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Abstract. Privacy-preserving set intersection (PPSI) of very large data
sets is increasingly being required in many real application areas includ-
ing health-care, national security, and law enforcement. Various tech-
niques have been developed to address this problem, where the major-
ity of them rely on computationally expensive cryptographic techniques.
Moreover, conventional data structures cannot be used efficiently for pro-
viding count estimates of the elements of the intersection of very large
data sets. We consider the problem of efficient PPSI by integrating sets
from multiple (three or more) sources in order to create a global synopsis
which is the result of the intersection of efficient data structures, known
as Count-Min sketches. This global synopsis furthermore provides count
estimates of the intersected elements. We propose two protocols for the
creation of this global synopsis which are based on homomorphic compu-
tations, a secure distributed summation scheme, and a symmetric noise
addition technique. Experiments conducted on large synthetic and real
data sets show the efficiency and accuracy of our protocols, while at the
same time privacy under the Honest-but-Curious model is preserved.

1 Introduction

Computing set operations, such as intersection, union, equi-join and disjoint-
ness, efficiently and privately among different parties is an important task in
privacy-preserving data mining [3,9]. In this paper, we study the problem of
privacy-preserving set intersection (PPSI), which is also known as private data
matching [15], of multi-sets of an arbitrary large number of distinct elements
held by three or more parties. Growing privacy concerns and government laws
preclude the exchange of sensitive and private values stored in databases across
different organizations for calculating the intersection of those private values.

? This research was partially funded by the Australian Research Council under Dis-
covery Project DP130101801.
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This has led to an active research area, known as PPSI, in the field of privacy-
preserving data mining [3] and specifically in private data matching [19,35].

PPSI is useful in many real-world applications, ranging from health-care,
crime detection, national security, to finance and business. An example motivat-
ing application would be a health surveillance system, where by monitoring drug
consumption at pharmacies or hospitals located at different places, alerts could
be issued whenever consumption of certain drugs exceeds a threshold at all or
some of these hospitals. A crime detection or national security application could
be the monitoring of the number of times certain on-line services are accessed,
by applying the intersection operation on requests made to these on-line services
from different Internet Service Providers (ISPs). These examples illustrate that
often large sets of sensitive elements held by different parties (or organizations)
need to be intersected so that a set of common elements, accompanied by their
counts of occurrences, can be identified. However, privacy and confidentiality
concerns, as well as other business regulations, commonly prevent the sharing
and exchange of such private values across several parties.

There have been several solutions proposed in the literature addressing the
problem of PPSI. Most of them are either based on Secure Multi-Party compu-
tation (SMC) [27] techniques that are computationally expensive and thus are
not scalable to large sizes of sets and larger number of parties, or they only per-
form intersection of two sets (from two parties). Moreover, in the applications
described above, we are not only interested in learning the set of intersection
of elements but also their number of occurrences. This problem cannot be effi-
ciently solved by conventional data structures, such as hash tables or vectors,
due to the large number of distinct elements that need to be monitored.

In this paper, we propose the creation of a privacy-preserving global synopsis
by integrating data from many sources and attaining the common elements. More
specifically, we tackle the challenge of identifying the counts of these elements
from a potentially very large multi-set as they occur. Each party independently
summarizes its elements in a local synopsis, which is implemented by a Count-
Min sketch [12], and then these local synopses are intersected in order to create
the global synopsis. This global synopsis (a) provides collective count estimates
for the common elements attained and (b) hides the contribution of each party
to these estimates. We propose and evaluate two protocols for the creation of
this global synopsis:

1. the first protocol, which relies on homomorphic operations, exhibits accu-
rate and reliable results but adds high communication cost. The number of
homomorphic operations has a logarithmic relation to the total number of
occurrences of elements in the sets to be intersected.

2. the second protocol relies completely on simple secure computations, ex-
hibiting high performance and simultaneously highly accurate results.

The remainder of this paper is structured as follows. We next review related
work in Sect. 2. In Sect. 3, we formulate the problem to be addressed, and in
Sect. 4 we describe the building blocks used for creating a privacy-preserving
global synopsis. Then, we present our protocols for the creation of the global
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synopsis in detail in Sect. 5, while in Sect. 6 we empirically evaluate our pro-
tocols using both synthetic and real data sets. Finally, in Sect. 7 we summarize
our work and discuss directions for future work.

2 Related Work

Various techniques have been developed addressing the PPSI problem over the
past decades. Most of the solutions proposed so far rely on general SMC-based
cryptographic techniques. General two-party secure computation was introduced
by Yao [36] and extended to multi-parties by Goldreich et al. [18].

Agrawal et al. [4] developed two-party protocols based on SMC commuta-
tive encryption schemes for three set operations: intersection, intersection size,
and equi-join. The protocols allow for information integration with minimal data
sharing. However, they are expensive in terms of computation and communica-
tion complexity. Freedman et al. [15] proposed two-party PPSI protocols based
on homomorphic encryption and balanced hashing for both the semi-honest and
the malicious adversary models. In their work, the sets are represented as roots
of polynomials. This work was extended by Kissner et al. [24], who utilize the
power of polynomial representation of multi-sets for PPSI.

Hazay and Lindell [20] adopted a pseudo-random-function-based solution
for the two-party PPSI problem, which can be used either for one malicious
and one semi-honest party or for two covert parties [5]. Dachman-Soled et
al. [13] addressed the problem of PPSI for two malicious parties using homo-
morphic encryption and polynomial functions. In addition, several approaches
have been proposed on variants of the PPSI problem, such as privacy-preserving
union [16], privacy-preserving equality test [30], or privacy-preserving disjoint-
ness [23]. These works also employ SMC-based privacy techniques, which makes
the solutions not efficient and scalable to large sets held by multiple parties.

In order to overcome the drawback of high computational overhead with
SMC-based techniques, privacy-preserving set operations, which rely on efficient
privacy techniques such as Bloom filter-based encoding, have recently being in-
vestigated in the areas of privacy-preserving record linkage [35] and privacy-pre-
serving data mining [3]. Lai et al. [32] proposed an efficient PPSI on multiple sets
using Bloom filters. The parties distributively compute a conjuncted Bloom filter
by applying the logical AND operation on their partitions and then each party
checks its elements with this conjuncted Bloom filter in order to determine if
they are in the intersection set. A similar approach using Counting Bloom filters
was proposed by Many et al. [28]. Dong et al. [14] introduced an efficient PPSI
protocol between two sets using Garbled Bloom filters (GBfs) and an oblivi-
ous transfer (OT) protocol. First, the participating parties encode their sets as
GBFs and then run the OT protocol in order to obtain the intersection set. A
private equi-join approach on multiple databases was presented by Kantarcioglu
et al. [22], where a secure equi-join is applied on k-anonymized databases.

Roughan and Zhang [33] proposed an efficient private set union solution
by using Count-Min sketches [12] in order to collect Internet-wide statistics.
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Charikar et al. [8] proposed the Count-Sketch data structure, which was adjusted
for self-join size estimation by Cormode and Garofalakis [11]. However, space
requirements of Count sketches are far higher than those of Count-Min sketches
[12], making them less suitable for large-scale applications.

3 Problem Formulation

Let us suppose a distributed environment, which consists of m parties, each
denoted by pi, where i = 1, . . . ,m, and a global authority G, which plays the
role of a central public semi-trusted regulatory agency. Each pi should monitor
the number of occurrences of an element ej (like an IP address, a drug, or
the registration plate of a car), where j = 1, . . . , n, and n is a large number
possible in the tens or even hundreds of millions. By doing so, a local summary
S is built by each pi, which includes the total number of occurrences of each
ej for a certain time period, or for a specified total number of ejs monitored,
denoted by N , where each distinct ej might appear several times. Therefore,
N is equal to

∑n
j=1 V (ej), where V (·) returns the exact number of occurrences

of an ej . An update operation is required when an ej should be monitored by
a pi, which should increase the number of occurrences of this ej in the local
summary. A query operation is also needed, which should return the current
number of occurrences of an ej . Authority G, by exploiting the local summaries,
should answer collective queries regarding the number of occurrences of each
ej above a specified threshold θ, as monitored globally by every pi. In essence,
these ejs constitute the intersection set S, defined formally as S = {ej |ej ∈
p1 ∧ . . . ∧ ej ∈ pm}.

Such a query could be “How many times (> θ) has a certain web site been
accessed by all pis?”. All summaries should be collected by G on a frequent basis,
so that G can produce an almost real-time global summary. Moreover, each pi
should maintain its summary in main memory to allow fast updating, when an
ej is monitored. Therefore, the size of the data structure used to realize each
summary should be as small as possible, although the number of the ejs can be
large. The reluctance of some pis to disseminate their summaries due to privacy
concerns is an additional problem. For instance, a hospital might be a reluctant
pi not willing to share any medical information, such as the drugs consumed
which are the ejs in this case, in order to protect the privacy of its patients.

The solution of building each summary, by utilizing a vector, where each
position represents a distinct element and holds the number of its occurrences,
is prohibitive due to the size of the summary which will grow linearly with the
number of elements represented. Also, by using a vector, the size and the update
time for each element is O(n). By utilizing a hash table, we can achieve O(1)
update time but the size required remains the same as by using a vector. For this
reason, each pi creates a local synopsis, denoted by Si, which is a specialized
sketching data structure [12] that consumes a fixed amount of space in main
memory regardless of the number of ejs represented, at the cost of an allowable
configurable error. After all the Sis are created, a global synopsis, denoted by
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GS , should be generated by performing the intersection operation among the Sis.
The GS produced should provide collective count estimates for all the elements
of the intersection set S. Privacy of each pi should be protected, so that it is not
possible to infer the contribution of each pi to these collective count estimates.
Formally, given a collective count estimate for an ej (ej ∈ S) one cannot make
any inferences or estimates regarding each Vpi(ej), where Vpi(·) denotes the exact
number of occurrences for an ej at a certain party pi.

4 Background

In this section, we give a brief outline of the building blocks utilized in order to
create the privacy-preserving global synopsis.

4.1 Creating a Local Synopsis

An efficient way for creating a local synopsis is by using a Count-Min sketch [12]
(sketch). The main feature of a sketch is that it utilizes space that is sublinear
with the number of ejs represented by it. A sketch is an array that consists of
D rows and W cells in each row, initialized to 0. Both D and W are specified
later. In order to update an ej in a sketch, D hash operations are performed
by randomly chosen, pairwise independent hash functions of the form hd(ej) =
[(adej + bd) mod P ] mod W , where d = 1, . . . , D, P is a large prime number
(e.g., 231−1) greater than n, and each ad, bd are randomly chosen integers from
(0, P ). Thus, there are D hash results, each corresponding to a cell in each row,
where its value is incremented by 1, namely S[d][hd(ej)] = S[d][hd(ej)] + 1, for
each of the d ∈ D rows. The query operation query(S, ej) returns the count
estimate of an ej by hashing this ej using the same hash functions as in the
update operation and then picking the minimum hash value.

An interesting property is the linearity of sketches; the sketch produced by
adding cell-wise two sketches (both built by using the same hash functions) is
the union of these two sketches. This property makes sketches particularly useful
because collective count estimates can be provided in distributed environments.
By using sketches, we can detect frequent elements, such as IPs flooding in a
network or drugs consumption above a certain frequency of appearance, denoted
by φ. These frequent elements, the so-called heavy hitters [12], may indicate a
certain anomaly, which may require an immediate course of proactive actions.
For example, over-consumption of certain drugs by all pharmacies state-wide
may highlight an outbreak of an infectious disease. By setting D = dln(N/δ)e
and W = d1/εe [12], heavy hitters which exhibit a number of occurrences more
than a specified threshold3 θ, are identified, where θ = dφNe with 0 < φ < 1.
Simultaneously, any ej occurring less than d(φ− ε)Ne times, where ε � φ e.g.,
ε = φ/10, is ignored, with confidence 1− δ.

3 In the literature, the term threshold can also be found as support.
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Algorithm 1 Secure distributed summation scheme.

Input: x1, . . . , xm, r, F
Output: s // the summation returned
1: q1 ← (x1 + r) mod F // p1 produces q1
2: for (i = 2, . . . ,m) do
3: qi ← (qi−1 + xi) mod F // pi produces qi by using qi−1

4: end for
5: s← (qm − r) mod F // p1 produces s which is the summation

4.2 Homomorphic Computations for Preserving Privacy

A reliable Secure Multi-Party (SMC) technique of performing a joint computa-
tion among several parties is the partially homomorphic Paillier cryptosystem
[31]. A joint computation could be the addition of some values, where these
values should remain secret due to privacy concerns. Successive encryption of
the same value generates different cipher texts with high probability. A trusted
authority is required in order to issue a public/private key pair, needed for the
encryption and decryption operations respectively. Given two values (messages),
x1 and x2, encryption is performed by using the public key and the produced
cipher texts are denoted by x̃1 and x̃2 respectively. Given the cipher texts, we
can perform either homomorphic addition (x̃1 ⊕ x̃2) or multiplication with a
constant c (c� x̃1). The cipher texts can be decrypted by the trusted authority
by using its private key.

4.3 Secure Distributed Summation

A simple summation scheme, as introduced in [9], can be applied by the pis in
order to perform a joint summation. This scheme is much more efficient than the
homomorphic approach described above. By using this scheme, each pi masks the
corresponding values in its Si, such that if pi+1 obtains Si it cannot reproduce
the actual values of Si. We illustrate the scheme by using a simple example. Each
pi has monitored e1 xi times. Then, the pis should sum up jointly each xi such
that none of the xis are disclosed to any pi. First, p1 generates a random number
r, which lies in the interval (0, F ), where F is a large integer greater than the
summation calculated. The steps of the scheme are illustrated in Algorithm 1.
The number of parties m must be more than two, because otherwise x2 will be
revealed to p1.

5 Protocols for Creating a Privacy-Preserving
Intersection Global Synopsis

In the simple non privacy-preserving scenario, G performs the intersection oper-
ation, among the Sis, following a naive protocol where each pi submits to G its
corresponding Si and then G merges them. This approach overwhelms G with
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the Sis, imposing high computational overhead and network traffic. Additionally,
since the hash functions are common for both updating an Si and querying GS ,
G can easily perform an iterative query process to an Si, for each possible ej ,
and consequently find out sensitive information regarding a single pi. In order to
mitigate these concerns, the GS can also be generated by the pis jointly, without
the participation of G, as we will describe later.

The basic idea of the proposed protocols is the secure generation of the global
synopsis GS ′, which holds the common ejs without the count estimates. More
specifically, if a cell in a Si contains a value which is below a specified threshold
θ, then the GS ′ should indicate this and the corresponding cell in the GS should
be set to 0. Thus, if we query GS for an ej which is hashed to a cell of a row in
GS holding 0, this will result in returning 0 as the global estimate. This happens
because during the query operation of the GS , we choose the minimum value
of the D estimates. By doing so, we can use GS ′ to easily exclude those cells in
GS which correspond to elements not included in the intersection set.

The communication complexity of both protocols is linear in the number of
parties, namely O(m). We make the assumption that the participating parties
(pis and G) follow the Honest-but-Curious (HBC) model [19,27], in that they
follow the protocol steps while being curious to learn about other party’s data.
Furthermore, we assume that there is no collusion among them. Our protocols are
secure in that the contribution of each pi to the count estimates is hidden from
both the rest of the pis and from G. We utilize the secure distributed summation
scheme combined with homomorphic operations in order to both deliver accurate
results and to protect the privacy of the pis in an efficient manner.
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Fig. 1: Each S̃′i−1 is multiplied cell-wise by each S′i. In the end, G decrypts S̃′m
and attains the common elements (i = 2, . . . ,m).
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Table 1: The steps of the homomorphic protocol for creating a privacy-preserving
intersection global synopsis.

step 1 G issues the pair of public/private keys needed for the homomorphic oper-
ations and sends out the public key to each pi.

step 2 Each pi by using its Si, produces S′i, by replacing the values above θ with
1 and those below θ with 0.

step 3a p1 encrypts homomorphically S′1, producing S̃′1, which is submitted to p2.
step 3b p1 produces R (one random value per cell) and then Q1, which are D ×W

arrays and correspond to r and q1 respectively depicted in Algorithm 1,
needed for the secure cell-wise summation of each Si. Q1 is submitted to
p2.

step 4a Each pi (i = 2, . . . ,m) performs cell-wise homomorphic multiplications be-

tween S̃′i−1 and S′i, producing S̃′i, which is submitted to pi+1.
step 4b Each pi (i = 2, . . . ,m), by using Qi−1, produces Qi (Qi[d][w] =

(Qi−1[d][w] + Si[d][w]) mod F ), which is submitted to pi+1.

step 5a pm produces S̃′m and then submits it to G.
step 5b pm produces Qm and then submits it to p1.
step 6 p1 produces GU , by subtracting R from Qm, which is submitted to G.

step 7a G decrypts S̃′m in order to produce GS ′.
step 7b G multiplies cell-wise GU with GS ′ in order to obtain GS .

5.1 The Homomorphic Protocol

The homomorphic protocol (HP) is two-fold; it identifies the common ejs and
calculates the union of the Sis, by exploiting the linearity of sketches as explained
in Sect. 4.1. Any cells which contain values above θ in all Sis are securely iden-
tified by performing homomorphic operations using encrypted data, as if we are
using the initial plain values. First, each pi produces a new synopsis, denoted
by S′i, by replacing the cells of the Si which hold values above threshold θ with

1 and below it with 0. Then, p1 encrypts S′1 homomorphically, producing S̃′1,
which is submitted to p2. Following the protocol, each pi (i = 2, . . . ,m) per-

forms cell-wise homomorphic multiplications between S̃′i−1 and S′i, producing

S̃′i, which is submitted to pi+1, as shown in Fig. 1. This is necessary because
if a cell in any S′i contains 0, then GS ′ in this cell should contain 0, regardless
whether there are other S′is that contain 1 in this particular cell. By doing so,
we identify the common ejs, as monitored by every pi in a secure manner since

each pi cannot infer anything by inspecting S̃′i−1. If instead of multiplying we

added cell-wise S̃′i−1 to S̃′i, we would create a GS ′ where each cell would contain
the exact number of parties, which exceed θ. In this case, we can apply the rule
of the minimum number of parties, where an S′i[d][w] should exceed θ in order to
be included in the GS ′. Synopsis GS ′ though cannot be used to provide count
estimates because the values of its cells are equal to either 1 or 0. For this reason,
we also obtain GU , by using the secure distributed summation scheme, which is
the result of the union operation among the Sis. Finally, by multiplying cell-wise
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Algorithm 2 Multiplying S̃′i−1 with S′i, where i = 2, . . . ,m (step 4a of the HP).

Input: S̃′i−1, S′i
Output: S̃′i
1: for (d = 1, . . . , D) do
2: for (w = 1, . . . ,W ) do

3: S̃′i[d][w] ← S̃′i−1[d][w]� S′i[d][w]
4: end for
5: end for

Algorithm 3 pi produces Qi by using Qi−1, where i = 2, . . . ,m (steps 4b and
2b of the HP and NBP, respectively.)

Input: Si, Qi−1, F
Output: Qi

1: for (d = 1, . . . , D) do
2: for (w = 1, . . . ,W ) do
3: Qi[d][w]← (Qi−1[d][w] + Si[d][w]) mod F
4: end for
5: end for

GU with GS ′, we obtain GS , which can be used to provide count estimates of
the common ejs, realizing the result of the intersection operation among the un-
derlying Sis. This protocol, as illustrated in Table 1, prevents G, or any pi, from
inferring any information from the intermediate synopses circulated. Algorithm
2 illustrates step 4a of the protocol where each pi, by performing homomorphic
multiplications between S̃′i−1 and S′i, produces S̃′i which is submitted to pi+1.
At each party, the number of homomorphic operations is O(D ×W ) where D
has a logarithmic dependency on N and W depends on ε regardless of N or n.

In Algorithm 3, it is shown how each pi performs the secure distributed
summation scheme cell-wise, by exploiting the linearity of the Sis (step 4b of the
protocol). The main computational overhead of this protocol is the encryption

of the S1 in step 3a. Also, each S̃′i adds high communication cost due to its size,
which is proportional to the size of S′i (or Si), multiplied by a constant factor
(e.g., 2), which depends on the implementation of the Paillier cryptosystem [31].

5.2 The Noise-Based Protocol

In the Noise-Based Protocol (NBP), instead of producing each S̃i in order to
generate the GS ′, we apply cell-wise the secure distributed summation scheme
(see Algorithm 1). As shown in Algorithm 4, if an Si[d][w] contains a value above
θ, then Q′i[d][w] becomes Q′i−1[d][w] plus 1. Otherwise, pi assigns to Q′i[d][w] the
value of Q′i−1[d][w] plus some symmetric noise (eg., a random value drawn from
a Laplace or a Gaussian distribution, where the location and scale parameters
are set to 0 and 1, respectively).



Karapiperis D., Vatsalan D., Verykios V., and Christen P.

Algorithm 4 pi produces Q′i by using Q′i−1, where i = 2, . . . ,m (step 2a of the
NBP).

Input: Si, Q
′
i−1, F , θ

Output: Q′i
1: for (d = 1, . . . , D) do
2: for (w = 1, . . . ,W ) do
3: if Si[d][w] > θ then
4: Q′i[d][w]← (Q′i−1[d][w] + 1) mod F
5: else
6: Q′i[d][w] ← (Q′i−1[d][w] + Lap(0, 1)) mod F // adding Laplace

noise
7: end if
8: end for
9: end for

We add symmetric noise in order to sanitize Q′i[d][w] with respect to m. By
doing so, p1 is prevented from making any inferences, such as the exact number
of parties which exceed θ, by inspecting the cells of the Q′m after subtracting R′.
By revealing the value of m for a cell, which is the case where all parties exceed θ
in that cell, neither p1 nor G learns anything that can breach the privacy of any
party. Fig. 2 illustrates how three parties create the GS ′ by following the steps
of this protocol. Finally, G receives two global synopses, namely GU and GS ′.
Synopsis GU is the result of the union operation among the Sis while GS ′ holds
for each cell either m or a sanitized value, which is the result of the noise applied
in the case where at least one cell in the same coordinates of any Si contains an
unacceptable value (below θ). Authority G, by checking cell-wise GS ′, identifies
accurately which cells should be discarded from GU and sets them to 0. This
protocol is illustrated in Table 2.

6 Evaluation

We evaluate our protocols in terms of the accuracy of the count estimates, the
execution time, the space required, the precision, and the recall of the results,
by using both synthetic and real data sets. For measuring accuracy, we specify
the completeness measure C as:

C = 1−
∑
∀ej∈S | query(GS , ej)− V (ej) |∑

∀ej∈S V (ej)
, (1)

where V (·) returns the exact global number of occurrences of an ej . The com-
pleteness measure shows the overall accuracy of the estimates, as compared with
the exact global number of occurrences of the ejs. A value for completeness near
1 denotes high accuracy for the estimates provided by the corresponding GS .
Recall is the number of the correct elements found as a percentage of the number
of the truly correct elements. On the other hand, precision is the number of the



Large-Scale Multi-Party Counting Set Intersection

153
320
031

253

4.543.5
32.51.5

024
131
220

154

634.5
23.52

013

110
121

Q’1 , Q’2 and Q’3  contain symmetric noise 
in cells that exhibit values < θ. 

We omit the modulus operation with F , by 
assuming that F is greater than all 

intermediate summations 

p1 p2

S1

R’

S2

Q’2

p3

threshold θ=2,  number of parties m=3

Q’1

342
21.51
432.5

065

64.53.5
2.543

-323

21.51
0.52.52

Q’3

S3

GS’

only GS’[1][1] = m, therefore this cell is 
the only common cell which exhibits 

values > θ in all local synopses 

Fig. 2: In each cell of each Q′i, we add either 1 or symmetric noise, depending on
the corresponding value in each Si (i = 2, . . . ,m).

correct elements found as a percentage of the entire output. For our experiments,
we have chosen as the application domain the monitoring and the identification
of common web resources appearing at five local parties. All experiments were
conducted on a Pentium Dual Core at 2GHz with 4GB RAM. The software com-
ponents are developed using the Java programming language version 1.7, and
are available from the authors.

We compare our protocols with the intersection operation included in the
Sepia library presented in [7] and [28], where Counting Bloom filters (CBf s)
are used, as initially introduced in [10]. A CBf is an integer array, where each
ej is hashed K times, by using the HMAC-MD5 hash function [26]. For each
cell that an ej is hashed to, we increment this cell’s value by 1. In order to
derive the count estimate of an ej , we hash it and then take the minimum
of the values retrieved. More specifically, we use the weighted intersection (I-
SEPIA) of the Sepia library, where an ej should be represented by the global
CBf (gCBf ) only if it has been monitored by every pi. Each pi submits to G
two CBf s: A flag-based CBf that actually states if an ej has been monitored
by this pi, and another CBf which holds the number of occurrences of each ej .
The flag-based CBf s are cell-wise multiplied producing gCBf1, which includes
the common ejs that should be represented by the gCBf. The CBf s holding
the number of occurrences are cell-wise added producing gCBf2, which holds
the global summations. A straightforward cell-wise multiplication between these
two gCBf s produces the final gCBf. The number of hash functions K and the
size L of each CBf depend on the specified false-positive probability, denoted
by FPR. This rate can be considered as the acceptable error rate, when a CBf
provides a count estimate for an ej which it has never been hashed to it. The
specified error rate is achieved by setting K = ln(2)L/n and L = cn, where c is
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Table 2: The steps of the noise-based protocol for creating a privacy-preserving
intersection global synopsis.

step 1a p1 produces R′ and Q′1, which are D×W arrays and correspond to r and q1
respectively depicted in Algorithm 1, but each cell of Q′1 instead of holding
the real values of S1 holds 1 if S1[d][w] > θ and some symmetric noise if
not (plus the random values of R′).

step 1b p1 produces R and then Q1, both needed for the secure cell-wise summation
of each Si. Both Q1 and Q′1 are submitted to p2.

step 2a Each pi (i = 2, . . . ,m), by checking cell-wise each Si, adds Q′i−1[d][w]+1 to
Q′i[d][w], only if Si[d][w] is above θ. Otherwise, Q′i[d][w] becomes Q′i−1[d][w]
plus some symmetric noise.

step 2b Each pi (i = 2, . . . ,m), by using Qi−1, produces Qi (Qi[d][w] =
(Qi−1[d][w] + Si[d][w]) mod F ). Both Qi and Q′i are submitted to pi+1.

step 3a pm produces Q′m.
step 3b pm produces Qm and then submits it to p1 along with Q′m.
step 4a p1 produces GS ′ by subtracting R′ from Q′m.
step 4b p1 produces GU , by subtracting R from Qm. Both GU and GS ′ are sub-

mitted to G.
step 5 G checks cell-wise GS ′ and if GS ′[d][w] 6= m, then GU [d][w] = 0. Finally,

GS = GU .

a small constant in order to minimize the formula (0.6185)L/n. An analysis of
the derivation of these optimal values is given in [6].

6.1 Evaluation using Synthetic Data Sets

Each party uses a synthetic data set where we generate N = 109 occurrences
from an alphabet of n = 106 distinct elements. The parameters used for building
the synopses are depicted in Table 3.

Table 3: The parameters used for building the synopses.

φ ε D W δ

0.1 0.01 26 100 0.01
0.01 0.001 26 1000 0.01

0.001 0.0001 26 10, 000 0.01

Elements generated for each party follow the Zipf distribution, since there
are numerous studies reporting that web resource popularity obeys power-law
long-tailed distributions [2,17,21,25]. We set the skew parameter z to 1 (Fig.
3a) and to 2 (Fig. 3b) for higher skew. As shown in these figures, by setting
z = 2, the differences between the exact values and the corresponding estimates



Large-Scale Multi-Party Counting Set Intersection

top−5 heavy hitters

0
50

0
15

00
25

00
co

un
ts

 d
iv

id
ed

 b
y 

10
0,

00
0

exact values
estimates

1 2 3 4 5

(a) z = 1

top−5 heavy hitters 

0
20

00
40

00
60

00
80

00
10

00
0

co
un

ts
 d

iv
id

ed
 b

y 
10

0,
00

0

exact values
estimates

1 2 3 4 5

(b) z = 2

Fig. 3: Absolute estimates and exact values, by generating ejs, following the Zipf
distribution.

are almost eliminated, since the accuracy of Count-Min sketches is increased by
using highly skewed data distributions [34].

For I-SEPIA, we set FPR = 0.1, which yields nearly 5 × 106 cells for the
corresponding CBF s and the gCBF. In Fig. 4a, we illustrate the completeness
rates, where our protocols outperform I-SEPIA. By setting higher skew (z = 2),
the completeness rate of our protocols is even higher than the one of I-SEPIA. In
Fig. 4b, we show the completeness rates for both protocols, where we observe that
these rates are constantly above 0.9. Also, by setting skew to 2, the completeness
rates, as expected, exhibit higher rates exceeding 0.95. We also observe that, as
φ is set to lower values, the completeness rates fall, exhibiting the lowest value
by setting φ = 0.001 (θ = 0.001 × 109 = 106 and ε = 0.0001). This happens
because exact counts of the ejs near θ = 106 become more and more uniform
and this uniformity of values, as reported in [34], results in reducing the accuracy
of the Count-Min sketches. Recall rates for both I-SEPIA and our protocols are
constantly at 1.0. In terms of precision rates (Figs. 4c and 4d), our protocols
perform slightly lower than I-SEPIA. Especially, by setting φ = 0.001 with skew
z = 1, precision falls below 0.95, which means that there is an amount of elements
returned where their exact number of occurrences is below θ (false positives).
When we increase skew (z = 2), precision rates increase accordingly reaching
almost 1.0. As expected, the number of occurrences for some false positives
returned by our protocols lie within the interval (d(φ− ε)Ne, θ).

The higher precision rates achieved by I-SEPIA are outweighed by the cost
of exceptionally large space required, whereas our protocols utilize orders of
magnitude smaller data structures, as shown in Fig. 4e. The space utilized by
our protocols depends on the specified parameters ε, δ, and on N . By setting
lower values for φ, in cases where we need a lower threshold, we consequently
decrease ε, which eventually results in using more space, as it is clearly shown in
Fig. 4e by setting φ to 0.001. We illustrate the space requirements by assuming
the RAM model [29], where a plain integer is represented by a machine word
while in HP a homomorphically encrypted integer is represented by two machine
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Fig. 4: Comparing to I-SEPIA by using skewed data sets.

words respectively. Obviously, the space utilized affects execution time as well,
since the number of operations required is proportional to the number of cells
of each synopsis (S′i, S̃i, Qi and Q′i), which depends on ε and consequently on
φ, as illustrated in Fig. 4f. The extra time required for HP is due to the initial
encryption of the cells of S′1 in step 3a, while the homomorphic multiplications
in step 4a add negligible overhead.

6.2 Evaluation using Real Data Sets

We received from OTS SA [1], which is a big Greek IT company, an anonymized
list of the top 1, 000-ranked web sites, as determined by the visits paid by their
employees in January 2014. In Fig. 5a, the distribution of the occurrences of the
ejs, where an ej is a hit to a web site, is illustrated which indicates a stretched-
exponential distribution with the stretching parameter set between 0.8 and 0.9.
The total number of hits N = 108 and the number of distinct ejs n = 103.
We set the frequency φ to 0.1, 0.01 and 0.005. If we set φ to 0.001 the corre-
sponding threshold would be considerably reduced, namely it would be equal
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Fig. 5: Intersecting web logs provided by OTS SA.

to 105, and the synopses would return too many ejs as heavy hitters. We dis-
tributed randomly the ejs to five parties except for the heavy hitters, for each
value of frequency φ, which appear universally in order to allow for evaluating
the performance of both our protocols and I-SEPIA. In terms of completeness,
our protocols, as expected due to the skewness of the data set, exhibit slightly
better rates, as depicted in Fig. 5b. The recall rates are consistently 1.0 while
the precision rates are almost the same for both our protocols and I-SEPIA, as
shown in Fig. 5c.

7 Conclusions

We have proposed two protocols for efficient and privacy-preserving set intersec-
tion (PPSI) by using Count-Min sketches. The aim of these protocols is to allow
an authority to create a global synopsis by performing private intersection of the
sets that are individually summarized as local synopses by three or more parties.
This global synopsis also provides count estimates of the intersected elements.
Our protocols use a combination of privacy techniques, namely homomorphic
computations, a secure distributed summation scheme, and noise addition. An
empirical study conducted on large synthetic and real data sets validates the
efficiency and accuracy of our protocols as compared to an existing PPSI pro-
tocol. In the future, we aim to (a) improve further the accuracy and scalability
of our protocols, (b) apply time widows for monitoring the ejs, and (c) study
other private set operations and techniques using efficient data structures.
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