the training data. In more practical situations where record linkage
models are deployed on previously unseen real-world data, it is often not possible
to know the class ratio of the deployment class while the model is being trained.
As such, it is also interesting to look at the impact that a relative abundance or
deficit of non-matching pairs during training has on model performance when
deployed in a different scenario than encountered in the training phase. The
partitioning of the data across the ten folds and five ratios is shown in Figure 1.
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Fig. 1. Match and non-match allocation across folds and ratios, as described in section
2.1
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2.2 Classification and Evaluation

To perform the pairwise classification, we train models on the training folds
described in Section 2.1. Given a pair of records, a model returns the prob-
ability that they refer to the same entity. During this stage, we evaluate the
performance of our classification model on the test set. The performance is
measured through precision (the fraction of all positive predictions that are
actual positives), recall (the fraction of all actual positives that are predicted
to be positive) and F1-measure (the harmonic mean of precision and recall).
Expanding these definitions, F1-measure can be defined in terms of the num-
ber of true positives (TP), false positives (FP), and false negatives (FN ) as
F1 = 2× TP/(2× TP + FP + FN ) [8].

To calculate F1-measure, the number of TPs, FPs, and FN s within the
test set must first be identified. A classification model returns the conditional
probability p that an individual pair is a match. A decision rule in the form of a
numeric threshold t ∈ [0, 1] is required to convert these probabilities into binary
predictions (i.e., only pairs where p > t are considered to match). Once a pair
has been assigned a binary prediction, it can be identified as a TP , FP , or FN .

A threshold t = 0.5 may seem a natural starting point, but using a threshold
other than 0.5 to assign binary predictions can often increase the performance
as measured by the F1-measure [22]. We select a threshold for each model that
maximizes the F1-measure on the validation set, and use this threshold when
computing precision, recall, and the F1-measure for the test set.

3 Experimental Study

We now introduce the datasets we use in our experimental study and present our
results. All results and source code to reproduce these experiments are available
in a public GitHub repository.3 In this repository, we also report results on
additional performance measures.

3 https://github.com/foxcroftjn/PAKDD-Class-Ratio
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Table 1. The datasets, labeled matches, labeled non-matches, and (rounded) class
ratios taken from [28].

Dataset Name Matches Non-Matches Ratio

abt-buy 1 095 6 067 1:5
amazon-google 1 298 7 142 1:5
walmart-amazon 1 154 14 425 1:12

wdc xlarge computers 9 991 59 571 1:5
wdc xlarge shoes 4 440 39 088 1:8

wdc xlarge watches 9 564 53 105 1:5

3.1 Datasets

In our study, we use a variety of record linkage datasets that were prepared
by Primpeli and Bizer [28] and available online.4 As part of their work, they
published labeled pairs of records and similarity vectors suitable for supervised
machine learning models (e.g., Random Forests [3], Support Vector Machines [10]
classifiers) for 21 publicly available labeled datasets for record linkage.

We report results only for the datasets with at least 1 000 labeled matching
pairs. This filters out a number of the less comprehensively labeled datasets. In
addition, we require each dataset to contain at least five labeled non-matching
pairs for every matching pair, to ensure we can train and test a model on a 1:5
class imbalance without compromising the set of record pairs which characterize
the matching class. Finally, we do not use datasets where the Random Forests
model in [28] achieved an F1-measure ≥ 0.99, as these linkage tasks are too
easy [26] to draw meaningful conclusions from in our work. After applying this
filtering criteria we are left with the six datasets summarized in Table 1.

3.2 Results

We consider three different architectures of classification model: Random Forest
(RF) [3], Support Vector Machine (SVM) [10], and Entity Matching Transformer
(EMT) [4]. The first two model architectures are traditional machine learning
techniques; the third uses the roBERTa attention-based transformer architecture
to achieve near state-of-the-art results. We rely on existing implementations for
each of these architectures [4, 28]; the specific details of how the models are
implemented is outside the scope of this work. By performing this experiment
using both traditional machine learning and deep learning, we demonstrate that
our results are not an artifact of a specific classification method, but rather that
they generalize across a variety of commonly used classification approaches.

Figure 2 shows the F1-measure results for all the architecture/dataset com-
binations. It is interesting to observe that a consistent gradient has emerged.
The left column for each architecture/dataset, where the test set contains the

4 https://data.dws.informatik.uni-mannheim.de/benchmarkmatchingtasks
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Fig. 2. F1-measure for all model architectures, train/test ratio combinations, and
datasets.
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Fig. 3. Precision and recall for all model architectures on the amazon-google dataset.

fewest non-matching pairs, consistently contains the highest reported perfor-
mance. Moving from the top left to the bottom right consistently causes F1-
measure performance to monotonically decrease. This tells us that we can worsen
the reported performance of a methodology just by increasing the number of non-
matching pairs in the training and testing data (or conversely, we can bolster
the reported performance by reducing the number of non-matching pairs). Most
work published in record linkage lies somewhere on this diagonal, as it is nor-
mal to train and test on data that have a single fixed class ratio in a controlled
environment. The problematic part is that when class ratios are not reported, it
is unknown where on this diagonal reported results lie. Class ratios higher than
1:5 are regularly used when performing record linkage [28], which in turn leads
to the reported F1-measure results skewing even lower than in this experiment.

Another commonality across all the architecture/dataset combinations is that
the top right corner consistently contained the lowest reported F1-measure per-
formance, whereas the performance in the bottom left was in some cases the
highest we obtained in our evaluation. We believe this trend can be used to in-
form the training data selection for real-world models, where the class ratio of
the deployment data is not known when training a model. The low number in
the top right corner reflects the consequences of training with a lower class ratio
than testing. In contrast, the bottom left number reflects the consequences of a
relative abundance of non-matching pairs during training. As such, we conclude
that it is better to overestimate than underestimate the class imbalance of the
deployment environment when choosing the class imbalance of a training set.

When looking at precision, we observe that it monotonically decreases when
we use a fixed training ratio and gradually increase the non-matching pair count
in the test set. It is helpful to remember that each 1:n test set is a superset of
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Fig. 4. Precision-recall curves and area under the curve (auc) for the two most chal-
lenging datasets. Only experiments with the same train/test ratio are shown.
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Table 2. The binary classification thresholds for experiments with the same train/test
ratio. Thresholds reported as 0.00 are less than 0.005 (but still greater than 0).

Dataset Name RF SVM EMT
1:1 1:2 1:3 1:4 1:5 1:1 1:2 1:3 1:4 1:5 1:1 1:2 1:3 1:4 1:5

abt-buy 0.45 0.43 0.36 0.44 0.39 0.41 0.48 0.45 0.34 0.40 0.00 0.00 0.05 0.01 0.00
amazon-google 0.49 0.45 0.46 0.42 0.43 0.46 0.37 0.35 0.36 0.28 0.00 0.00 0.00 0.00 0.00
walmart-amazon 0.44 0.40 0.45 0.48 0.46 0.46 0.53 0.45 0.47 0.43 0.00 0.99 0.06 0.96 0.07

wdc xlarge computers 0.44 0.42 0.44 0.40 0.38 0.41 0.39 0.37 0.30 0.23 0.02 0.02 0.01 0.10 0.04
wdc xlarge shoes 0.43 0.39 0.38 0.34 0.38 0.35 0.26 0.24 0.20 0.17 0.00 0.00 0.00 0.02 0.01

wdc xlarge watches 0.50 0.48 0.43 0.44 0.43 0.49 0.39 0.37 0.34 0.33 0.97 0.79 0.05 0.33 0.31

the 1:(n− 1) test set, differing only through the addition of more non-matching
pairs. Since precision is TP/(TP +FP), we can justify this monotonic decrease
by observing that an increase in negatives in the test set will not affect the TP
count, but will increase the FP count (unless all new non-matching pairs in the
test set are correctly labeled by the classifier).

When looking at recall, we observe that performance for a fixed training ratio
is invariant. Since recall is defined as TP/(TP + FN ), this consistency can be
explained by remembering that increasing the number of non-matches in the
test set affects neither the TP or the FN count. It is important to remember
that precision and recall are not equally important for all applications, and that
either of these metrics can always be increased at the expense of the other [14,22].
Precision and recall for the three architectures and the amazon-google dataset
are shown in Figure 3.

Our initial approach to measuring record linkage performance was to use a
threshold of 0.5 on the classification function C, which yielded results with the
same gradients as those shown in Figure 2. To investigate whether the gradi-
ents were an artifact of this likely sub-optimal threshold, we instead calculate
thresholds as discussed in Section 2.2. These thresholds, shown in Table 2, were
used to calculate the F1-measure values in Figure 2. The results when using a
fixed threshold of 0.5 are available in the GitHub repository mentioned at the
beginning of Section 3.

Even with this updated approach to computing F1-measure, representing
model performance using a single number does not make for a comprehensive
comparison. We address this by showing precision-recall curves in Figure 4. We
only show curves from the diagonals in Figure 2 where the training and testing
ratios are the same, as this is the context where most published results lie. We
also choose to focus on the two most challenging datasets, although our analysis
is consistent with the curves that are not shown. From the precision-recall curves,
it is visible that model performance suffers at almost all thresholds by increasing
the ratio of matches to non-matches in the training and testing data, not just
at the 0.5 threshold or the threshold which seeks to maximize F1-measure.
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4 Discussion and Recommendations

The two key findings of our work are:

1. The F1-measure can be artificially lowered or raised in a predictable direc-
tion by increasing the number of non-matching pairs in the training and/or
testing sets of a record linkage problem. The impact of varying this ratio
means that it is important to report this ratio when reporting the results of
a record linkage methodology. Stating the number of labeled matching pairs
is not sufficient.

2. When the deployment environment class imbalance is unknown, it is safest
to err on the side of including more non-matching pairs during training.
There is a consistently larger performance penalty to underestimating this
ratio as compared to overestimating it.

Following from these findings, our recommendations for building training
data and reporting are as follows:

1. Document [12] and report on the construction of the training data.
2. Report the class ratio or both the number of matching and non-matching

pairs that are used to build the classification model used in record linkage.
3. Add more non-matching pairs to the training data when the class imbalance

in the deployment environment is unknown.

Finally, it is worth commenting on the training time required for each of
the model architectures. Each Random Forest took only seconds to train, as the
training process parallelizes effectively across a multi-core CPU. Training the
SVM models does not naturally parallelize, so models sometimes took a couple
minutes to train (also using only a CPU). The EMT models were trained for 3
hours each using a GPU. It is worth considering if the higher performance of
a deep learning approach is always worth the significantly higher demand for
specialized hardware and training time.

5 Conclusions and Future Work

There are many factors that come into play when preparing training data for
binary classification of record linkage problems. The focus of this paper is on how
class ratio affects F1-measure, one of the most common performance measures
used for classification and record linkage problems.

The impact of other aspects of training data creation remain the poten-
tial subject of future work. This includes how labeled non-matching pairs are
sourced (i.e., random sampling? hard negative mining [11, 28]?) and strategies
for reducing the size of the training data to accelerate model training without
compromising model quality. Other future research directions are to investigate
if the findings discovered in this study hold for multi class settings and other
application domains where imbalanced classes are common.
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