
TransER: Homogeneous Transfer Learning for Entity Resolution
Nishadi Kirielle

nishadi.kirielle@anu.edu.au
The Australian National University
Canberra, ACT 2600, Australia

Peter Christen
peter.christen@anu.edu.au

The Australian National University
Canberra, ACT 2600, Australia

Thilina Ranbaduge
thilina.ranbaduge@anu.edu.au

The Australian National University
Canberra, ACT 2600, Australia

ABSTRACT
Entity resolution (ER) is the process of linking records that refer
to the same entity across one or more databases. While recent ad-
vances in supervised learning can provide high quality results for
ER, these often come with large efforts to obtain labelled training
data. Transfer learning (TL) can overcome this expensive labelling
task by utilising existing training data from a semantically re-
lated source domain to classify instances in a target domain where
no training data are available. However, most existing TL solu-
tions for ER involve deep learning models that have shown to be
mostly useful for long textual and unstructured attributes. These
models are less successful for short structured attributes such
as personal data that are known to contain variations and typo-
graphical errors. In this paper, we propose a novel TL framework
for resolving entities in structured data. We assume homoge-
neous domains that have the same feature space (same attribute
types and similarity functions) for transferring. As records are
sourced from different domains, there however can be three key
challenges. The marginal probability distributions of the data
in the two domains can be different, there can be feature vec-
tors that have contradicting labels in the two domains resulting
in different class conditional probability distributions, and the
class imbalance and bi-modal data distributions common in ER
make it challenging to apply existing TL methods. We address
these challenges with three contributions: an instance selector
to choose source instances with a high confidence and a similar
local structure to the target domain, a label generator that creates
pseudo labels for target instances, and a final classifier that labels
target instances using only high confidence pseudo labels. On
seven data sets we show that our framework outperforms the
best of several state-of-the-art methods by up to 13% in precision
and 50% in recall, while also being substantially faster.

1 INTRODUCTION
Entity Resolution (ER) is the process of linking records of the
same entity across one or more databases in the absence of
unique entity identifiers. Domains including health analytics,
national censuses, crime and fraud detection, e-commerce, na-
tional security, and the social sciences have an increasingly high
demand for ER to facilitate advanced analytics of integrated
data [9, 17, 30, 33, 40].

The process of linking two databases is illustrated in Fig-
ure 1 [11, 46], where first the pre-processed databases are blocked
to reduce the quadratic record pair comparison space, and then
the attribute values of record pairs in each block are compared
using similarity functions. This step generates a feature vector
for each compared record pair that holds the similarity score
of two attribute values as a feature value. For a record pair of
two publications, its feature vector would, for example, include

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-086-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

the textual similarities of publication titles, venues, and author
names. In this context, we refer to such a feature vector as an
instance. The feature vectors for all compared record pairs then
generate a feature matrix. In the classification step, either super-
vised or unsupervised methods are employed to classify each
record pair and assign it a match (referring to the same entity) or
non-match (referring to different entities) class label [9]. Finally,
the obtained results are evaluated with regard to quality and
efficiency [22].

Record Pair

Comparison
Database B

Database A

Non−Matches

Matches

Classification Evaluation
Blocking/

Indexing

Figure 1: The general process of linking two databases.

Despite the existence of unsupervised ER approaches [9, 46],
supervised ER methods have recently gained much attention due
to the high quality results that can be obtained when sufficient
training data are available. Supervised methods, however, often
require extensive human efforts to label record pairs as matches
and non-matches. Such manual labelling is costly and time con-
suming, making it infeasible in many real-world applications.
A recent study has, for example, reported that a random forest
based classifier required 1.5 million training labels to obtain a
precision and recall of 99% each even for linking two fairly clean
databases of records describing consumer products [16].

An intuitive approach to avoid this tedious labelling task is
to utilise existing labelled training data from a related domain.
A domain in ER, as we formally define in Section 3, consists of
record pairs from two databases, and the similarities (features)
calculated between them. In such an approach, we can use pre-
viously labelled and semantically related training data, which
we refer to as the source domain, to classify record pairs from
unlabelled databases in the target domain. For example, as shown
in Table 1, assume we already have labels from the linked data
sets DBLP and ACM and we aim to link DBLP with Scholar [31].
In this scenario the source domain consists of record pairs from
DBLP and ACM while the target domain consists of record pairs
from DBLP and Scholar.

However, supervised learning tasks generally perform well
only if the training and testing data are drawn from the same
feature space and furthermore have the same distribution [45].
The idea of utilising a source domain with a different distribu-
tion to label a target domain has attracted the attention of re-
searchers and given rise to the research area of transfer learning
(TL), which has provided promising results in a range of fields
including computer vision [8, 20, 36, 52] and natural language
processing [14, 25, 52, 53].

Based on the feature spaces of the source and target domains,
TL can be categorised as homogeneous or heterogeneous [45].
The former refers to scenarios where the source and target do-
mains have the same set of features (attributes), resulting in a

Table 1: Characteristics of ER data sets with feature vectors rounded to two decimal places. Ambiguous are the feature
vectors with both match (M) and non-match (N) class labels. We refer to Same class as the common feature vectors that
have the same class label in both source and target domains, and Diff(erent) class as those common feature vectors that
have different class labels in the two domains. For the Isle of Skye (IOS) and Kilmarnock (KIL) data sets, Bp-Bp and Bp-Dp
refer to links between birth parents across two birth certificates and birth parents linked to death parents, respectively, as
we describe in Section 5.

Feature Vectors of Domain A Feature Vectors of Domain B Common Feature Vectors
Num. Name Total M N Ambi- Name Total M N Ambi- Total Same Diff. Ambi-
attri- num. guous num. guous num. class class guous
butes

4 DBLP-ACM [13] 6,660 29.9% 66.5% 3.6% DBLP-Scholar [13] 16,041 33.2% 66.6% 0.2% 2,159 98.7% 1.1% 0.2%
5 Million Songs [13] 27,544 33.2% 64.3% 2.5% Musicbrainz [34] 91,143 14.3% 63.6% 22.1% 25,491 34.6% 1.0% 64.4%
8 IOS Bp-Dp [50] 115,986 19.0% 65.9% 15.0% KIL Bp-Dp [50] 242,457 15.0% 65.4% 19.6% 81,019 19.0% 0.8% 80.2%
11 IOS Bp-Bp [50] 249,396 25.4% 64.0% 10.6% KIL Bp-Bp [50] 406,038 28.2% 58.8% 13.1% 133,986 41.0% 0.1% 58.9%

common feature space. With heterogeneous TL, the target at-
tributes are completely different from the source attributes thus
resulting in different feature spaces. For ER, it is not clear if hetero-
geneous TL actually makes sense, quoting Jin et al. [26]: “Trans-
ferring knowledge between irrelevant domains (e.g., celebrities
and products) does not produce meaningful outputs”.

As we discuss further in Section 2, to the best of our knowl-
edge all existing TL approaches for ER assume the homogeneous
scenario because the contribution of different attributes towards
match and non-match decisions can be different in the source
and target domains. Our work therefore also focuses on homoge-
neous TL, which will help in situations where the same types of
attributes are available and the same similarity functions can be
applied. In practice we can, for example, use publicly available
linked data sets as the source domain.While the homogeneous TL
scenario seems straight-forward, as we discuss next, the specific
characteristics of ER still pose several challenges for homoge-
neous TL.

First, the source and target domains can have different mar-
ginal probability distributions because their data are drawn from
two different domains. This makes it possible—but not advisable—
to apply the same supervised learner.

Another challenge in applying TL to ER lies in the feature
vectors that possibly have different labels in the two domains,
known as the difference in class conditional probabilities [45].
This difficulty becomes evident upon a closer look at the class
conditional distributions of record pairs in two domains. Table 1
shows pairs of semantically related domains which have common
features along with their match and non-match percentages, and
statistics about the feature vectors in common to both domains.
An important aspect is that even within a particular domain there
exist feature vectors that have both match and non-match labels,
as shown in the Ambiguous columns. This occurs due to the
limited number of attributes available (first column in Table 1),
and because often each record pair is manually labelled as a
match or non-match independently from all other pairs when
training data are generated [9].

The Common Feature Vectors columns in Table 1 highlight
the difficulty of the TL task for ER, showing the considerable
amount of feature vectors in two domains that have ambiguous
or different class labels. For example, from the Musicbrainz [34]
data set, for the feature vector [1.0, 0.0, 1.0, 0.9] (with attributes
Title, Album, Artist, and Year compared using approximate string
and numerical comparators [9]), we identified the following two
record pairs where the first pair is a true match and the second a
true non-match:

0.0 0.5 1.0
Average similarity

0

5000

10000

15000

Fr
eq

ue
nc

y

Musicbrainz
Matches
Non-Matches

0.0 0.5 1.0
Average similarity

0

500

1000

1500

Fr
eq

ue
nc

y

DBLP-ACM

Figure 2: Skewed and bi-modal data distributions in the
Musicbrainz [34] and DBLP-ACM [13] data sets.

[non e francesca, dies irae, formula 3, 1970]
[non e francesca, formula 3, formula 3, 1971]

[post modern sleaze, post modern sleaze ep, sneaker pimps, 1997]
[post modern sleaze, becoming remixed, sneaker pimps, 1996]

We do not assume perfect matching in either of the domains,
rather both domains can have this kind of conflicting class labels.

Moreover, ER is generally a highly imbalanced classification
problem with both skewed and bi-modal data distributions, as
illustrated in Figure 2 on two data sets. For both of these, the
distributions of similarities calculated between records have two
peaks, where the peak with low average similarities accounts for
non-matches (the vast majority of compared record pairs) and the
high average similarities account for matches. As we experimen-
tally show in Section 5, existing feature based TLmethods [44, 52]
fail on such problems since they are highly dependent on nor-
mally distributed data [52]. Furthermore, as is the case with most
supervised ER problems, the low dimensionality of the feature
space (similarities) generated when comparing records, as shown
in the first column in Table 1, makes TL more difficult.

As we discuss further in Section 2, all existing TL approaches
for ER use deep learning methods [7, 26, 28, 37, 54, 58]. These
methods seem to be best suited for textual and unstructured
data sets [1, 38] because of their ability to perform hierarchical
representation learning [1]. Deep learning methods have recently
seen an increased demand due to the requirements for matching
lengthy textual data extracted fromwebsites, such as descriptions
of organisations, movies, consumer products, or tweets [6, 38].

In contrast, personal data such as health, census, or govern-
ment records, are usually structured with only few attributes
describing each entity [11]. These types of data are also known
to contain typographical errors and spelling variations origi-
nating from manual data entry, scanning, or transcriptions [9].
Traditional machine learning methods, such as SVMs based on

Tx32
Tx59

Tx14

Tx10
Tx23

Tx32
Tx59

Tx14

Tx10
Tx23

Sx77
Tx74

x12
S

f1 fmf2 f3 ...

Sx12
Sx48
Sx61
Sx77
Tx74

f1 fmf2 f3 ...

XS XU
f1 fmf2 f3 ...

Tx32
Tx59

Tx14

Tx10
Tx23

XT

f1 fmf2 f3 ...

Tx32
Tx59

Tx14

Tx10
Tx23

Score
Confidence
Pseudo Label

XT

0.7

0.2

0.8

0.1

0.9

XT XT

Non−match
Match

Target
Domain

Classifier

Pseudo
Label

Generator
(GEN)

Instance

Selector

(SEL) (TCL)

iS

jS

iT

jT

Figure 3: Overview of our TransER framework. As we describe in Section 4, given two databases, 𝑆𝑖 and 𝑆 𝑗 , in the source
domain, we first obtain candidate record pairs by blocking records [47]. Then we generate the feature matrix, X𝑆 , where
each feature, 𝑓𝑘 represents an attribute similarity. In the same way, for the target domain databases,𝑇𝑖 and𝑇𝑗 , we obtain the
feature matrix, X𝑇 . Given X𝑆 and X𝑇 , the instance selector chooses source instances with a high class confidence and a
similar local neighbourhood to the instances in the target to be transferred into X𝑈 . Next, we generate pseudo labels for X𝑇

from X𝑈 with a score that provides the confidence of a pair being a match or non-match. Finally, X𝑇 is classified using a
classifier trained on the target instances that have high confidence pseudo labels. Note that source instance 𝑥𝑆61 ∈ X𝑆 has
conflicting class labels.

similarity measures, have shown to perform better on such data
compared to deep learning models due to the small number of
attributes available [1, 28, 38]. Furthermore, deep learning meth-
ods generally require a large number of labelled examples for
training. Kasai et al. [28], for example, showed that for small
data sets traditional machine learning based models have better
performance than deep learning models.

To the best of our knowledge, we are the first to introduce a
model agnostic TL method for ER that incorporates traditional
machine learning models for structured data. As we show in the
evaluation in Section 5, for such data sets existing TL methods
for ER based on deep learning perform worse than those using
features based on similarity functions.

As illustrated in Figure 3, our framework has three key phases:
(1) an instance selector (SEL), (2) a pseudo label generator (GEN),
and (3) a target domain classifier (TCL) that provides the final
labels for the target instances. As we describe in Section 4, the
instance selector ignores those source instances that have differ-
ent class conditional probability distributions to similar target
instances. The selected source instances, along with the pseudo
labelling and target domain classifier, allow us to overcome issues
arising from the differences in the marginal probability distribu-
tions between the source and target domains. Moreover, as we
use the local neighbourhoods of instances in the transfer process
rather than the whole data distributions as in existing feature
based transfer methods, we minimise the influence of class im-
balance. While our study contributes to TL for ER, it will also be
of interest to general TL research, specifically for domains that
have non-normal and imbalanced data distributions.

In particular, we make the following contributions: (1) We
propose a novel TL framework for ER of structured data named
TransER, (Transfer learning for ER). (2) We present three key
phases in TransER that address the differences in marginal prob-
ability distributions and the class conditional probabilities in
domains with non-normal data distributions. (3) We conduct ex-
tensive experiments in Section 5 to illustrate how TransER can be
applied, and show that it can outperform several state-of-the-art
methods.

2 RELATEDWORK
We now review research related to the areas of ER and TL, and
detail recent work that utilises TL in the context of ER.

Since the 1950s, ER techniques have been developed to link
records across different databases [9, 17, 46]. Based on recent
research, ER can be categorised into supervised, unsupervised,
and semi-supervised approaches. Supervised approaches exist
for learning similarity measures [4] and learning the classifi-
cation task [16, 29, 43] through a model to predict the match
and non-match labels of unlabelled instances (record pairs). Re-
cently, deep learning models [6, 19, 38, 42] have been proposed
that provide better results than traditional supervised methods,
however at the cost of requiring large training data sets. Unsu-
pervised approaches include traditional ER techniques [9] that
depend on attribute similarities to decide on the class label of a
record pair, as well as clustering [18, 24, 39] and collective ER
approaches [3, 15, 27] that incorporate relational information for
classifying a record pair. Semi-supervised ER techniques include
active learning approaches [28, 49] that query external sources
to resolve challenging training cases, as well as crowd based
systems [21, 57] that employ hybrid machine and human based
systems for resolving entities.

For TL, different solutions have been proposed [45], includ-
ing feature representation and instance based transfer methods.
Feature representation based methods [14, 44, 52] find a com-
mon latent feature space that minimises the difference in the
distributions between the source and target domains. The depen-
dence of these methods on normally distributed data [52] makes
it challenging to apply them on ER, because ER is generally a
highly imbalanced problem with both skewed and bi-modal data
distributions (more non-matches than matches) [9], as can be
seen in Figure 2.

Instance transfer methods can be categorised as instance re-
weighting and instance selectionmethods [45]. Instance reweight-
ing [8, 12, 53] attempts to correct the differences in data distribu-
tions by reweighting the samples in the source domain to match
the distribution in the target domain [45]. However, when the
class conditional distribution is different across domains, instance
selection [25, 35, 56] is more suitable as it removes instances with
conflicting labels. To prune such instances with conflicts, Liao et

al. [35] utilised an active learning method while Jiang et al. [25]
pruned instances in a different problem setting to ours where a
small amount of target domain labels are available.

Vercruyssen et al. [56] selected instances that have similar
local distributions in both source and target domains. While their
LocIT method is based on a similar intuition to our work, it is dif-
ferent from ours in several aspects. First, it does not consider the
local class label distribution in the source domain when selecting
an instance. Second, their method uses a supervised classifier to
select instances whereas we employ an unsupervised approach.
Third, LocIT employs data distribution properties in the applica-
tion domain of anomaly detection to select instances, while our
framework is independent of such properties.

In the ER literature, only a few studies have focused on TL [7,
26, 28, 37, 41, 54, 58]. Explicitly focused onmulti-source similarity
learning in the record pair comparison step, Negahban et al. [41]
incorporated TL to share learned structures between scoring
problems. Zhao et al. [58], Chen et al. [7], Loster et al. [37], and Jin
et al. [26] employed deep learning based TLmodels for ER to learn
transferable attribute specific similarity functions for the record
comparison step, and then used deep learning models in the
classification step. These deep learning models have been shown
to be better suited for long textual and unstructured data [1,
38] since the distributed feature representations used by these
methods are most suitable to represent such textual data.

In the context of structured data, such as personal data [11],
deep learning models, however, seem to perform worse than
traditional machine learning methods that are based on features
calculated on similarity measures, and when the available train-
ing data sets are small [1, 28]. Therefore, Kasai et al. [28] have
proposed an active learning framework on top of deep trans-
fer models to enhance the results for structured data. Although
their method provided promising results, the proposed solution
required manually labelled data in the target domain for the
active learning step. Thirumuruganathan et al. [54] learned a
transferable model using distributed feature representations for
ER, where the authors have only provided results when partially
labelled data are available in the source domain. However, as we
show in our evaluation in Section 5, when the source domain is
fully labelled, their method can result in poor performance.

To the best of our knowledge, all TL models proposed for ER
are addressing the homogeneous scenario. For example, Loster et
al. [37] perform a one-to-one mapping of attributes from source
to target, while Zhao et al. [58] utilise pre-trained models of
the same attribute type for transferring. In ER, researchers are
interested in the homogeneous TL scenario because different
attributes can have different contributions towards the match
and non-match classifications in the source and target domains.
The applicability of heterogeneous TL for ER has been questioned
by Jin et al. [26].

3 PROBLEM DEFINITION
Let R be a set of records from a single or two databases, that we
aim to link, and B ⊂ R × R a subset of candidate record pairs
obtained from blocking or indexing [9, 47] to avoid the quadratic
record pair comparison space corresponding to all pairs in R × R.
Each record 𝑟 ∈ R contains values, 𝑣𝑎 , for a set of attributes,𝑎 ∈ A,
that provide information such as the name, address, and age of a
person; or the author names, venue, and title for a publication.

Each candidate record pair (𝑟𝑖 , 𝑟 𝑗) ∈ B is represented by an
𝑚-dimensional feature vector 𝑥𝑖 𝑗 ∈ R𝑚 . A feature, 𝑓𝑞 , with

1 ≤ 𝑞 ≤ 𝑚, represents the similarities calculated by compar-
ing the values of an attribute, 𝑎𝑞 ∈ A. A feature value is calcu-
lated as 𝑥𝑖 𝑗 [𝑞] = 𝑠𝑖𝑚𝑎 (𝑟𝑖 .𝑣𝑎𝑞 , 𝑟 𝑗 .𝑣𝑎𝑞) where 𝑠𝑖𝑚𝑎 () is a similarity
function appropriate to the type of values in 𝑎𝑞 , such as the Jaro-
Winkler similarity for names [9]. Let X ∈ R𝑛×𝑚 be the feature
matrix generated by all feature vectors of candidate record pairs,
such that X = {𝑥𝑖 𝑗 : ∀(𝑟𝑖 , 𝑟 𝑗) ∈ B} and 𝑛 = |B| is the number of
record pairs. Moreover, let Y ∈ R𝑛 be the vector of class labels of
each record pair, such that Y = {𝑦𝑖 𝑗 : ∀(𝑟𝑖 , 𝑟 𝑗) ∈ B} with |Y| = 𝑛

and𝑦𝑖 𝑗 ∈ {1,0}, where 1 and 0 represent a match and a non-match,
respectively.

For the purpose of defining the problem of TL for ER, we first
define a domain and a task [45]. A domainD consists of a feature
space X of all record pairs and a marginal probability distribu-
tion P(X), where X ∈ X is the feature matrix in a particular
domain. A task T consists of a label space Y, with Y ∈ Y, and
a predictive function C that classifies instances and maps them
to the corresponding class label. Following [45], the predictive
function C can be rephrased as the class conditional probability
distribution P(Y|X) between the class labels and feature vectors
from a probabilistic point of view. Following [45], letD𝑆 and T𝑆

be the source domain and task where D𝑆 = {X𝑆 ,P(X𝑆)} and
T𝑆 = {Y𝑆 ,P(Y𝑆 |X𝑆)}. Similarly, the target domain and task are
D𝑇 = {X𝑇 ,P(X𝑇)} and T𝑇 = {Y𝑇 ,P(Y𝑇 |X𝑇)}, respectively.
Note that we use superscripts for defining the domain (‘S’ for
source and ‘T’ for target) and subscripts for indexing of feature
vectors and records.

Generally, in TL, the source and target databases can differ
either with different domains, D𝑆 ≠ D𝑇 , or with different
tasks, T𝑆 ≠ T𝑇 [45]. The condition D𝑆 ≠ D𝑇 stands for ei-
ther X𝑆 ≠ X𝑇 or P(X𝑆) ≠ P(X𝑇). In this paper, we consider
the homogeneous case where the source and target domains
have the same feature space X𝑆 = X𝑇 . This means the same
similarity functions 𝑠𝑖𝑚𝑎 () are used on attributes 𝑎 ∈ A that
contain the same type of information in both D𝑆 and D𝑇 . How-
ever, as the data is drawn from two different domains we have
P(X𝑆) ≠ P(X𝑇), which is referred to as the difference in mar-
ginal probability distributions [45].

Similarly, the condition T𝑆 ≠ T𝑇 stands for either Y𝑆 ≠ Y𝑇

or P(Y𝑆 |X𝑆) ≠ P(Y𝑇 |X𝑇). In terms of the task, all ER prob-
lems have the same label space of matches and non-matches,
Y𝑆 = Y𝑇 , with |Y𝑆 | = |Y𝑇 | = 2. However, as the same feature
vector can have different labels in the two domains we have
P(Y𝑆 |X𝑆) ≠ P(Y𝑇 |X𝑇), which is referred to as the difference in
class conditional distributions [45] and can be seen in Table 1 (the
Ambiguous columns). We now formally define the problem of TL
in the ER setting.

Definition 3.1. Transfer learning for entity resolution:
Consider we have a source domain D𝑆 and a task T𝑆 with the
feature matrix of records pairs X𝑆 = {𝑥𝑆

𝑖 𝑗
: ∀(𝑟𝑖 , 𝑟 𝑗) ∈ B𝑆 } and

their corresponding match and non-match labels Y𝑆 = {𝑦𝑆
𝑖 𝑗

:
∀(𝑟𝑖 , 𝑟 𝑗) ∈ B𝑆 }, and a target domain D𝑇 with the target feature
matrix X𝑇 = {𝑥𝑇

𝑖 𝑗
: ∀(𝑟𝑖 , 𝑟 𝑗) ∈ B𝑇 }. We assume both the source

and target domains have the same feature spaceX𝑆 = X𝑇 and the
same label space Y𝑆 = Y𝑇 , but they can have different marginal
probability distributions, P(X𝑆) ≠ P(X𝑇), and different class
conditional distributions, P(Y𝑆 |X𝑆) ≠ P(Y𝑇 |X𝑇). The transfer
learning problem for entity resolution is to predict the match
and non-match labels for the record pairs in the target domain
Y𝑇 = {𝑦𝑇

𝑖 𝑗
: ∀(𝑟𝑖 , 𝑟 𝑗) ∈ B𝑇 } using D𝑆 , T𝑆 and D𝑇 .

Algorithm 1: TransER

Input: - X𝑆 : Feature matrix of source domain
- Y𝑆 : Labels of source domain
- X𝑇 : Feature matrix of target domain
- C: Classification method
- 𝑘 : Neighbourhood size
- 𝑏: Class imbalance ratio
- 𝑡𝑐 : Threshold for instance confidence similarity
- 𝑡𝑙 : Threshold for instance structural similarity
- 𝑡𝑝 : Threshold for pseudo label confidence

Output - Y𝑇 : Labels of target domain instances

// Phase (i): Instance Selector (SEL)
1: X𝑈 = {} // Initialise X𝑈 to hold transferred instances
2: for 𝑥𝑆 ∈ X𝑆 do: // Iterate over source instances
3: N𝑆

𝑥 = 𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 (𝑥𝑆 , 𝑘,X𝑆) // In source domain
4: N𝑇

𝑥 = 𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 (𝑥𝑆 , 𝑘,X𝑇) // In target domain
5: 𝑠𝑖𝑚𝑐 = 𝐺𝑒𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑥𝑆 ,N𝑆

𝑥)
6: 𝑠𝑖𝑚𝑙 = 𝐺𝑒𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑥𝑆 ,N𝑆

𝑥 ,N𝑇
𝑥)

7: if 𝑠𝑖𝑚𝑐 ≥ 𝑡𝑐 and 𝑠𝑖𝑚𝑙 ≥ 𝑡𝑙 then:
8: X𝑈 = X𝑈 ∪ {𝑥𝑆 } // Add 𝑥𝑆 to the set of transferred instances
9: Y𝑈 = 𝐺𝑒𝑡𝐿𝑎𝑏𝑒𝑙𝑠 (X𝑈 ,Y𝑆) // Get labels of transferred instances

// Phase (ii): Pseudo Label Generator (GEN)
10: C𝑈 = 𝑇𝑟𝑎𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (C,X𝑈 ,Y𝑈) // Train on transferred instances
11: Y𝑃 ,Z𝑃 = C𝑈 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (X𝑇) // Predict pseudo label confidence score

// Phase (iii): Target Domain Classifier (TCL)
12: X𝑉 = {} // Initialise to hold instances with high pseudo label confidence
13: for 𝑥𝑇 ∈ X𝑇 do: // Iterate to find target instances with high confidence
14: 𝑧𝑇 = 𝐺𝑒𝑡𝑃𝑠𝑒𝑢𝑑𝑜𝐿𝑎𝑏𝑒𝑙𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 (𝑥𝑇 ,Z𝑃)
15: if 𝑧𝑇 ≥ 𝑡𝑝 then:
16: X𝑉 = X𝑉 ∪ {𝑥𝑇 } // Add 𝑥𝑇 to the set of candidate target instances
17: Y𝑉 = 𝐺𝑒𝑡𝐿𝑎𝑏𝑒𝑙𝑠 (X𝑉 ,Y𝑃) // Get pseudo labels of candidate instances
18: X𝑉

𝑏
,Y𝑉

𝑏
= 𝐺𝑒𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐷𝑎𝑡𝑎 (X𝑉 ,Y𝑉 , 𝑏)

19: C𝑉 = 𝑇𝑟𝑎𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (C,X𝑉
𝑏
,Y𝑉

𝑏
) // Train on balanced instances

20: Y𝑇 = C𝑉 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (X𝑇) // Predict all final target labels
21: return Y𝑇

4 INSTANCE BASED TRANSFER LEARNING
We now describe our framework TransER that employs instance
based TL for ER on homogeneous and structured data. As dis-
cussed in Section 1 and illustrated in Figure 1, the ER process
includes the steps of blocking, record pair comparison, classifi-
cation, and evaluation [9]. For all steps in this process, we use
standard techniques as for example discussed in [9, 17, 46].

We contribute to the classification step to reduce the labelling
costs for supervised learning approaches by reusing already la-
belled data available in a semantically related domain. We classify
record pairs as matches or non-matches utilising traditional ma-
chine learning methods and features calculated using similarity
measures [9]. We prefer traditional machine learning models over
deep learning approaches because the former seem to provide
competing or better results and higher efficiency for structured
data, as shown by Mudgal et al. [38] and validated in our experi-
ments in Section 5.

TransER consists of three key phases as illustrated in Figure 3:
instance selector (SEL), pseudo label generator (GEN), and target
domain classifier (TCL). Algorithm 1 details the phases of our
framework, which we now describe in detail. Our framework can
be applied for both resolving entities within a single or between
two databases because all we require are the similarities calcu-
lated between records (in the form of the two feature matrices
X𝑆 and X𝑇) and the labels in the source domain, Y𝑆 .

Source Match

Source Non−match

k=7

Target (No labels)
x

S

N
T

N
S

xx x

Figure 4: Source and target instances in a 2D feature space.
In this example 𝑘 = 7 and the instance 𝑥𝑆 is a true match
in the source, where N𝑆

𝑥 and N𝑇
𝑥 are the neighbourhoods of

𝑥𝑆 in the source and target domains, respectively (notice
how N𝑇

𝑥 are the 7 closest target instances in X𝑇 to 𝑥𝑆). In
the source domain (blue instances) the nearest neighbours
of 𝑥𝑆 consist of 4 matches and 3 non-matches. Therefore,
based on Equation (1), 𝑠𝑖𝑚𝑐 (𝑥𝑆) = 4/7. To calculate 𝑠𝑖𝑚𝑙 (𝑥𝑆)
using Equation (2), the distance between N𝑆

𝑥 and N𝑇
𝑥 should

be calculated, as indicated by the dashed line.

4.1 Instance Selector (SEL)
If a source instance 𝑥𝑆 ∈ X𝑆 has a different class label in the
target domain, it contributes to the class conditional distribution
difference we discussed in Section 3. As a solution to this problem,
in the instance selector phase our aim is to select source instances
that have the same representation (have the same class label) in
the target domain. However, as we do not have any class labels
in the target domain, we make two intuitive assumptions.

The first is based on the smoothness assumption in semi-super-
vised learning which states that if two instances are close, their
class labels are likely the same [55]. For a given source instance,
we assume it has a similar representation in the target domain
only if the source instance has a high class label confidence based
on its neighbouring instances also having the same class label.
This is an important assumption for ER, because ER data sets
consist of feature vectors that can have conflicting labels even
within the same domain, as we illustrated in Table 1.

Second, inspired by the LocIT method [56], we assume that an
instance has a similar representation in both the source and target
domains if the local structure (neighbouring feature vectors) of
the marginal distributions around the instance are similar in both
domains. The use of local structures becomes beneficial in the
context of ER due to the bi-modal data distributions generally
seen in ER data sets (as shown in Figure 2) which can make
it difficult to apply most existing statistical models for feature
transformation on the full data distributions [44, 52].

Let 𝑘 be the neighbourhood size of an instance as its 𝑘 closest
neighbours. In order to characterise the class confidence and local
structure of an instance 𝑥𝑆 ∈ X𝑆 , we first define the local source
distribution of an instance as the neighbourhood N𝑆

𝑥 of 𝑥𝑆 in X𝑆

limited to its 𝑘 nearest neighbours. Similarly, we define the local
target distribution as the neighbourhood N𝑇

𝑥 of 𝑥𝑆 in X𝑇 limited
to its 𝑘 nearest neighbours in X𝑇 . We have |N𝑆

𝑥 | = |N𝑇
𝑥 | = 𝑘 .

As illustrated in Figure 4 and based on the two assumptions
stated above, we now propose two similarity functions to char-
acterise an instance for transferability.

The first similarity function represents the class label confi-
dence of an instance. If |{𝑥𝛼 : 𝑥𝛼 ∈ N𝑆

𝑥 ∧𝑦𝛼 = 𝑦𝑆 }| is the number

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

E
xp

on
en

tia
l D

ec
ay e−x/25

e−x/5

e−x

e−5x

e−25x

Figure 5: Behaviour of exponential decay functions.

of neighbours in N𝑆
𝑥 with the same class label as the source in-

stance 𝑥𝑆 , then we characterise the class confidence of 𝑥𝑆 as
follows:

𝑠𝑖𝑚𝑐 (𝑥𝑆) = |{𝑥𝛼 : 𝑥𝛼 ∈ N𝑆
𝑥 ∧ 𝑦𝛼 = 𝑦𝑆 }| / 𝑘, (1)

Based on our second assumption for 𝑥𝑆 to be transferable,
the distribution of N𝑆

𝑥 should be similar to N𝑇
𝑥 . To measure this

structural similarity of an instance, we utilise the location dis-
tance used in LocIT [56], which considers the L2-norm difference
between the centroids of the two neighbourhood sets N𝑆

𝑥 and N𝑇
𝑥

as the location distance. To normalise this distance, we divide
it by the maximum possible distance which is

√
𝑚 because all

our features are between 0 and 1, and where𝑚 is the number of
features in the feature space.

Since we divide by the maximum possible distance, our nor-
malised distance is more biased towards lower values. We there-
fore use an exponential decay function to convert this normalised
distance value into a similarity score. Based on a set of initial
experiments, we found that using 𝑒−5(·) as the decay function
provided us with values that are in the desired 0 and 1 interval, as
illustrated in Figure 5. We define our second similarity function
as follows:

𝑠𝑖𝑚𝑙 (𝑥𝑆) = 𝑒

−5
(1

𝑘

(∑
𝑥𝛼 ∈N𝑆𝑥

𝑥𝛼−
∑

𝑥𝛽 ∈N𝑇𝑥
𝑥𝛽

)
2

/
√
𝑚

)
, (2)

If both the class confidence similarity and the structural simi-
larity of a source instance 𝑥𝑆 are at least the two thresholds, 𝑡𝑐
and 𝑡𝑙 , as set by the user (i.e. 𝑠𝑖𝑚𝑐 (𝑥𝑆) ≥ 𝑡𝑐 and 𝑠𝑖𝑚𝑙 (𝑥𝑆) ≥ 𝑡𝑙),
then we consider 𝑥𝑆 as a transferable instance.

Using 𝑠𝑖𝑚𝑐 () and 𝑠𝑖𝑚𝑙 (), lines 1 to 9 in Algorithm 1 detail
how we select source instances to transfer in the SEL phase.
In line 1 we first initialise X𝑈 as an empty set that we use to
hold the instances selected for transferring. Then, in lines 2 to
8, the algorithm iterates through each source instance 𝑥𝑆 ∈ X𝑆 ,
obtains its source and target neighbourhoods N𝑆

𝑥 and N𝑇
𝑥 , and

then calculates 𝑠𝑖𝑚𝑐 and 𝑠𝑖𝑚𝑙 as per Equations (1) and (2). If 𝑠𝑖𝑚𝑐

is at least the threshold 𝑡𝑐 and 𝑠𝑖𝑚𝑙 is at least the threshold 𝑡𝑙 ,
then we select 𝑥𝑆 to be transferred and add it to X𝑈 . Finally,
we obtain the labels of the selected instances as Y𝑈 in line 9
using X𝑈 and Y𝑆 . In Section 5.3 we discuss how selecting these
thresholds affects our TL framework.

The time complexity of the nearest neighbour generation de-
pends on the method employed. Assuming we use the KD tree
algorithm [2], obtaining nearest neighbours for source and tar-
get has a time complexity of O(𝑚 · |X𝑆 | · log (|X𝑆 |) +𝑚 · |X𝑇 | ·
log (|X𝑇 |)) where𝑚 is the number of features. As nearest neigh-
bour querying has a complexity of O(𝑙𝑜𝑔(|X|)) [2], the SEL phase
has a time complexity of O(|X𝑆 | log (|X𝑆 |)) +O(|X𝑆 | log (|X𝑇 |)).

4.2 Pseudo Label Generator (GEN)
After selecting instances for transferring, we haveX𝑈 containing
all instances that have a similar class conditional distribution
to the target domain as per our assumptions. If we use X𝑈 to
predict the labels of X𝑇 , then we might not capture the marginal
probability distribution inD𝑇 . Therefore, in this phase we gener-
ate pseudo labels for the target instances 𝑥𝑇 ∈ X𝑇 . Then, in the
next phase, we use these pseudo labels to train a classifier on the
target domain itself. This way we can incorporate the marginal
probability distribution of D𝑇 into the classification.

To generate such pseudo labels, we first train a classifier C
on the selected instances, X𝑈 , and their labels, Y𝑈 , in line 10
of Algorithm 1. We assume the classifier returns the probability
of the predicted label for each instance that indicates the like-
lihood for an instance to belong to the predicted class. We use
these probabilities as the pseudo label confidence score to select
candidate target instances to train the final classifier. Therefore,
we apply the trained classifier C𝑈 on X𝑇 to predict the pseudo
labels Y𝑃 along with a confidence score for each label Z𝑃 in line
11 of the algorithm.

Assuming the worst case time complexity of the classifier, C, is
𝑂 (Φ(·)), the time complexity of this second phase is O(Φ(|X𝑈 |)).

4.3 Target Domain Classifier (TCL)
Nowwe have pseudo labels Y𝑃 generated for each target instance
𝑥𝑇 ∈ X𝑇 along with their confidence score Z𝑃 . In this final phase,
we aim to choose target instances that have a high confidence
score of their pseudo labels and use them to train a classifier on
the target. This process addresses two challenges we discussed in
Section 1. First, we address the issue of the differences in marginal
probability distributions because we use pseudo labels and train
the final classifier on the target domain itself.

Second, we address the problem of class imbalance by bal-
ancing the classes of pseudo labels in the target domain. In ER
data sets, most often the number of non-matches is much larger
(sometimes in magnitudes) than the number of matches [9]. As
we do not have labels for any instances in the target domain,
the blocked record pairs are also prone to this class imbalance.
Therefore, as a solution, we balance the target instances in X𝑇 .
For this, we use the pseudo labels obtained from the previous
phase and under-sample the non-match instances such that the
ratio between matches and non-matches is at a predefined class
imbalance ratio 𝑏. We set 𝑏 based on a value commonly used in
the ER literature [29, 38, 54], as we further discuss in Section 5.

In Algorithm 1, line 12 initialises X𝑉 to an empty set to hold
the candidate instances that have a high pseudo label confidence
score. Then in lines 12 to 16, we iterate through each target in-
stance 𝑥𝑇 ∈ X𝑇 . If the confidence score of an instance’s pseudo
label 𝑧𝑇 is greater than a predefined threshold 𝑡𝑝 , then we se-
lect the instance and add it to X𝑉 . We then obtain the corre-
sponding labels of the selected candidate instances in line 17. We
under-sample non-matches to obtain a ratio 𝑏 of non-matches to
matches in line 18, and get X𝑉

𝑏
and Y𝑉

𝑏
. Finally, in lines 19 and

20, we train a classifier, C𝑉 , on the balanced sample with pseudo
labels and apply it on the target data set X𝑇 to obtain the final
target instance labels, Y𝑇 .

Assuming the worst case time complexity of the classifier, C, is
𝑂 (Φ(·)), the time complexity of this phase is O(|X𝑇 | +Φ(|X𝑉

𝑏
|)).

5 EXPERIMENTAL EVALUATION
We conduct an extensive set of experiments to address the fol-
lowing questions: (1) How does TransER perform compared to
other state-of-the-art TL methods, both generic methods as well
as those specifically aimed at ER? (2) How does the percentage of
existing labelled source instances affect linkage quality? (3) How
do the different parameters of TransER affect linkage quality? (4)
How does each key component in TransER affect linkage quality?

5.1 Experimental Setup
5.1.1 Settings. For the blocking step, we employ a locality

sensitive hashing based technique that maps records with similar
attribute pairs to the same minhash value to group potential
matches [47]. In the record pair comparison step we then employ
similarity functions such as the Jaro-Winkler similarity for names
and the Jaccard similarity for other textual strings [9] to compare
attribute values between records. Then, we use the two feature
matrices, X𝑆 and X𝑇 , generated after the record comparison step.
After transferring is conducted, we use a set of classifiers [48]
including a support vector machine, a random forest, a logistic
regression, and a decision tree, for classification, and we average
their linkage quality results.

We implemented TransER and all baselines (using the trans-
fertools1 and deep matcher2 libraries provided by [38, 56]) in
Python 3.6 and using Sklearn 0.21 [48]. All experiments were
conducted on a server running Ubuntu 18.04 with 64-bit Intel
Xeon 2.10 GHz CPUs, and 512 GBytes of memory. We restricted
the memory consumption of each experiment to 200 GBytes of
main memory, and set the maximum runtime of an experiment
to 72 hours. The code and feature matrices are available in an
online repository3.

We set the default TransER parameter values used for all ex-
periments as 𝑡𝑐 = 0.9, 𝑡𝑙 = 0.9, 𝑡𝑝 = 0.99, and 𝑘 = 7 based
on the parameter sensitivity analysis we conduct in Section 5.3,
where we set the class imbalance 𝑏 to have a match to non-match
ratio of 1 : 3 based on the ratios used in existing ER frame-
works [29, 38, 54].

5.1.2 Data sets. We evaluate our framework on seven data
sets from different domains, as detailed in Table 1. These include
publicly available data sets [13, 34] from the bibliographic (ACM,
DBLP, and Scholar [13]) and music (Million Songs (MSD) [13]
and Musicbrainz (MB) [34]) domains, as well as proprietary data
sets from the demographic domain, where for these data sets
the goal is to link person records across birth, marriage, and
death certificates [10, 39, 50]. To evaluate TransER and show the
generalisability of our framework, we selected data sets with
different characteristics, different sizes, and different levels of
difficulty to match records.

GivenDBLP-ACMconsists of links between twowell-structured
data sets, it can be considered as a simple scenario to resolve [32].
However, DBLP-Scholar is more challenging because publica-
tions in Scholar have various data quality problems, such as mis-
spellings and different representations of authors and venues [32].
These bibliographic data sets are fairly small generating only a
few thousand feature vectors, as can be seen in Table 1. We there-
fore also used the music data sets that have resulted in more
feature vectors.

1https://github.com/Vincent-Vercruyssen/transfertools
2https://github.com/anhaidgroup/deepmatcher
3https://github.com/nishadi/TransER

The demographic data sets consist of two data sets from Scot-
land [50], one from the remote Isle of Skye (IOS) and the other
from the town of Kilmarnock (KIL). Both contain civil certificates
(birth, marriage, and death) of their population over the period
from 1860 to 1901. Demographers with expertise in linking such
data have curated and manually linked certain types of relation-
ships in these data sets, such as Bp-Bp (links between birth parents
across two birth certificates) and Bp-Dp (birth parents linked to
death parents), and we use those in our experiments. These data
sets are much larger compared to the music and bibliographic
data sets, and are challenging to resolve as they contain many
data quality problems such as spelling errors and variations [50].

We paired data sets as shown in Table 1 based on the existence
of common feature spaces. We show a source and target data set
pair as “source → target” for the remainder of this section.

5.1.3 Baselines. As baselines we selected a set of methods
that cover a wide range of related work, including TL models
specifically for ER, as well as TL models that address the key
challenges of different marginal probability distributions, differ-
ent class conditional distributions, and class imbalance, as we
discussed in Section 2.

• Naive is a baseline that blindly applies a classifier trained
on the source domain, D𝑆 , to the target domain, D𝑇 (this
means no TL is conducted). This is similar to state-of-the-
art baselines such as Magellan [29] and Tamer [51], where
we can generate features based on similarity metrics and
then we can choose a classifier such as a random forest,
SVM, or logistic regression for the classification of record
pairs.

• DTAL∗ is a variant of the method proposed by Kasai et
al. [28] which has achieved high performance with deep
transfer models for ER in low resource settings. In their
original proposal, the authors used both TL and active
learning to improve results. Since the active learning ap-
proach requires labelled data on the target domain, for
a fair comparison we consider DTAL∗ without including
the active learning aspect. Transferring is conducted by
introducing a gradient reversal layer to a deep learning
model. In our experiments, this method is a representative
of deep TL models for ER.

• DR is a baseline proposed by Thirumuruganathan et al. [54]
that uses deep learning with FastText [5] embeddings for
feature representation and traditional machine learning
models for classification. We average the results of a SVM,
a random forest, a logistic regression, and a decision tree
classifier. Transferring is conducted using instance weight-
ing methods.

• LocIT∗ is a variant of the TL method proposed by Ver-
cruyssen et al. [56]. The original LocIT method has two
parts, where in the first it selects instances for transfer-
ring and in the second it performs anomaly detection. In
our context, we only employed LocIT∗ for the instance
selection part and then train an ER classifier on the se-
lected instances. This baseline is the closest to TransER as
it also uses the local structure of marginal distributions
around the instances for instance selection. Therefore, this
method is a representative of instance selection transfer
models in our experiments.

• TCA [44] and Coral [52] are two state-of-the-art feature
based TL baselines that transform the source and target

https://github.com/Vincent-Vercruyssen/transfertools
https://github.com/anhaidgroup/deepmatcher
https://github.com/nishadi/TransER

domains into a common subspace. Even though both meth-
ods have been successfully used for general TL, in our
evaluation we show why they are not suitable methods
for ER.

As we discussed in Section 2, existing deep learning methods
for ER [7, 26, 28, 37, 58] are based on the embedding of attribute
values into high-dimensional vectors followed by learning of simi-
larity scores based on these embeddings. In the survey by Barlaug
and Gulla [1], DTAL [28] showed comparative and even better
results compared to most other deep learning methods evaluated
on public benchmark data provided by Mudgal et al. [38]. We
therefore use DTAL as a state-of-the-art approach to represent
the class of deep learning TL methods. Furthermore, deep learn-
ing methods such as Auto-EM [58] are highly dependent on large
knowledge bases and they do not work on small data sets [28]
such as the ones we use with TransER. If we were to run methods
such as Auto-EM on such small data sets, their architecture would
deviate significantly from their original proposal [58].

5.1.4 LinkageQuality Evaluation Measures. To assess the link-
age quality of TransER and the baselines, we compare four evalu-
ation measures: precision (𝑃), recall (𝑅), the F1-measure, and the
𝐹 ∗-measure [23]. To describewhat each evaluationmeasure repre-
sents, we consider𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 as the number of true matches,
false matches, and false non-matches, respectively [9]. Precision
is the number of truematches against the total number ofmatches
generated by a particular method, 𝑃 = 𝑇𝑃/(𝑇𝑃+𝐹𝑃); and recall is
the number of true matches against the total number of matches
in the linked ground truth data, 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) [22].

To facilitate a comparison of results, it is best to use a sin-
gle number measure that captures aspects of both precision and
recall [9, 23]. Recent research has found that the F1-measure
is not suitable for measuring ER quality [22] because the rela-
tive importance given to precision and recall in this measure
depends on the number of predicted matches. We therefore use
the alternative, more interpretable, 𝐹 ∗-measure [23] calculated
as 𝐹 ∗ = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁). The 𝐹 ∗ measure corresponds to the
number of true matches against the number of matches which
are either misclassified or are correctly classified true matches.
We also show the F1-measure to facilitate comparisons with other
published results.

5.2 TransER Performance
We now compare the performance of TransER with the aforemen-
tioned baselines with respect to linkage quality and runtime. We
then show how scalable the TransER framework is with regard
to the percentage of labels available in the source domain.

5.2.1 Linkage Quality Comparison. Table 2 provides the pre-
cision, recall, 𝐹 ∗, and F1 results of TransER and of the baselines
evaluated. Based on the average results (lower part of the table),
we can see that TransER outperforms all baselines while most
of the state-of-the-art TL methods are not able to consistently
outperform the Naive baseline.

It is important to discuss the reason behind poor ER quality
results of the TL baselines in comparison to the Naive baseline.
As we discussed in Section 1, we are the first to utilise tradi-
tional machine learning models with similarity measure based
feature representations in the context of TL for ER. Therefore,
our Naive baseline is also based on those traditional machine
learning models. Existing deep learning models for ER work bet-
ter for long textual data and they seem to be less successful with

structured data [38]. This is the reason for the poor performance
of deep transfer ER baselines such as DTAL∗. Although LocIT∗

employs a similar instance selection model as TransER, it also can-
not outperform the Naive baseline because LocIT∗ is optimised
for anomaly detection. We can also see that TCA outperforms
the Naive baseline only on the simple and small DBLP-ACM→
DBLP-Scholar data set pair. Both TCA and Coral perform feature
representation based TL and therefore are dependent on normally
distributed data, whereas ER generally has bi-modal and skewed
data distributions. This results in a poor performance of these
baselines.

TransER outperforms the Naive baseline on all of the data set
pairs (except for DBLP-Scholar → DBLP-ACM) with an average
improvement of 10% of 𝐹 ∗ and 9% of F1. It is important to note that
the recall is improved for up-to 50% because TransER addresses
the issues of differences in marginal probability distributions and
conditional probability distributions. However, we can see that
TransER and the Naive baseline have competing results for DBLP-
Scholar → DBLP-ACM because DBLP-ACM is a fairly small and
simple data set to resolve [32]. From Table 1 we can also see that
the DBLP-Scholar data set has well separated match and non-
match feature vectors with only 0.2% ambiguous feature vectors.
Therefore, the Naive baseline itself can achieve good results for
this scenario, and the instance selection we use in TransER has a
only little impact. Other than with this data set pair, for all other
(more challenging) pairs a significant improvement in the results
for TransER can be seen, with up-to 36% for 𝐹 ∗ and 41% for the
F1-measure.

DTAL∗ is a representative of deep TL models proposed for
ER. We report results of only the small and middle sized data
sets due to the very long runtimes taken for training these deep
learning models for the larger data sets (see Table 3). However,
as we can see from Table 2, DTAL∗ is not achieving acceptable
results when compared with both TransER and the Naive baseline.
These results align with experiments presented previously [1,
38] for structured data. As pointed out by Mudgal et al. [38],
deep learning models seem to be better suited for unstructured
textual data consisting of long values that contain multiple words,
because these models capture semantic similarities from such
textual data.

However, in our work we concentrate on structured data with
short strings that can contain typographical errors and spelling
variations (as commonly occur with personal data [9]). We can
see that deep learning models are less successful in representing
such features compared to the (string) similarity based feature
representations. Although DTAL∗ achieves comparative results
for simpler scenarios such as DBLP-Scholar→ DBLP-ACM, we
can see that its results drop drastically for more challenging
scenarios such as MSD → MB, with a drop of 44% in F∗ and 57%
in F1.

DR is a baseline that uses deep learning models for feature
representation and traditional machine learning for classifica-
tion. As we can see in Table 2, it is one of the worst performing
baselines. This poor performance compared also to the Naive
baseline is referred to as negative transfer [54] by the authors.
This is because the feature embeddings in DR are directly cal-
culated from existing FastText embeddings and our data sets
have many out-of-vocabulary words, such as person names and
addresses. We do not have a rich context to approximate these
out-of-vocabulary words with the limited number of attribute
values in structured data.

Table 2: Precision (P), Recall (R), F∗, and F1 results of TransER compared to the baselines. The results are presented as
averages ± standard deviations for the experiments conducted over a set of classifiers, as described in Section 5. ‘ME’ and
‘TE’ refer to experiments which exceeded the limitations of 200 GBytes of memory or 72 hours of runtimes, respectively.

Source Target TransER Naive DTAL∗ [28] DR [54] LocIT∗ [56] TCA [44] Coral [52]

𝑃 92.78 ± 5.13 99.02 ± 0.21 92.74 ± 3.34 56.30 ± 2.74 0.00 ± 0.00 94.08 ± 6.06 96.30 ± 2.24
DBLP- DBLP- 𝑅 96.90 ± 1.27 83.41 ± 2.35 66.18 ± 10.50 61.37 ± 2.53 0.00 ± 0.00 67.65 ± 22.17 86.72 ± 11.79
ACM Scholar 𝐹 ∗ 90.02 ± 4.31 82.73 ± 2.35 62.64 ± 9.11 41.45 ± 0.36 0.00 ± 0.00 65.89 ± 22.24 83.60 ± 10.22

F1 94.69 ± 2.46 90.53 ± 1.40 76.65 ± 6.77 58.61 ± 0.37 0.00 ± 0.00 76.87 ± 19.26 90.72 ± 6.29
𝑃 93.76 ± 1.01 94.26 ± 1.91 92.00 ± 2.44 19.19 ± 5.23 14.98 ± 33.52 93.20 ± 0.74 90.75 ± 18.16

DBLP- DBLP- 𝑅 99.18 ± 0.43 99.46 ± 0.39 98.42 ± 0.18 3.84 ± 1.39 10.45 ± 27.69 99.26 ± 0.30 87.33 ± 25.90
Scholar ACM 𝐹 ∗ 93.03 ± 0.72 93.77 ± 1.67 90.67 ± 2.52 3.12 ± 0.85 9.79 ± 25.80 92.56 ± 0.92 84.07 ± 24.84

F1 96.39 ± 0.39 96.78 ± 0.89 95.09 ± 1.39 6.05 ± 1.61 11.35 ± 27.81 96.13 ± 0.50 88.07 ± 24.42
𝑃 73.18 ± 14.06 84.58 ± 4.53 23.40 ± 24.94 43.00 ± 0.29 TE ME 86.50 ± 2.54

MSD MB 𝑅 62.04 ± 25.41 12.46 ± 2.15 3.47 ± 4.18 40.02 ± 19.42 TE ME 69.68 ± 6.95
𝐹 ∗ 47.83 ± 16.11 12.18 ± 2.07 3.25 ± 3.92 24.77 ± 8.10 TE ME 62.81 ± 6.16
F1 63.09 ± 14.91 21.65 ± 3.28 6.02 ± 7.18 39.02 ± 10.47 TE ME 76.98 ± 4.89
𝑃 92.99 ± 2.19 90.06 ± 2.10 34.30 ± 1.31 21.59 ± 10.82 TE ME 90.45 ± 9.18

MB MSD 𝑅 97.15 ± 2.79 93.54 ± 4.07 29.23 ± 3.41 25.20 ± 27.81 TE ME 70.23 ± 18.93
𝐹 ∗ 90.47 ± 2.46 84.72 ± 3.19 18.65 ± 1.31 12.83 ± 12.42 TE ME 64.53 ± 17.32
F1 94.98 ± 1.38 91.69 ± 1.90 31.41 ± 1.88 20.71 ± 18.49 TE ME 76.93 ± 14.52
𝑃 95.98 ± 0.30 95.82 ± 0.38 TE 27.93 ± 0.90 TE ME 92.24 ± 4.53

IOS-Bp-Dp KIL-Bp-Dp 𝑅 96.13 ± 0.81 95.02 ± 1.04 TE 2.19 ± 0.98 TE ME 72.52 ± 17.34
𝐹 ∗ 92.41 ± 0.53 91.24 ± 1.17 TE 2.05 ± 0.88 TE ME 68.41 ± 15.93
F1 96.05 ± 0.28 95.42 ± 0.65 TE 4.01 ± 1.69 TE ME 80.16 ± 11.50
𝑃 91.97 ± 1.62 79.35 ± 12.91 TE 29.09 ± 1.63 TE ME 77.61 ± 21.52

KIL-Bp-Dp IOS-Bp-Dp 𝑅 96.96 ± 0.41 96.59 ± 1.49 TE 1.66 ± 0.42 TE ME 88.14 ± 8.75
𝐹 ∗ 89.39 ± 1.50 76.97 ± 11.89 TE 1.59 ± 0.38 TE ME 70.98 ± 19.68
F1 94.39 ± 0.83 86.44 ± 8.18 TE 3.12 ± 0.74 TE ME 81.20 ± 15.94
𝑃 80.34 ± 0.25 80.46 ± 0.25 TE 31.67 ± 1.29 TE ME 77.47 ± 1.70

IOS-Bp-Bp KIL-Bp-Bp 𝑅 97.87 ± 0.23 96.26 ± 1.24 TE 2.98 ± 0.75 TE ME 80.40 ± 9.66
𝐹 ∗ 78.96 ± 0.37 78.02 ± 0.92 TE 2.78 ± 0.65 TE ME 65.18 ± 7.27
F1 88.25 ± 0.23 87.65 ± 0.58 TE 5.41 ± 1.24 TE ME 78.68 ± 5.40
𝑃 88.08 ± 1.50 81.39 ± 14.12 TE 30.51 ± 0.21 TE ME 73.05 ± 26.27

KIL-Bp-Bp IOS-Bp-Bp 𝑅 97.78 ± 0.29 83.99 ± 2.40 TE 1.64 ± 0.42 TE ME 64.33 ± 23.93
𝐹 ∗ 86.35 ± 1.35 69.77 ± 9.85 TE 1.58 ± 0.40 TE ME 50.11 ± 20.21
F1 92.67 ± 0.78 81.77 ± 7.27 TE 3.11 ± 0.77 TE ME 64.10 ± 19.99
𝑃 88.64 ± 8.88 88.12 ± 9.57 60.61 ± 34.93 32.41 ± 12.06 7.49 ± 23.36 93.64 ± 4.02 85.55 ± 14.80

Averages 𝑅 93.00 ± 14.34 82.59 ± 27.57 49.33 ± 37.61 17.36 ± 24.09 5.22 ± 18.97 83.46 ± 22.27 77.42 ± 17.27
𝐹 ∗ 83.56 ± 15.30 73.67 ± 25.25 43.80 ± 36.18 11.27 ± 14.69 4.89 ± 17.68 79.22 ± 20.39 68.71 ± 17.94
F1 90.06 ± 11.65 81.49 ± 23.72 52.29 ± 36.80 17.51 ± 20.89 5.67 ± 19.19 86.50 ± 16.28 79.61 ± 14.89

The LocIT∗ baseline is the closest to TransER as it also uses
the local structures of instances to decide on their transferability.
However, as we can see in Table 2, LocIT∗ is the worst performing
baseline. Since it is proposed in the context of anomaly detection,
it assumes two instances are not transferable if they are located
far away. As this does not hold in the ER context, in some scenar-
ios LocIT∗ achieves 0% for all evaluation measures. Even if there
exist instances that do adhere to its assumption, for example in
the DBLP-Scholar→ DBLP-ACM scenario, it still only achieves
very low quality results.

Since the TCA baseline exceeded the available memory even
for mid-sized data sets, we could conduct experiments only on the
smallest data sets. Although TCA achieves competing results for
the easy scenario DBLP-Scholar → DBLP-ACM, we observe that
𝐹 ∗ drops by 24% when resolving the more challenging scenario
DBLP-ACM → DBLP-Scholar. This is due to the skewed and
bi-modal data distributions found with ER.

Both the Coral and TCA baselines are prone to differences in
data distributions because they apply feature transformations to

both the source and target data sets. As the ablation study in Sec-
tion 5.4 will show, we can see that the MB andMSD data sets have
a large difference in their conditional probability distributions.
Because the marginal probability distributions are very similar in
these data sets, Coral outperforms TransER and achieves better
results in this scenario. However, in all other scenarios where we
have a significant difference in marginal probability distributions,
TransER outperforms Coral by on average 15% of 𝐹 ∗ and 10% of
F1.

5.2.2 RuntimeComparison. Table 3 shows runtimes of TransER
and the compared baselines. Due to the high memory consump-
tion of TCA we were not able to conduct experiments on the
larger data sets with this method. Similarly, not all experiments
with DTAL∗ and LocIT∗ completed within the 72 hours runtime
limitation. The Naive baseline has the best runtimes as it simply
applies the classifier trained on the source data set to the target
data set. Next is Coral which requires less computations com-
pared to the other baselines as it aligns second order statistics
on the data sets.

Table 3: Feature matrix sizes (number of record pairs) and runtime results (in seconds) for TransER and baselines. ‘ME’ and
‘TE’ again refer to experiments exceeding the limitations of using over 200 GBytes of memory or runtimes of more than 72
hours.

Source (D𝑆) |X𝑆 | Target (D𝑇) |X𝑇 | TransER Naive DTAL∗ [28] DR [54] LocIT∗ [56] TCA [44] Coral [52]

DBLP-ACM 6,660 DBLP-Scholar 16,041 12 1 11,381 286 12,676 4,717 1
DBLP-Scholar 16,041 DBLP-ACM 6,660 20 2 11,651 493 1,968 4,566 2
MSD 27,544 MB 91,143 54 4 115,111 987 TE ME 6
MB 91,143 MSD 27,544 221 58 128,108 867 TE ME 104
IOS Bp-Dp 115,986 KIL Bp-Dp 242,457 621 151 TE 8,765 TE ME 167
KIL Bp-Dp 242,457 IOS Bp-Dp 115,986 2,716 1,139 TE 36,001 TE ME 2,223
IOS Bp-Bp 249,396 KIL Bp-Bp 406,038 1,650 1,061 TE 33,608 TE ME 1,255
KIL Bp-Bp 406,038 IOS Bp-Bp 249,396 2,623 3,076 TE 25,160 TE ME 5,403

25% 50% 75% 100%
Percentage of Labelled Source Data

0

25

50

75

100

Pr
ec
is
io
n/
 R
ec
al
l/
F
* /
 F
1
(%

) DBLP-ACM → DBLP-Scholar

Precision
Recall
F*

F1

25% 50% 75% 100%
Percentage of Labelled Source Data

0

20

40

60

80

100

Pr
ec

is
io
n/

 R
ec

al
l/

F
* /
 F

1
(%

) MB → MSD

25% 50% 75% 100%
Percentage of Labelled Source Data

0

20

40

60

80

100

Pr
ec

is
io

n/
 R

ec
al

l/
F
* /

 F
1

(%
) KIL Bp-Dp → IOS Bp-Dp

Figure 6: Precision, Recall, F∗, and F1 sensitivity of TransER with regard to source data labelling, as discussed in Section 5.2.

The third best runtimes can be seen for TransER as it is com-
putationally more efficient than the other baselines. However,
we can see that TransER outperforms both the Naive and Coral
baselines for the largest source data set with the KIL Bp-Bp→
IOS Bp-Bp scenario. These generally lower runtimes for larger
data sets for TransER are due to it using a reduced number of
feature vectors because of the instance selection phase. Fourth is
the DR baseline that employs an existing FastText [5] model to
obtain the distributed representations of instances. Both LocIT∗

and TCA are less efficient than TransER. LocIT∗ consumes much
time in generating the training samples for the supervised clas-
sifier it is using to select instances, while TCA consumes much
time for the matrix computations used in feature transformations.
The largest runtimes can be seen for DTAL∗ as it is training deep
transfer models for the ER classification step. This is a known
issue in the literature as discussed by Mudgal et al. [38]. Overall,
the runtimes of TransER are comparatively much lower than for
the other baselines.

5.2.3 Sensitivity to Labelled Source Data Set Size. Due to lim-
ited space, we present the results of the remaining experiments
on three data set pairs only, one bibliographic (DBLP-ACM →
DBLP-Scholar), one music (MB → MSD), and one demographic
(KIL Bp-Dp→ IOS Bp-Dp) pair. Note that these data sets repre-
sent different data set sizes giving us insight into the behaviour
of TransER when applied on data sets of different sizes.

Due to the increasingly large sizes of data sets to be employed
in ER, finding a completely labelled data set for the source do-
main can be costly. Therefore, in Figure 6 we show how TransER
behaves when different percentages of labelled data are available
in the source domain. We increase the amount of labelled source
data starting at 25% and increasing the size by 25% until we utilise
the completely labelled source data sets. As the figure shows, the
performance of TransER improves as the labelled source data set

size increases. As can be seen, DBLP-ACM → DBLP-Scholar has
very low linkage quality results for smaller sizes of labelled data
whereas the other two data sets already have high linkage quality.
This is to be expected because the DBLP-ACM data set is fairly
small. Since the MB and KIL Bp-Dp data sets are larger, TransER
provides good performance even with less labelled training data.

5.3 Parameter Sensitivity Analysis
Figure 7 shows how TransER is robust to the parameters 𝑡𝑐 , 𝑡𝑙 ,
𝑡𝑝 , and 𝑘 , by varying each parameter while keeping the other
parameters at their defaults, where we discuss default values
below.

We first vary the threshold for instance confidence, 𝑡𝑐 , in the
range of [0.5, 1.0], where 1.0 indicates that only instances with a
confidence similarity of 𝑡𝑐 = 1.0 are being transferred. We can
see that both 𝐹 ∗ and F1 results are fairly robust in this range
with very little variations due to data set characteristics such
as conditional probability distributions in the selected instances.
Therefore, we choose 𝑡𝑐 = 0.9 as the default that works well for
all data sets.

Second, we vary the threshold for instance structural similarity,
𝑡𝑙 , in the range of [0.5, 1.0] where 𝑡𝑙 = 1.0 indicates only instances
with a zero distance between their source and target neighbour-
hoods are being transferred. As we can see, with 0.5 ≤ 𝑡𝑙 ≤ 0.9
the overall 𝐹 ∗ and F1 results improve because higher thresholds
drop instances with class conditional distribution differences.
This improvement is clearly visible for DBLP-ACM → DBLP-
Scholar as these are small data sets. However, further increasing
𝑡𝑙 leads to dramatic drops is results because stricter thresholds
remove many instances despite of their class conditional differ-
ences. Therefore, we set 𝑡𝑙 = 0.9 as a default choice that works
well for all data sets.

We then vary the threshold for pseudo label confidence, 𝑡𝑝 , in
the range of [0.5, 1.0]. From the figures we can see that TransER is

0.5 0.6 0.7 0.8 0.9 1.0
Threshold for Instance Confidence, tc

80

85

90

95

100

Pr
ec

is
io
n/
 R

ec
al
l/
F
* /
 F
1
(%

) DBLP-ACM → DBLP-Scholar

Precision
Recall
F*

F1

0.5 0.6 0.7 0.8 0.9 1.0
Threshold for Instance Structure, tl

80

85

90

95

100

Pr
ec

is
io
n/
 R
ec

al
l/
F
* /
 F
1
(%

) DBLP-ACM → DBLP-Scholar

0.5 0.6 0.7 0.8 0.9 1.0
Threshold for Pseudo Label Confidence, tp

80

85

90

95

100

Pr
ec

is
io
n/
 R
ec

al
l/
F
* /
 F
1
(%

) DBLP-ACM → DBLP-Scholar

4 6 8 10
Neighbourhood Size, k

80

85

90

95

100

Pr
ec

is
io

n/
 R

ec
al

l/
F
* /

 F
1
(%

) DBLP-ACM → DBLP-Scholar

0.5 0.6 0.7 0.8 0.9 1.0
Threshold for Instance Confidence, tc

80

85

90

95

100

Pr
ec
is
io
n/
 R
ec
al
l/
F
* /
 F
1
(%

) MB → MSD

0.5 0.6 0.7 0.8 0.9 1.0
Threshold for Instance Structure, tl

80

85

90

95

100
Pr
ec
is
io
n/
 R
ec
al
l/
F
* /
 F
1
(%

) MB → MSD

0.5 0.6 0.7 0.8 0.9 1.0
Threshold for Pseudo Label Confidence, tp

80

85

90

95

100

Pr
ec

is
io

n/
 R

ec
al

l/
F
* /

 F
1

(%
) MB → MSD

4 6 8 10
Neighbourhood Size, k

80

85

90

95

100

Pr
ec
is
io
n/
 R
ec
al
l/
F
* /
 F
1
(%

) MB → MSD

0.5 0.6 0.7 0.8 0.9 1.0
Threshold for Instance Confidence, tc

80

85

90

95

100

Pr
ec

is
io
n/
 R
ec

al
l/
F
* /
 F
1
(%

) KIL Bp-Dp → IOS Bp-Dp

0.5 0.6 0.7 0.8 0.9 1.0
Threshold for Instance Structure, tl

80

85

90

95

100

Pr
ec

is
io

n/
 R

ec
al

l/
F
* /

 F
1
(%

) KIL Bp-Dp → IOS Bp-Dp

0.5 0.6 0.7 0.8 0.9 1.0
Threshold for Pseudo Label Confidence, tp

80

85

90

95

100

Pr
ec

is
io

n/
 R

ec
al

l/
F
* /

 F
1
(%

) KIL Bp-Dp → IOS Bp-Dp

4 6 8 10
Neighbourhood Size, k

80

85

90

95

100

Pr
ec

is
io

n/
 R

ec
al

l/
F
* /

 F
1

(%
) KIL Bp-Dp → IOS Bp-Dp

Figure 7: Precision, Recall, F∗, and F1 sensitivity results of TransER for different 𝑡𝑐 , 𝑡𝑙 , 𝑡𝑝 , and 𝑘 values, as discussed in
Section 5.3.

robust with 0.5 ≤ 𝑡𝑝 ≤ 0.99, but linkage quality drops with 𝑡𝑝 =

1.0 because only a few instances are being transferred due to this
strict filtering. For DBLP-ACM→ DBLP-Scholar, the precision
and recall results vary dramatically for 𝑡𝑝 > 0.95 because of
the low number of instances being transferred from the small
DBLP-ACM data sets. Therefore, we set 𝑡𝑝 = 0.99 as the default
value that works well for all data sets including small data sets
such as DBLP-ACM.

As shown in Figure 7, TransER is fairly robust to the neighbour-
hood size, 𝑘 , in the range of [3, 11]. However, small data sets such
as DBLP-ACM→ DBLP-Scholar are more sensitive to different
values of 𝑘 because larger neighbourhoods for these smaller data
sets are more ambiguous. This leads to larger variations in the
confidence similarity scores calculated using Equation (1). How-
ever, when data set sizes increase from MB→MSD to KIL Bp-Dp
→ IOS Bp-Dp, then these variations reduce and the results be-
come more robust. We therefore set the smallest neighbourhood
size that performs well as the default choice, 𝑘 = 7.

5.4 Ablation Analysis
Table 4 shows the contributions of each key component of TransER.
In Section 4 we described the three phases of our framework,
SEL, GEN, and TCL. As TCL uses the pseudo labels generated by
GEN, we consider those two phases as a single component in this
analysis showing results without SEL and without GEN and TCL,
separately. Furthermore, in SEL, we use two different filtering
thresholds to select instances. We therefore also show results
by removing each filtering criterion, 𝑠𝑖𝑚𝑐 and 𝑠𝑖𝑚𝑙 , from SEL.
Finally, TransER + 𝑠𝑖𝑚𝑣 corresponds to another filtering added
to the instance selector phase, 𝑠𝑖𝑚𝑣 , the covariance similarity
employed in LocIT [56].

When we remove GEN and TCL from TransER, we directly
train a classifier on the selected instances instead of training a
second classifier on the target. We can see that for all data sets
either precision or recall is reduced along with a drop of 𝐹 ∗ of up
to 6% because we do not address the differences in the marginal
probability distributions. However, we can see a smaller drop in
the results for the MB → MSD scenario because both of these
data sets have quite similar marginal probability distributions.

The SEL phase adjusts the differences in conditional proba-
bility distributions (the conflicting labels), as we discussed in
Section 4.1. Without SEL we can see a drastic drop of linkage
quality (65% in 𝐹 ∗) for the MB→MSD scenario. Table 1 shows
the highest percentage of ambiguous feature vectors (22%) for
MB, while MB and MSD have 64% of the ambiguous feature vec-
tors in common. These account for different labels resulting in
a large difference in conditional probability distributions and a
drastic drop of results for the MB→MSD scenario. Similarly, the
other scenarios also have results that are lower by up-to 41% for
𝐹 ∗ and up-to 31% for F1.

The SEL phase filters instances based on the confidence, 𝑠𝑖𝑚𝑐 ,
and structural, 𝑠𝑖𝑚𝑙 , similarities from Equations (1) and (2). When
we remove filtering by 𝑠𝑖𝑚𝑐 , Table 4 shows a drop of 𝐹 ∗ for all data
sets by up to 40%. This validates that source instances with lower
confidence of their class labels account for the class conditional
distribution difference. When we remove filtering by 𝑠𝑖𝑚𝑙 , 𝐹 ∗
drops by up to 5% because we transfer source instances that have
a different local distribution in the target domain.

Finally, when covariance similarity, 𝑠𝑖𝑚𝑣 , based filtering [56] is
also applied in the SEL phase, the results are almost the same for
both small and mid-sized data sets. This is because the covariance
is not able to identify any further instances that have conflicting
labels in two domains. As we consider small neighbourhood

Table 4: Ablation analysis for TransER that shows how each key component in the framework affects linkage quality, as
discussed in Section 5.4.

Source Target TransER without GEN & TCL without SEL without 𝑠𝑖𝑚𝑐 without 𝑠𝑖𝑚𝑙 TransER + 𝑠𝑖𝑚𝑣

𝑃 92.78 ± 5.13 98.83 ± 0.52 85.06 ± 10.00 86.29 ± 9.18 86.20 ± 9.17 92.78 ± 5.13
DBLP-ACM DBLP-Scholar 𝑅 96.90 ± 1.27 86.17 ± 2.95 98.42 ± 1.35 98.18 ± 1.59 98.16 ± 1.52 96.90 ± 1.27

𝐹 ∗ 90.02 ± 4.31 85.29 ± 2.63 83.74 ± 9.07 84.74 ± 8.15 84.66 ± 8.17 90.02 ± 4.31
F1 94.69 ± 2.46 92.04 ± 1.56 90.88 ± 5.39 91.53 ± 4.83 91.48 ± 4.84 94.69 ± 2.46
𝑃 92.99 ± 2.19 91.95 ± 2.47 26.73 ± 38.68 82.45 ± 13.53 92.03 ± 3.63 92.99 ± 2.19

MB MSD 𝑅 97.15 ± 2.79 98.19 ± 0.51 31.54 ± 44.80 98.96 ± 0.62 94.56 ± 3.26 97.15 ± 2.79
𝐹 ∗ 90.47 ± 2.46 90.40 ± 2.13 25.60 ± 37.23 81.64 ± 13.10 87.52 ± 5.30 90.47 ± 2.46
F1 94.98 ± 1.38 94.95 ± 1.20 28.68 ± 40.95 89.29 ± 8.40 93.26 ± 3.15 94.98 ± 1.38
𝑃 91.97 ± 1.62 85.20 ± 9.76 52.51 ± 15.78 54.24 ± 14.98 90.61 ± 2.28 91.85 ± 1.46

KIL-Bp-Dp IOS-Bp-Dp 𝑅 96.96 ± 0.41 97.16 ± 0.70 80.70 ± 22.77 83.79 ± 19.01 97.33 ± 0.23 97.08 ± 0.26
𝐹 ∗ 89.39 ± 1.50 83.00 ± 8.93 48.60 ± 17.71 49.24 ± 15.68 88.41 ± 2.02 89.38 ± 1.29
F1 94.39 ± 0.83 90.43 ± 5.66 63.28 ± 17.89 64.47 ± 14.62 93.83 ± 1.13 94.39 ± 0.71

sizes (with a default of 𝑘 = 7), the impact of covariance does
not contribute to an improvement of results. Furthermore, we
can see a slight drop of results for the large KIL Bp-Dp → IOS
Bp-Dp data set pair, because some instances that do not have a
class conditional distribution difference are dropped with this
additional criterion.

5.5 Limitations
One limitation of TransER is its focus on structured data because
it uses attribute based similarities to generate features. However,
for unstructured data [26, 37, 58] the best option is to use deep
learning TL methods for ER since they are better at representing
unstructured (textual) data. Another limitation of our work, as
with all existing TL methods for ER, is that it covers the homoge-
neous TL scenario only. If the source and target domains have
two completely different feature spaces, then TransER cannot
be applied to classify record pairs in the target domain. How to
employ TL for ER in heterogeneous scenarios is an open research
question [26].

6 CONCLUSION AND FUTUREWORK
We have presented a novel framework for TL for ER that includes
three key phases: instance selection, pseudo label generation,
and target domain classification. The first phase addresses the
class conditional distribution difference in two domains while the
latter two phases address the marginal probability distribution
difference. We minimise the effect of class imbalance and bi-
modal distributions for ER data sets by selecting instances for
transferring that have similar local neighbourhoods. We have
shown that our framework can outperform several state-of-the-
art TL methods, and that it is one the most efficient TL methods
among the baselines compared. Our framework is also robust
to parameter settings and each key component substantially
contributes to high ER quality.

We plan to extend our framework in four ways: explore how to
support heterogeneous TL for ER where the data sets have non-
common feature spaces, investigate how to perform TL when
some labels are available in the target domain, explore how to
choose the best source domain when multiple semantically re-
lated labelled data sets are available, and explore how to integrate
our framework with active learning techniques to improve its
performance.

REFERENCES
[1] Nils Barlaug and Jon Atle Gulla. 2021. Neural Networks for Entity Matching:

A Survey. Transactions on Knowledge Discovery from Data 15, 3 (2021), 37.
[2] Jon Louis Bentley. 1975. Multidimensional binary search trees used for asso-

ciative searching. Commun. ACM 18, 9 (1975), 509–517.
[3] Indrajit Bhattacharya and Lise Getoor. 2007. Collective Entity Resolution in

Relational Data. Transactions on Knowledge Discovery from Data 1, 1 (2007),
36.

[4] Mikhail Bilenko and Raymond J. Mooney. 2003. Adaptive Duplicate Detection
Using Learnable String Similarity Measures. In International Conference on
Knowledge Discovery and Data Mining. ACM, Washington, USA, 39–48.

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching Word Vectors with Subword Information. Transactions of the Asso-
ciation for Computational Linguistics 5 (2017), 135–146.

[6] Ursin Brunner and Kurt Stockinger. 2020. Entity matching with transformer
architectures-a step forward in data integration. In International Conference
on Extending Database Technology. Copenhagen, Denmark.

[7] Qun Chen, Zhaoqiang Chen, Youcef Nafa, Tianyi Duan, and Zhanhuai Li. 2020.
Adaptive Deep Learning for Entity Resolution by Risk Analysis. arXiv preprint
arXiv:2012.03513 (2020).

[8] Qingchao Chen, Yang Liu, Zhaowen Wang, Ian Wassell, and Kevin Chetty.
2018. Re-weighted Adversarial Adaptation Network for Unsupervised Domain
Adaptation. In Conference on Computer Vision and Pattern Recognition. IEEE,
Utah, 7976–7985.

[9] Peter Christen. 2012. Data Matching – Concepts and Techniques for Record
Linkage, Entity Resolution, and Duplicate Detection. Springer, Heidelberg.

[10] Peter Christen. 2016. Application of Advanced Record Linkage Techniques for
Complex Population Reconstruction. arXiv preprint arXiv:1612.04286 (2016),
12.

[11] Peter Christen, Thilina Ranbaduge, and Rainer Schnell. 2020. Linking Sensitive
Data: Methods and Techniques for Practical Privacy-Preserving Information
Sharing. Springer, Heidelberg.

[12] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. 2007. Boosting for
Transfer Learning. In International Conference on Machine Learning. ACM,
New York, USA, 193–200.

[13] Sanjib Das, AnHai Doan, Paul Suganthan G. C., Chaitanya Gokhale, Pradap
Konda, Yash Govind, and Derek Paulsen. 2021. The Magellan Data Repository.
Retrieved August 19, 2021 from https://sites.google.com/site/anhaidgroup/
useful-stuff/data

[14] Hal Daumé III. 2007. Frustratingly Easy Domain Adaptation. Association of
Computational Linguistics 45 (2007), 256–263.

[15] Xin Dong, Alon Halevy, and Jayant Madhavan. 2005. Reference reconciliation
in complex information spaces. In International Conference on Management of
Data. ACM, Baltimore, 85–96.

[16] Xin Dong and Theodoros Rekatsinas. 2018. Data Integration and Machine
Learning: A Natural Synergy. VLDB Endowment 11, 12 (2018), 2094–2097.

[17] Xin Dong and Divesh Srivastava. 2015. Big Data Integration. Morgan and
Claypool Publishers.

[18] Uwe Draisbach, Peter Christen, and Felix Naumann. 2019. Transforming
Pairwise Duplicates to Entity Clusters for High-quality Duplicate Detection.
Journal of Data and Information Quality 12, 1 (2019), 1–30.

[19] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. VLDB Endowment 11, 11 (2018), 1454–1467.

[20] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. 2012. Geodesic Flow
Kernel for Unsupervised Domain Adaptation. In Conference on Computer
Vision and Pattern Recognition. IEEE, Rhode Island, USA, 2066–2073.

[21] Yash Govind, Erik Paulson, Palaniappan Nagarajan, Paul Suganthan G. C.,
AnHai Doan, Youngchoon Park, Glenn M. Fung, Devin Conathan, Marshall
Carter, and Mingju Sun. 2018. Cloudmatcher: A Hands-off Cloud/Crowd
Service for Entity Matching. VLDB Endowment 11, 12 (2018), 2042–2045.

https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://sites.google.com/site/anhaidgroup/useful-stuff/data

[22] David J Hand and Peter Christen. 2018. A Note on Using the F-measure for
Evaluating Record Linkage Algorithms. Statistics and Computing 28, 3 (2018),
539–547.

[23] David J Hand, Peter Christen, and Nishadi Kirielle. 2021. F*: An Interpretable
Transformation of the F-measure. Machine Learning 110, 3 (2021), 451–456.

[24] Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and Renée J. Miller. 2009.
Framework for Evaluating Clustering Algorithms in Duplicate Detection.
VLDB Endowment 2, 1 (2009), 1282–1293.

[25] Jing Jiang and ChengXiang Zhai. 2007. Instance Weighting for Domain Adap-
tation in NLP. In Association of Computational Linguistics. Association of
Computational Linguistics, Prague, Czech Republic, 264–271.

[26] Di Jin, Bunyamin Sisman, Hao Wei, Xin Luna Dong, and Danai Koutra. 2022.
Deep Transfer Learning for Multi-source Entity Linkage via Domain Adapta-
tion. VLDB Endowment (2022).

[27] Dmitri V. Kalashnikov and Sharad Mehrotra. 2006. Domain-independent data
cleaning via analysis of entity-relationship graph. Transactions on Database
Systems 31, 2 (2006), 716–767.

[28] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. 2019.
Low-resource Deep Entity Resolution with Transfer and Active Learning. In
Annual Meeting of the Association for Computational Linguistics. ACL, Florence,
5851–5861.

[29] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,
Jeffrey R Ballard, et al. 2016. Magellan: Toward Building Entity Matching
Management Systems. VLDB Endowment 9, 12 (2016), 1197–1208.

[30] Pradap Konda, Sanjay Subramanian Seshadri, Elan Segarra, Brent Hueth, and
AnHai Doan. 2019. Executing Entity Matching End to End: A Case Study. In
International Conference on Extending Database Technology. Lisbon, 489–500.

[31] Hanna Köpcke and Erhard Rahm. 2010. Frameworks for Entity Matching: A
comparison. Data & Knowledge Engineering 69, 2 (2010), 197–210.

[32] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of Entity
Resolution Approaches on Real-World Match Problems. VLDB Endowment 3,
1–2 (2010), 484–493.

[33] Hye-Chung Kum, Ashok Krishnamurthy, Ashwin Machanavajjhala, and Stan-
ley Ahalt. 2014. Social Genome: Putting Big Data to Work for Population
Informatics. Computer 47, 1 (2014), 56–63.

[34] Database Group Leipzig. 2021. Benchmark Datasets for Entity Resolution.
Retrieved August 19, 2021 from https://dbs.uni-leipzig.de/research/projects/
object_matching/benchmark_datasets_for_entity_resolution

[35] Xuejun Liao, Ya Xue, and Lawrence Carin. 2005. Logistic Regression with an
Auxiliary Data Source. In International Conference on Machine Learning. ACM,
New York, USA, 505–512.

[36] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S.
Yu. 2013. Transfer Feature Learning with Joint Distribution Adaptation. In
International Conference on Computer Vision. IEEE, Sydney, Australia, 2200–
2207.

[37] Michael Loster, Ioannis Koumarelas, and Felix Naumann. 2021. Knowledge
Transfer for Entity Resolution with Siamese Neural Networks. Journal of Data
and Information Quality 13, 1 (2021), 1–25.

[38] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep Learning for Entity Matching: A Design Space Exploration. In
International Conference on Management of Data. ACM, Houston, USA, 19–34.

[39] Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge. 2019. Robust
Temporal Graph Clustering for Group Record Linkage. In Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining. Springer, Macau, 526–538.

[40] Felix Naumann and Melanie Herschel. 2010. An Introduction to Duplicate
Detection. Morgan and Claypool Publishers.

[41] Sahand N. Negahban, Benjamin I.P. Rubinstein, and Jim Gemmell Gemmell.
2012. Scaling Multiple-Source Entity Resolution Using Statistically Efficient
Transfer Learning. In International Conference on Information and Knowledge
Management. ACM, Hawaii, USA, 2224–2228.

[42] Hao Nie, Xianpei Han, Ben He, Le Sun, Bo Chen, Wei Zhang, Suhui Wu, and
Hao Kong. 2019. Deep Sequence-to-Sequence Entity Matching for Hetero-
geneous Entity Resolution. In International Conference on Information and
Knowledge Management. ACM, Beijing, China, 629–638.

[43] Matteo Paganelli, Francesco Del Buono, Pevarello Marco, Francesco Guerra,
and Maurizio Vincini. 2021. Automated Machine Learning for Entity Matching
Tasks. In International Conference on Extending Database Technology. Nicosia,
325–330.

[44] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. 2011. Domain
Adaptation via Transfer Component Analysis. Transactions on Neural Networks
22, 2 (2011), 199–210.

[45] Sinno Jialin Pan and Qiang Yang. 2009. A Survey on Transfer Learning.
Transactions on Knowledge and Data Engineering 22, 10 (2009), 1345–1359.

[46] George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Pal-
panas. 2021. The Four Generations of Entity Resolution. Morgan and Claypool
Publishers.

[47] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Pal-
panas. 2020. Blocking and Filtering Techniques for Entity Resolution: A Survey.
Computing Surveys 53, 2 (2020), 1–42.

[48] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, et al. 2011. Scikit-Learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011).

[49] Kun Qian, Lucian Popa, and Prithviraj Sen. 2017. Active Learning for Large-
Scale Entity Resolution. In Conference on Information and Knowledge Manage-
ment. ACM, Singapore, 1379–1388.

[50] Alice Reid, Ros Davies, and Eilidh Garrett. 2002. Nineteenth-Century Scottish
Demography from Linked Censuses and Civil Registers: A ‘Sets of Related
Individuals’ Approach. History and Computing 14, 1–2 (2002), 61–86.

[51] Michael Stonebraker, Daniel Bruckner, Ihab F Ilyas, George Beskales, Mitch
Cherniack, Stanley B Zdonik, Alexander Pagan, and Shan Xu. 2013. Data
Curation at Scale: The Data Tamer System. In Biennial Conference on Innovative
Data Systems Research. Asilomar, California, 10.

[52] Baochen Sun, Jiashi Feng, and Kate Saenko. 2016. Return of Frustratingly Easy
Domain Adaptation. In Conference on Artificial Intelligence. AAAI, Arizona,
2058–2065.

[53] Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan, and Jieping Ye.
2011. A Two-Stage Weighting Framework for Multi-Source Domain Adap-
tation. In International Conference on Neural Information Processing Systems.
Curran Associates Inc., Granada, Spain, 505–513.

[54] Saravanan Thirumuruganathan, Shameem A Puthiya Parambath, Mourad
Ouzzani, Nan Tang, and Shafiq Joty. 2018. Reuse and Adaptation for Entity
Resolution through Transfer Learning. arXiv preprint arXiv:1809.11084 (2018).

[55] Jesper E Van Engelen and Holger H Hoos. 2020. A Survey on Semi-Supervised
Learning. Machine Learning 109, 2 (2020), 373–440.

[56] Vincent Vercruyssen, Wannes Meert, and Jesse Davis. 2020. Transfer Learning
for Anomaly Detection through Localized and Unsupervised Instance Selec-
tion. In Conference on Artificial Intelligence. AAAI, New York, USA, 6054–6061.

[57] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. 2012.
CrowdER: Crowdsourcing Entity Resolution. VLDB Endowment 5, 11 (2012),
1483–1494.

[58] Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-Matching
using Pre-trained Deep Models and Transfer Learning. In The World Wide
Web Conference. ACM, San Francisco, USA, 2413–2424.

https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Instance based Transfer Learning
	4.1 Instance Selector (SEL)
	4.2 Pseudo Label Generator (GEN)
	4.3 Target Domain Classifier (TCL)

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 TransER Performance
	5.3 Parameter Sensitivity Analysis
	5.4 Ablation Analysis
	5.5 Limitations

	6 Conclusion and Future Work
	References

