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Abstract. Temporal record linkage is the process of identifying groups
of records that are collected over a period of time, such as in census or
voter registration databases, where records in the same group represent
the same real-world entity. Such databases often contain temporal in-
formation, such as the time when a record was created or when it was
modified. Unlike traditional record linkage, which considers differences
between records from the same entity as errors or variations, temporal
record linkage aims to capture records from entities where the attribute
values are known to change over time. In this paper we propose a novel
approach that extends an existing temporal approach called decay model,
to categorically calculate probabilities of change for each attribute. Our
novel method uses a regression-based machine learning model to predict
decays for sets of attributes. Each such set of attributes has a principle
attribute and support attributes, where values of the support attributes
can affect the decay of the principle attribute. Our experimental results
on a real US voter database show that our proposed approach results in
better linkage quality compared to the decay model approach.
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1 Introduction

Record linkage (also known as data matching, entity resolution, and duplicate
detection) identifies records that refer to the same real-world entity [5]. Record
linkage is being used in many application domains, such as linking patient data
for disease outbreak detection or clinical trails in the health industry [5], credit
checking and fraud detection in the finance industry [6], and constructing pop-
ulation databases for social science research [11]. Challenges in record linkage
are caused by the lack of unique identifiers (such as national identifier num-
bers), dirty data (such as misspellings and missing values), legitimate updates
over time (such as changes in last name or address), and the lack of informative
attributes (i.e. a dataset might not contain gender and/or date of birth).
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Table 1. An example of a temporal datasets.

RecID EntID FName MName LName Address Sex Age EntryDate

r1 e2 Elsa Clark 161 Castlereagh St, Sydney F 24 2011-09-11
r2 e1 Ella Rose Taylor 456 Kent Street. Sydney F 23 2011-10-12
r3 e1 Ella Louise Taylor 456 Kent Street. Sydney F 23 2012-02-20
r4 e1 Ella Louise Clark 299 Elizabeth St, Sydney F 24 2012-06-30
r5 e2 Elsa Taylor 201 Kent Street, Sydney F 26 2013-08-05

Record linkage generally involves the following steps [5]: data preprocessing,
blocking, comparison and classification, and evaluation. This paper focuses on
record pair comparison and classification, especially the task of calculating a
similarity value with greater effectiveness at distinguishing between matches and
non-matches for temporal data compared to previous temporal and non-temporal
linkage techniques. While record linkage has been studied for several decades,
until recently most works in this field did not use any temporal information
available in datasets [13]. However, records of the same entity can be collected
over a long period of time (years or even decades), such as census data that in
many countries are collected every five or ten years. During such periods, certain
attribute values of an entity are likely to change, such as a person’s job position,
living address, and potentially their last name (if somebody gets married).

Traditional record linkage methods assume that highly similar records are
most likely to belong to the same entity [5]. These techniques do not perform
well on temporal data, because entities might change some of their attribute
values over time. For example, when a person changes his or her last name or
address, their new record is not linked to earlier records because the attribute
values do not match, or their earlier records are linked by mistake to records of
a different person who has the same last name and/or address [6].

Temporal record linkage aims to address the above issues by using temporal
information, such as the time-stamp when a record was created or modified.
These time-stamps can be used to sort records by time and calculate temporal
distances between records. They therefore provide opportunities for new record
linkage approaches (examples will be discussed in Sect. 2). A dataset needs
to contain temporal information for each record to be used in temporal record
linkage, such as the date when being entered (for medical records), the date when
being published (for publication records), or the date when being collected (for
datasets collected by taking snapshots of databases at different points in time).

Example: Given five records of two entities as in Table 1, if we do not
consider the temporal information EntryDate, records r2 and r5 will have a high
similarity and will therefore be matched incorrectly, whereas records r2 and r4
will have a low similarity and this true match will be missed. Temporal record
linkage aims to correctly link r1 to r5, and link r2, r3 and r4 together using the
temporal information in the EntryDate attribute.

This paper extends an existing temporal linkage approach called decay model
[13], which learns the probability for an attribute to change over time (disagree-
ment decay) and the probability for an attribute to share the same value among



different entities over time (agreement decay). It then uses these decays to adjust
the weight given to each attribute, where the sum of adjusted attribute weights
is used to calculate the similarity between a pair of records and decide if they
are a match or non-match based on a similarity threshold [5]. The decay model
assumes the probability for an attribute to change its value over a certain time
period is the same for every entity, and this assumption is not always true. For
example, young people are more likely to change their address than seniors, and
young females are more likely to change their last name than senior males.

Contributions: We integrate a linear regression model into the decay model [13].
Our model uses support attributes to calculate the decay of a principle attribute
whose decay is affected by the values of those support attributes. The calculated
decays are therefore more specific to each entity. For example, a person’s gender
can affect the likelihood of changes in their last name, and when we calculate a
decay for last name with gender as a support attribute we can learn a gender
sensitive decay model for last name. Our intuition is that the probability for an
attribute to change over time can be predicted more accurately with the help of
other attributes upon which it depends. We also propose a method to adjust the
impact of decay models, and evaluate our approach on four subsets of a real US
voter dataset. The experimental results show that our approach improves the
linkage quality compared to two baseline approaches.

2 Related Work

We discuss related work in the two areas of record linkage that are non-temporal
and temporal models. The common objective of both types of models is to decide
if a pair of records is a match, or if a record belongs to a cluster of records
where all records refer to the same entity. Temporal models consider temporal
information in addition to attribute similarities as used in non-temporal models.

Fellegi and Sunter [7] proposed a statistical non-temporal linkage model.
This model weights each attribute according to two types of probabilities: (1)
the probability for a pair of records that agree on an attribute to be a match;
and (2) the probability for a pair of records that agree on an attribute to be
a non-match. The weights of attributes are summed to calculate the matching
score for each pair of records. These probabilities can be learned from training
data or estimated using the Estimation-Maximization algorithm [9].

Li et al. [13] were the first to propose a temporal model which considers the
probability for an attribute’s value to change over time, where this probability is
learned from training data. The model calculates a disagreement decay (the like-
lihood for an attribute to change within a certain time period) and an agreement
decay (the likelihood for an entity’s attribute value to be the same as another
entity’s within a time period). The two types of decays are used to adjust the
weight of each attribute as used in the similarity calculations.

More recently, Li et al. [12] proposed a temporal model which learns the
probability for each attribute value to change to some commonly occurring value
over time. However, this approach requires a temporal dataset to have attributes



whose values change to some commonly occurring values, such as job positions
(for example, the position ‘technician’ can change to ‘manager’).

Christen and Gayler [6] modified the approach proposed by Li et al. [13] to
iteratively train a temporal model using a stream of time-stamped records. Every
time a certain number of records are matched, the approach uses the matching
results to retrain the temporal model. The difference between this approach and
the original temporal model [13] is that the latter only learns the temporal model
from training data once, whereas the former continuously trains the temporal
model using linkage results produced by itself.

Chiang et al. [3] proposed an algorithm which learns the probability for an
attribute’s value to recur within different time periods. For each value of an
attribute, the algorithm constructs a transition history and uses this history to
calculate the probability for a value to recur. These probabilities are used to
adjust the original similarity of a pair of records.

All these existing works do not address dependencies between attributes when
calculating the probability for an attribute to change over time. Although Li et
al. [13] introduced a decay model, their model only calculates the probability
for attribute values to change independently. We believe the decay model can be
improved and made more effective to improve the linkage quality by considering
dependencies between attributes.

3 Problem Statement

We now define the notation as well as the problem we aim to tackle in this paper.
Let R be a set of records and E be a set of entities. Each record r ∈ R has a
list of attribute values [a1, a2, ..., ak] and a time-stamp r.t, where each value ai
(1 ≤ i ≤ k) is associated with an attribute A, and we use r.A to denote the
value ai of A in r. Every record r ∈ R must belong to exactly one entity e ∈ E.
An entity to which a record r belongs to is denoted as e(r).

Attribute values of an entity e can change over time, where each change
(update) is represented by a new record ri with a time-stamp ri.t and attribute
value(s) that is/are different from the previous record. For example, let r1, r2 be
two records belonging to e (in another word, e(r1) = e(r2)). If r1.t < r2.t and
∃A ∈ A : r1.A 6= r2.A, then we say that the value of attribute A of entity e has
changed between two time-stamps r1.t and r2.t.

Given a training dataset C in the form of a set of clusters of records. Each
cluster C ∈ C contains a set of records {r1, r2, ...}. All records in a cluster C
represent the same entity, and records in different clusters represent different
entities.

The temporal record linkage problem is to link all ra, rb ∈ R, where e(ra) =
e(rb), ∃A ∈ A : ra.A 6= rb.A. Note that it is possible to have a pair of records
where e(ra) = e(rb) and ∀A ∈ A : ra.A = rb.A, which means no temporal update
has occurred between the two records. In this case we will only keep the oldest
record of the pair during data preprocessing.



The goal of our work is to address the temporal record linkage problem using a
weighting strategy which adjusts the importance of attributes in order to improve
the quality of linkage. Our work uses a regression model to train and predict
parameters for a temporal model. Our solution is based on the assumption that
adjusting the weights of each attribute A according to its probability to change
over time can improve the quality of record linkage.

4 Temporal Record Linkage Framework

In this section we discuss the temporal record linkage framework used in our
work. Swoosh is a generic record linkage method which compares records ac-
cording to features (a set of attributes) selected by the user [1]. A pair of records
is merged into a new record when one of their features meets the matching crite-
ria provided by the user, and then the two original records are removed. Swoosh
treats the classifier, which decides whether a pair of records is a match, as a
blackbox. In this paper, we use a threshold-based classifier that classifies a pair
of records as a match when its similarity is greater than a user defined similarity
threshold. The objective of our proposed approach is to calculate a similarity
value for a pair of records using temporal information.

The decay model calculates the similarity of a pair of records using the sim-
ilarity of each pair of attribute values that is adjusted by weights. The weight
of each attribute is calculated according to its disagreement and agreement de-
cays [13]. Disagreement decay is the probability for an attribute to change its
value within a time period, and agreement decay is the probability for multiple
entities to have the same attribute value within a time period [13]. A time dis-
tance ∆t refers to the difference between two time-stamps, and is measured by
a time unit defined by the user, such as days, years, or hours.

A life span l refers to the time distance of an attribute value to be used
by an entity. An attribute’s life span is full when the value has a date when
it was used first and another date when it was changed to another value. The
time distance between the first and second date is a full life span, denoted as lf .
Similarly, if the attribute’s value does not change between two time-stamps, the
time distance between the time-stamps is a partial life span, denoted as lp.

For example, assume that an entity has three different last names over five
records, with time-stamps in the form of (year-month): ‘Taylor’ (2011-10) →
‘Taylor’ (2011-12) → ‘Spire’ (2012-12) → ‘Spire’ (2013-10) → ‘Wright’ (2015-
10). The time distance between the first and the third records is one full life span
with a length of 14 months (2011-10 to 2012-12), and the distance between the
third and the fifth records is another full life span with a length of 34 months
(2012-12 to 2015-10). Note that, in this example, month is being used as a time
unit but this is not necessary for all datasets. From this example, the time
distance between the first and the second records is a partial life span with a
length of 2 months (the time distance between 2011-10 and 2011-12), and the
time distance between the third and the fourth records (2012-12 and 2013-10) is
another partial life span with a length of 10 months.



Let L̄f denote the list of all full life spans lf of an attribute A for all entities
and let L̄p denote the list of all partial life spans lp of an attribute A for all
entities. Then the disagreement decay is formally defined as below.

Definition 1. (Disagreement decay d 6=) [13]: Let ∆t be a time distance, A ∈ A
be an attribute. The disagreement decay of A over ∆t is the probability d 6=(A,∆t)
that an entity changes its value of A within ∆t:

d 6=(A,∆t) = (|{l ∈ L̄f |l ≤ ∆t}|) / (|L̄f |+ |{l ∈ L̄p|l ≥ ∆t}|) (1)

Let L̄ denote a list of both full and partial life spans of an attribute A for all
entities. For each record, if it has the same attribute value with another record
which belongs to a different entity, the time distance between the two records is
added to L̄. If no entity has the same attribute value, a life span with length ∞
is added to L̄. Then the agreement decay is formally defined as below.

Definition 2. (Agreement decay d=) [13]: Let ∆t be a time distance, A ∈ A be
an attribute. The agreement decay of A over ∆t is the probability d=(A,∆t) that
two different entities share the same value of A within ∆t:

d=(A,∆t) = (|{l ∈ L̄|l ≤ ∆t}|) / (|L̄|) (2)

The decay model uses the agreement and disagreement decay to calculate wA

(weight of attribute A), as shown in (3). The comparison function sA calculates
the similarity between a pair of attribute values. sA is defined by the user and it
returns a similarity value in the range [0, 1]. These comparison functions can be
approximate string similarity functions, such as edit-distance or Jaro-Winkler [5].

wA(sA, ∆t) = 1− sA · d=(A,∆t)− (1− sA) · d6=(A,∆t) (3)

Weights are used to calculate the pair-wise similarity between two records,
as shown in (4). sr denotes the decay adjusted similarity between two records ra
and rb. sr is the final similarity score that is used to classify a pair of records,
which decides if it is a match or non-match. sr is in the range [0, 1].

sr(ra, rb) =

∑
A∈A wA(sA(ra.A, rb.A), |ra.t− rb.t|) · sA(ra.A, rb.A)∑

A∈A wA(sA(ra.A, rb.A), |ra.t− rb.t|)
(4)

5 Improved Decay Model

In this section we introduce an improved temporal model based on the decay
model [13] described above.

5.1 Predicting Probability with a Regression Model

From the previous equations we can see that the agreement and disagreement
decays are calculated using only a single attribute. For example, when the dis-
agreement decay of attribute last name is calculated, the temporal model calcu-
lates the overall probability for an entity to change its last name within a given



time distance ∆t. However, the probability for an entity to change its last name
is often associated with gender and age. The disagreement decay for last name,
calculated without considering the gender and age values of an entity, would be
too high for older males, and too low for younger females, because it is rare for
an older man to change his last name, but more common for a young woman to
change her last name when she gets married.

A set of support attributes is selected for principle attributes when the value
of a support attribute may affect the probability for their attribute value to
change. For example, when predicting the probability for values in attribute
address to change, attributes gender and age can be used as support attributes
to make the prediction more accurate. Support attributes are selected by the
user based on their domain knowledge for each principle attribute, and each
principle attribute can have zero to many support attributes. They can also be
selected using a feature selection strategy that is able to explore the dependency
between features [2].

To create a training dataset for each attribute, our algorithm iterates through
the records of each entity. The algorithm checks if an entity has changed its prin-
ciple attribute value within a time distance. The time distance ranges from 1
to the maximum time distance of the whole dataset. For each time distance, a
training instance is created using the time distance and values of the support at-
tributes as features, and using the status of value change (changed or unchanged)
as class value. The training dataset is then used to train a regression model.

In this paper, we use a linear regression model, as commonly used in param-
eter estimation and prediction [10], to predict disagreement probability.

Disagreement Probability: We introduce a concept called disagreement prob-
ability d6=prob, which has a similar definition as disagreement decay (as shown
in (1)), but is modified in order to be used with a regression model. From (5),

we can see that the difference between d6=prob and d 6= is that the divisor of d 6=prob
is fixed for each entity. With a fixed divisor, we can create training instances
for a regression model according to if l ≤ ∆t. When a full life span l ∈ L̄f is
encountered, we can decide if it is lower than a certain ∆t and create a training
record. These training records are used to train the regression model to predict
disagreement probability. For each ∆t, a training record is created using: (1) the
value of each support attribute of A whose model is being built; (2) the current
∆t; and (3) a class value which is equal to 1 if l ≤ ∆t, or 0 if l > ∆t or l ∈ L̄p.

When a class value of a training record equals to 1, it means the value of A
of an entity has been changed within ∆t and the life span is full, whereas a class
value 0 means the value of A has not been changed within ∆t and the life span
is partial. It needs to be noted that (5) is only relevant when we create training
records. The equation provides a conceptual insight about why we create training
records following the steps described above. The d6=prob that is being used after
the training stage is predicted using the trained regression model, rather than
calculated using (5).

d 6=prob(A,∆t) = (|{l ∈ L̄f |l ≤ ∆t}|) / (|L̄f |+ |L̄p|) (5)



d6=prob is normalized into the range [0, 1], and then it can be used as a weight
to adjust attribute-wise similarities, as shown in (6). sp denotes the similarity

between a pair of records adjusted using d6=prob.

sp(ra, rb) =
∑
A∈A

1− d 6=prob(A, |ra.t− rb.t|)∑
A′∈A 1− d 6=prob(A′, |ra.t− rb.t|)

· sA(ra.A, rb.A) (6)

Combining Disagreement Probability with Agreement Decay: Dis-
agreement probability can be normalized as: d 6=nprob(A,∆t) = (d 6=prob(A,∆t)) /

(max(d6=prob(A))), where max(d 6=prob(A)) is the maximum disagreement probabil-

ity over all ∆t. Using (3) and (4) above, with d 6= being replaced by d 6=nprob, a

different wA can be calculated, while (7) shows how to calculate wA using d6=nprob.

wA(sA, ∆t) = 1− sA · d=(A,∆t)− (1− sA) · d 6=nprob(A,∆t) (7)

5.2 Adjusting the Impact of Decay Models

The intuition of using decays to adjust attribute weights is that attributes that
have higher probability to change their values are less reliable than those that
change less often. However, the normalized probabilities of changing values may
not immediately represent the optimal weighting of attributes. For example, let
last name have a probability to change as 10% over 3 years, and first name
have a probability to change as 2% over the same time period. While the ratio
between the two probabilities is 5 : 1, it does not immediately suggest that first
name is five times more important than last name.

To control the impact of temporal models, a parameter α ∈ [0,∞] is intro-
duced during normalization, as shown in (8). When α is 0, the temporal model
has the maximum impact in adjusting similarity output. When α is very large,
the impact of the temporal model is close to none. The parameter α is chosen
by the user based on domain knowledge. In Sect. 6, we will evaluate a range of
α values.

sr(ra, rb) =

∑
A∈A(wA(sA(ra.A, rb.A), |ra.t− rb.t|) + α) · sA(ra.A, rb.A)∑

A∈A(wA(sA(ra.A, rb.A), |ra.t− rb.t|) + α)
(8)

5.3 Algorithmic Overview of Regression-based Temporal Linkage

Algorithm 1 describes the main steps of our approach, which integrates with our
framework and produces a set of linked (merged) records from a set of temporal
records R. From lines 1 to 5, the algorithm creates a list of training instances for
each attribute. Each training instance contains a class value that indicates if the
attribute value of an entity has been changed within a time period. From lines
6 to 10, the algorithm trains an agreement decay model and a disagreement
probability model for each attribute, using the training instance sets created.



Algorithm 1 Record Linkage with Regression-based Temporal Model
Input:

- A set of temporal record clusters for training: C
- A set of temporal records to be linked: R
- For each attribute A ∈ A, a set of support attributes: LA

- A similarity threshold: ts
- An impact adjustment value: α

Output:
- A set of merged records, each record represents an entity: R′

1: T = hashtable() // A hashtable of training instances for each attribute
2: for C in C do
3: for A in A do
4: Create a training instance i using LA and the approach described in Sect. 5.1.
5: T [A].append(i)

6: Ma = hashtable() // Agreement decay models
7: Md = hashtable() // Disagreement probability models
8: for A in A do // Train two models for each attribute
9: Ma[A] = decayModel(T [A])
10: Md[A] = linearModel(T [A])

11: Get pairs of records P from R using Swoosh described in Sect. 4.
12: for p in P do // For each pair of records
13: decaysAgree = hashtable() // Map A ∈ A to an agreement decay
14: probsDisagree = hashtable() // Map A ∈ A to a disagreement probability
15: for A in A do // Calculate agreement decays and disagreement probabilities
16: decaysAgree[A] = Ma[A](p)
17: probsDisagree[A] = Md[A](p)

18: sr = sim(decaysAgree, probsDisagree, α) // Calculate similarity using (8)
19: if sr >= ts then
20: R.removeRecords(p) // Remove the two records of the pair
21: r′ = merge(p) // Merge the pair of records into a new record
22: R.push(r′) // Add the new record to record set
23: Create new records pairs using r′ then push the new pairs into P

24: return R as R′ // Return the merged records that cannot be merged any further

From lines 11 to 23, the algorithm compares records in pairs, merges the record
pair that is classified as a match into a new record, and compares the new record
against the remaining records.

6 Experiments

In this section we first describe the datasets, baseline methods and measures
used in our experiments. Then we present and discuss the experimental results.

6.1 Experimental Settings

Datasets: The real temporal datasets we used in this paper are from the North
Carolina Voter Registration (NCVR) dataset collected every two months1. The
datasets have ground truth (entity identifiers) available for all records. We se-
lected the following attributes: first, middle, and last name, name suffix, street
address, city, gender, and age. Gender was selected as the support attribute for
last name, age was selected as the support attribute for street address, while

1 http://dl.ncsbe.gov/

http://dl.ncsbe.gov/


the remaining attributes have no support attributes. The choice of support at-
tributes was made according to domain knowledge. The NCVR dataset in total
contains 8,336,205 entities, from which we randomly selected 5K, 10K, 50K, and
100K entities and their temporal records to create testing datasets. In each of
the four testing datasets, 76% of the entities have one temporal record, 18.6%
have two temporal records, 4% have three temporal records, and 1.4% entities
have more than three temporal records. Each temporal record has one or more
attribute value(s) that are different from the other records.

1K and 10K entities were randomly selected from the NCVR dataset and
their temporal records are used for training. The 1K training dataset is used to
train the models when using 5K and 10K testing datasets, and the 10K training
dataset is used to train the models when using 50K and 100K testing datasets.

Measures: We used the standard quality measures of precision, recall, and F-
measure to evaluate the record linkage quality [5] (noting recent work on how the
F-measure can be misleading for record linkage when used to compare different
classifiers at the same similarity threshold by weighting precision and recall
differently [8]). Let R be a record linkage result in the form of clusters of records
that are matching, and S be the ground truth that R corresponds to, which is
also in the form of clusters of records. We calculate pair-wise precision (P ) =
(|R∩S|)/(|R|), pair-wise recall (R) = (|R∩S|)/(|S|), and F1 = 2∗P ∗R/(P+R).
We used similarity thresholds ts = [0.6, 0.65, 0.7, 0.75, 0.8], and values for α in
the range from 0 to 8 with an increment of 0.5. The highest F1 score of each
method was selected as the final result.

For string attributes, the similarity of a pair of attribute values was calculated
using the Jaro-Winkler string comparison function [5]. The similarity of a pair
of age values was calculated as: sage = 1/(|age1 − age2|+ 1).

We implemented all algorithms in Python 2.7, and the experiments were
conducted on a server with 64-bit Intel Xeon (2.4 GHz) CPUs, 128 GBytes of
memory and running Ubuntu 14.04. We used the Sklearn package2 for the linear
regression classification. We implemented four algorithms for the experimental
study. The first two are baselines, and the last two are the proposed approaches:
(1) No model: A baseline approach with no temporal model. Weights of attributes
were not adjusted by a temporal model. (2) Decay model (Decay): A baseline
approach using the temporal model proposed by Li et al. [13] (Sect. 4). (3)
Disagreement probability regression model (Disprob): A temporal model which
uses a regression model to predict the disagreement probability, and reduces
the weights of attributes when their predicted disagreement probability is high
(Sect. 5.1). (4) Disagreement probability combined with agreement decay re-
gression model (Mixed): With the disagreement probability being predicted in
the same way as the method above, the mixed method also calculates agreement
decay from the decay model. The disagreement probability and agreement decay
are combined to adjust the weight of each attribute (Sect. 5.1).

Impact adjustment as discussed in Sect. 5.2 is implemented for Decay and
Disprob, as well as the proposed algorithm Mixed, to allow a fair comparison.

2 http://scikit-learn.org

http://scikit-learn.org


Table 2. Linkage results on the NCVR datasets with best results highlighted in bold.

Dataset 5K 10K 50K 100K

P R F1 P R F1 P R F1 P R F1

No model 0.99 0.93 0.96 0.99 0.90 0.94 0.94 0.90 0.92 0.91 0.91 0.90
Decay 0.96 0.95 0.96 0.95 0.93 0.92 0.97 0.87 0.92 0.96 0.88 0.91
Disprob 0.98 0.93 0.96 0.97 0.90 0.94 0.95 0.88 0.91 0.95 0.86 0.91
Mixed 0.97 0.96 0.97 0.94 0.95 0.94 0.96 0.90 0.93 0.95 0.90 0.92

6.2 Experimental Results

Table 2 shows the linkage results of the four algorithms on the testing datasets
with impact adjustment. Results with the highest F1 were selected. On the
smaller testing datasets (5K and 10K), the Mixed approach achieved better re-
call but lower precision than the non-temporal baseline. On the larger testing
datasets (50K and 100K), Mixed maintained similar recalls as the non-temporal
baseline while performing better at precision. The result shows that our tech-
nique performs better when a dataset is large, while it does not perform worse
than other techniques on smaller datasets. Because the 50K and 100K datasets
used a larger training set of 10K entities the improvements would be due to this
larger number of training records.

One significant difference between the smaller and the larger testing datasets
is the percentage of non-matching record pairs. Even with blocking [5], the num-
ber of non-matching pairs still grows faster than linear with respect to the size of
a dataset. A linkage algorithm will encounter non-match pairs more often when
the testing dataset is large. As a result, we can observe that the precision of the
No model approach decreases as the size of a dataset increases.

Fig. 1 shows the effect of the impact adjustment parameter α (see Sect. 5.2).
The temporal models did not perform well when the impact adjustment was not
applied (α=0). It implies that directly applying probabilities on the weights can
over-weight some attributes and decrease the linkage quality.

7 Conclusion and Future Work

In this paper we have developed a temporal model to improve the quality of
temporal record linkage. Our model uses a linear regression model and multiple
attribute values to predict the probability for an attribute value to change within
a certain time period, and the model adjusts the weight of the attribute used
in similarity calculations accordingly. The intuition of our approach is to use
the dependency between attributes to predict their probability to change over
time more accurately. We evaluated our approaches on four real-world datasets
derived from the NCVR database. The experimental results show that our ap-
proach performed better than two baseline approaches.

In the future, we will investigate attribute dependencies for calculating the
probability for two different entities to share the same attribute value (agreement
probability), which can also be affected by other attributes. For example, two
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Fig. 1. The effect of different values for the impact reduction parameter (α). Without
impact reduction (α = 0), the temporal models (Decay, Mixed) performed poorly. At
a certain point, the temporal models start to outperform the non-temporal baseline
approach (No model). With the impact being reduced further (α increases), the tem-
poral models eventually performed the same as the non-temporal baseline because the
impact of the models has been reduced to the extent that is not significant anymore.

people who have the same phone number have a high probability to have the
same address. We also aim to incorporate a frequency based weighting strategy
into our framework to see if undesired high similarities can be adjusted properly.
Another possible direction is to test the temporal models with different clustering
techniques, such as those proposed by Li et al. [13] and Chiang et al. [4].
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