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Abstract. Predicting future high impact academic papers is of bene-
fit to a range of stakeholders, including governments, universities, aca-
demics, and investors. Being able to predict ‘the next big thing’ allows
the allocation of resources to fields where these rapid developments are
occurring. This paper develops a new method for predicting a paper’s
future impact using features of the paper’s neighbourhood in the cita-
tion network, including measures of interdisciplinarity. Predictors of high
impact papers include high early citation counts of the paper, high ci-
tation counts by the paper, citations of and by highly cited papers, and
interdisciplinary citations of the paper and of papers that cite it. The
Scopus database, consisting of over 24 million publication records from
1996-2010 across a wide range of disciplines, is used to motivate and
evaluate the methods presented.

1 Introduction

This paper seeks to produce a method which, given a database of academic
publications and citations between them, can predict future high impact papers.
The topic of this paper is a part of an effort to provide ongoing analytical support
to decision and policy development for the Commonwealth of Australia [1,2,3].
One aspect of this effort is to develop an ‘early warning system’ to predict,
anticipate and respond to emerging research trends.

It is amply clear that R&D operates in an increasingly competitive environ-
ment, where the traditional US and Europe dominance is under direct challenge
by a number of Asian countries. Australia, with a small population base and
slightly more than 2% GDP spend on R&D [2], will need to compete and stretch
its investment dollar in more creative and efficient ways. Decision and policy
makers thus need to marshal all available resources and intellectual capital to
develop sound strategies to remain competitive on a global scale. The utilisation
of data mining techniques to make predictions about citations of scholarly pub-
lications, taken as a proxy for the onset of research breakthroughs, when used
in combination with other relevant leading indicators, can potentially provide



competitive intelligence for strategy development. While Australia may not be
able to invest in R&D to the same extent as other economic powerhouses to
take advantage of being ‘the first mover’, with the development of insightful pre-
dictive analytics over a range of data sources, it can become an ‘early adopter’
and develop national research capabilities in an agile and timely manner. The
motivation behind this paper is to develop useful predictive models to empower
decision and policy making.

This paper is organised in the following way. Section 2 reviews related work,
and the Scopus database is presented in Sect. 3. Section 4 covers the methods
used in this paper, including a suitable measure of paper impact, predictive
features from the paper’s citation network neighbourhood, and prediction algo-
rithms. The results of applying these methods to the Scopus database are shown
in Sect. 5. Section 6 presents the conclusion and future work.

2 Related Work

There is a rich literature on the topics of defining and predicting the impact of
academic papers. Citation counts are the traditional and most straightforward
way of measuring the impact of an individual paper. Citation counts have been
used to distinguish between ‘classic’ papers which continue to be cited long after
publication, and ‘ephemeral’ papers which rapidly cease to be cited [4]. We seek
to formalise the notion of a classic or high impact paper.

Raw citation counts vary significantly between disciplines, making it a chal-
lenge to find an impact measure which is fair to papers from all fields. One
approach has been to divide a paper’s citations by its disciplinary average [5,6].
A critique found that dividing by disciplinary average still generates different
distributions across disciplines [7]. Other studies have instead worked with the
disciplinary percentile rank, for example proposing that the top 1% of papers
in each discipline should be considered classics [8,9]. As detailed in Sect. 4.1,
this paper builds on the percentile rank approach, but explicitly considers the
possibility of multiple disciplinary classifications for a single paper, and favours
papers with enduring influence using exponential discounting favouring more
recent citations.

There are a range of features that can be used as predictors of a paper’s fu-
ture impact. These include citations of a paper soon after it is published [10,11];
measures of network centrality such as average shortest path length, clustering
coefficient and betweenness centrality [12]; the paper’s authors’ previous work
[13,14]; and keywords from the text of the paper [15]. The framework of infor-
mation diffusion emphasises that ideas, like epidemics, spread through networks
[16,17]. We therefore expect that a paper’s position in the network will be a
determinant of the impact of its ideas. The theory of ‘preferential attachment’
suggests that in evolving networks, new nodes favour connections to existing
highly connected nodes [18]. It has been proposed that when nodes span bound-
aries or ‘structural holes’ between previously disparate parts of intellectual net-
works, they induce structural variation and hence become influential [19,20,21].



This paper draws upon and examines these arguments by evaluating whether
the number and interdisciplinarity of citations by and of a paper are predictive
of its future impact.

Previous research has investigated the effect on future citation counts of
paper interdisciplinarity, measured by the proportion of citations made by a
paper outside its own discipline [22,23]. This study builds on this approach
but additionally distinguishes between closely and distantly related disciplines,
allows multiple disciplines per paper, and considers the interdisciplinarity of
citations of papers citing and cited by the original paper.

The experiments presented in previous studies using network features to pre-
dict academic impact often use datasets from individual fields [12,20] or institu-
tions [24]. This paper is unusual in presenting results over a dataset as large and
broad as the Scopus database. Additionally, it incorporates the dynamic nature
of the citation network by considering citations disaggregated by year.

3 The Scopus Database

Scopus is a proprietary database of metadata records of academic papers. The
database is owned by the publisher Elsevier and is one of a small number of
major multidisciplinary bibliometric databases along with Thomson’s Web of
Science and Google Scholar. The version of Scopus used in this paper contains
metadata records for 24,097,496 papers published during the years 1995-2012.
The years 1996-2010 are complete, with more recent records yet to be compre-
hensively added. The records include title, authors including their countries and
institutional affiliations, journal, document type, abstract, keywords, subject ar-
eas, and citations of and by the paper.

Figure 1 shows the disiplinary coverage of the Scopus database, which focuses
on medicine and science. The All Science Journal Classification (ASJC) system
is used, with papers hierarchically grouped into 334 disciplines at the 4-digit
level and 27 disciplines at the 2-digit level [25]. A given paper may have zero,
one, or multiple disciplinary classifications.

4 Methods

We consider the task of predicting the future impact of papers over a horizon
of τ years from the present. We assume that citations by the paper of papers
published up to κ years before its publication are available. The parameter δ is
the number of years of citations of the paper available at the time of prediction.

The database of academic papers considered can be represented as a set N ,
and an individual paper is represented by n ∈ N . Nt ⊂ N refers to the set of all
papers published in year t. Citations are represented by amn, which is equal to
1 if paper m cites paper n, and 0 otherwise. The paper impact vector of length
|N | is represented as y, where yn = y(n) is the impact of paper n.

We assume that each paper is classified as belonging to one or more disciplines
k ∈ K0, where K0 is the set of disciplines. Further, we assume that the elements



Fig. 1. Scopus coverage by discipline. The 2-digit ASJC codes of each discipline are
shown in brackets.

of K0 may be hierarchically grouped at levels of discipline similarity in the range
i ∈ [0, ω], where Ki is the set of groups at level i in the hierarchy. At level 0,
each code is assigned its own group; at level ω, all codes are in the same group;
and at intermediate levels, codes are assigned to groups containing some but
not all other codes. In the case of Scopus, ω = 2, K0 contains a group for each
4-digit ASJC code, K1 contains the 2-digit ASJC code discipline groups, and K2

contains all disciplines in one group. Disciplinary classifications are represented
by cnk, the proportion of classifications of paper n as discipline k.

4.1 Measuring Paper Impact

Our goal is to predict the impact of a given paper. To do this we must first
determine how to measure impact, a topic discussed in Sect. 2. The number of
citations of a paper is a good starting point.

We would like to take into account citations over several years, favouring
recent citations. This is to find papers that have a lasting influence, rather than
those that are popular for only a brief time. We do this using exponential decay
in (1). The parameter r ∈ [0, 1] controls the rate of decay, and can also be called
the discount factor.

y′(n) =

τ+δ∑
t=δ+1

rτ+δ−t
∑
m∈Nt

amn (1)

Some disciplines cite more frequently than others. We accommodate this by
finding the percentile rank of n across all papers in its discipline(s), including pa-



pers from multiple years. This is shown for an individual discipline in (2). We use
the indicator function I(a, b) = 1 if a > b, 0 otherwise. These ranks are combined
to a single rank in (3), where y is the paper impact metric. Using percentile rank
makes the paper impact distributions of all disciplines approximately uniform in
the range y(n) ∈ [0, 1].

y′′(n, k) =

∑
m∈N

I(y′(n), y′(m))I(cmk, 0)∑
m∈N

I(cmk, 0)
(2)

y(n) =
∑
k∈K

cnky
′′(n, k) (3)

We propose fixing a threshold λ, such that for a set of papers N , the high
impact or classic papers N∗ are defined according to (4). A similar approach
has previously been suggested [9], identifying high impact or classic papers as
the top 1% most highly cited papers in each discipline. Using this 1% threshold
corresponds to setting λ = 0.99. The paper impact y(n), referred to as the target
variable in the context of prediction, has the additional advantages that it takes
into account papers with multiple classifications, and weights later citations more
heavily to measure the ongoing effect of a paper. Note that this definition of
classics is relative to the set of papers being considered, so that every set of
papers will always have a fixed proportion of classics.

N∗ = {n ∈ N | 1

|N |
∑
m∈N

I(y(n), y(m)) ≥ λ} (4)

4.2 Predictive Features

There are many potential predictors of future impact. In this paper only prop-
erties of the paper’s neighbourhood in the citation network are considered. As
described in Sect. 2, this is motivated by the framework of information diffu-
sion which states that a node’s position in a network impacts its ability to have
intellectual influence. The features f used are specified in Table 1.

The paper’s disciplinary classifications and the annual citations of and by the
paper are the base citation network neighbourhood features considered. In the
case δ = 0, we only have information about papers cited by the paper, whereas
if δ > 0 we also have information about papers that cite the paper.

Previous work has proposed that interdisciplinary work is likely to be more
influential [20,21,26], since it fills in ‘structural holes’ in the network. This paper
seeks to quantitatively evaluate this hypothesis, extending previous work which
measures the interdisciplinarity of a paper using the proportion of its citations
that are of papers in other disciplines [22,23]. In this study, individual papers
may have multiple disciplinary classifications, and the classifications may be
hierarchically grouped at levels in the range i ∈ [0, ω]. The interdisciplinarity
type i means that at least one pair of classifications of the cited and citing



Table 1. Summary of features used for predicting the impact of individual papers. ‘b’
stands for citations by a paper, ‘o’ stands for citations of a paper, and moving outwards
from the original paper these citation types are added to the feature set name. Kν is
the set of discipline groups at the hierarchy level ν, ω is the number of levels in the
hierarchical grouping of disciplines, κ is the years of citations by the paper available,
and δ is the year of prediction relative to the paper’s publication.

Feature
Set

Feature
Set Size

Feature Set Description

c |Kν | − 1 ck is the proportion of paper’s disciplinary classifications in
discipline group k

b κ bt is the number of citations by paper in year t

B (ω + 1)κ bit is the proportion of cited papers of interdisciplinarity type
i published in year t

o δ ot is the number of citations of paper in year t

O (ω + 1)δ oit is the proportion of citing papers of interdisciplinarity type
i published in year t

bo 1 Average number of citations of cited papers

bo ω + 1 boi is the average proportion of citations of cited papers of
interdisciplinarity type i

oo 1 Average number of citations of citing papers

oo ω + 1 ooi is the average proportion of citations of citing papers of
interdisciplinarity type i

papers are in the same group at hierarchy level i ∈ [0, ω], but not at any lower
hierarchy level. In the context of Scopus, interdisciplinarity type 0 indicates that
the two papers share a 4-digit ASJC code, type 1 indicates that they share a
2-digit ASJC code but no 4-digit ASJC code, and type 2 indicates that they
share no 2-digit ASJC code. The proportions of citations of and by the paper of
each interdisciplinary type for each year are used as predictive features.

Going one level further out in the neighbourhood of the paper, the number
and interdisciplinarity of citations of those papers cited by and citing the paper
are considered. These ‘higher order’ features are of interest since they measure
the effect of citing and being cited by ‘authorities’.

4.3 Prediction Algorithms

Several algorithms are used for making predictions of the target variable based
on the features outlined in Sect. 4.2. These are linear regression, decision trees
and random forests [27]. These were chosen since they are known to be effective
prediction algorithms with readily available implementations [28,29,30].

5 Experiments And Discussion

The Scopus Database detailed in Sect. 3 was used to evaluate the methods pre-
sented in Sect. 4. A training set with predictors and response variables completely



available before the year of prediction is required to train the prediction algo-
rithm. In our experiments, the training set consists of Scopus database papers
published in 2000 and the test set consists of papers published in 2005.

Furthermore, the papers considered are restricted to those with at least one
ASJC disciplinary classification, and to citations of and by those papers where
the other paper also had at least one ASJC disciplinary classification. This is the
case in more than 98% of the dataset and eliminates the complexity of dealing
with missing data. The final training set consists of 1,184,842 papers and the
test set of 1,704,624 papers.

We use the following parameter settings: the prediction horizon τ = 3, a
common timeframe for decision-makers; citations of papers up to κ = 4 before
the paper’s publication are included to fit into the data available; experiments
where δ = 0 and δ = 2 are tried to assess the impact of varying the year of
prediction relative to the paper’s publication; ω = 2 so that citation interdisci-
plinarity can be measured using 2-digit and 4-digit ASJC codes; ν = 1 so that
the 2-digit ASJC codes of papers are made available to the prediction algorithm;
and the discount rate r = 0.9 to reward papers with enduring influence.

5.1 Feature Ranking Using Spearman Coefficient

Spearman’s rank correlation coefficient ρ, a standard measure of the dependence
of two variables using a monotone function, was taken for each of the features
described in Sect. 4.2 and the target variable y. The top features ranked by
their ρ value with the target variable y are shown in Table 2. Figure 2 shows
a dendogram of the top features, which are hierarchically clustered using the
distance metric defined in (5). The unsupervised feature clusters correspond
closely to the groupings defined in Table 1.

dist(f1, f2) = 1− |ρ(f1, f2)| (5)

The variables not known at the time of the paper’s publication are shown
as NA in the ρ0 column. The feature sets B, O, bo and oo are the proportions
of citations of a particular interdisciplinarity type (see Table 1 for details). For
each of these feature sets, the papers for which there are no such citations are
excluded from the Spearman coefficient calculations, since these proportions are
not meaningful for these papers. In the prediction algorithms these features are
given a value of 0 in these cases, to avoid the problem of missing data.

Table 2 shows that the most predictive variables are o2 and o1, the number of
citations of the paper 2 years and 1 year after publication respectively, which are
also clustered together in Fig. 2. This is intuitive since we would expect citations
in early years to have a strong positive correlation with those in later ones.

The next most predictive variables are those in b, the number of citations
made by the paper, which also form a cluster in Fig. 2. This suggests that papers
which cite more are themselves more highly cited. A high number of citations
may suggest that the paper is thoroughly researched, or may be a review paper.



Table 2. Top 10 features, ranked by absolute value of Spearman coefficient ρ for the
prediction task where δ = 2. The subscripts 0 and 2 refer to the value of δ used.

Feature Rank ρ2 ρ0 Description

o2 1 0.6757 NA Citations of paper at t = 2

o1 2 0.5887 NA Citations of paper at t = 1

b−3 3 0.4361 0.4463 Citations by paper at t = −3

b−2 4 0.4327 0.4489 Citations by paper at t = −2

b−4 5 0.4264 0.4325 Citations by paper at t = −4

b−1 6 0.3733 0.3919 Citations by paper at t = −1

oo 7 0.2735 NA Average number of citations of citing papers

bo 8 0.2266 0.2594 Average number of citations of cited papers

oo2 9 0.1346 NA Proportion of citations of citing papers of most
interdisciplinary type

o21 10 0.1341 NA Proportion of citing papers of most interdisci-
plinarity type published in year t = 1

Fig. 2. Dendogram of top 10 features as described in Table 2. The distance between
features is given by (5).

bo, the average number of citations of cited papers, and oo, the average
number of citations of citing papers, are both positively correlated with the
target variable, and form a cluster in Fig. 2. The first result suggests that citing
papers that are ‘authorities’ is advantageous for future citations. The second
suggests that being cited by ‘authorities’ is also advantageous.

There is also evidence that interdisciplinarity is a predictor of future citations.
oo2, the proportion of citations of citing papers which are most interdisciplinary,
is positively correlated with the target variable. So is o21, the proportion of
citations of the paper of the most interdisciplinarity type published in year t = 1.
Other features indicating citations of the most interdisciplinary type fell just
outside the top 10 and showed positive correlations. Previous studies have found
that interdisciplinarity has a mix of both positive and negative correlations with
paper impact depending on the paper’s discipline [22,23], and no clear correlation
overall [23]. While individual disciplines are not studied here, there are weak



positive correlations between features indicating interdisciplinarity and impact
overall. A possible reason for this discrepancy is that in this study features of
interdisciplinarity are disaggregated by year, and include citations of the paper
and citations of cited and citing papers, in addition to citations by the paper as
in [22,23].

The correlations with impact calculated from the year of publication follow
a similar pattern overall to those with impact calculated from two years after
publication. However, citations by a paper matter more to its citations soon after
publication than several years after, when other factors become more dominant.

It is possible to test significance of the Spearman coefficients using the null
hypothesis that there is no correlation between the target variable and the feature
[31]. A test statistic can be generated for a Student’s t-distribution with |N | − 2
degrees of freedom. The values of this test statistic showed that each of the top
10 features shown in Table 2 were statistically significant.

5.2 Prediction Results

Root mean square error (RMSE) is a standard measure of the accuracy of pre-
dictions in a regression context. Linear regression, decision trees and random
forests, as implemented here, all learn parameter values which minimise the sum
of squares error (and hence RMSE) over the training set. In order to get a sense
of how well our prediction algorithms are performing, it is helpful to have a base-
line. A simple baseline is the mean target variable of the training set. This is
also the optimal constant value which minimises the RMSE over the training set.
This baseline achieved RMSE scores of 0.3645 for the training set and 0.3797 for
the test set. We evaluate prediction performance by calculating the percentage
improvement on this baseline.

The test set score of each feature set and algorithm combination is shown in
Fig. 3. As expected, all the algorithms found predicting a paper’s future citations
from two years after publication (δ = 2) much easier than predicting its citations
from the year of its publication (δ = 0).

The best performing algorithm was random forest. For the prediction task
where δ = 0, it achieved an 18.38% improvement on the baseline, and for δ = 2, it
achieved a 34.44% improvement. It is not surprising that as an ensemble method
it performed better than the individual regression methods. It is noticeable that
adding more features, particularly in the task predicting from two years after
publication, actually made its performance slightly worse. This is likely related
to the fact that each split only uses a sample of the features. When more features
are added in, it may miss the most important features.

Other metrics offer further insights into the algorithm’s performance. Using
R2, which can be interpreted as the proportion of variation in the target variable
explained by the prediction, random forest’s best test set results were 0.3342 for
the δ = 0 task, and 0.5697 for the δ = 2 task. A classification approach, using
the definition of classic papers from (4), showed that 8.28% of test set classic
papers were successfully predicted for δ = 0, and 38.73% for δ = 2.



Fig. 3. Performance of prediction algorithms with a range of features, as described in
Sect. 4.2.

In the case of an individual decision tree, its results were not quite as strong
as random forest, but were in similar ranges for the two tasks. Linear regression
did not perform as well as the other algorithms, though it showed improvement
when information about the interdisciplinarity of citations was included.

6 Conclusion and Future Work

This paper presented a new method for the prediction of the future impact of
individual papers. Predictive features based on a paper’s position in the citation
network were used, drawing upon and evaluating previous research on informa-
tion diffusion in networks, which suggests that nodes which are highly connected
[18] and span network boundaries [19,20,21] are likely to be more influential. The
method was implemented and evaluated using an exceptionally large and broad
academic database, Scopus, comprising over 24 million papers from 1996-2010.

The notion of a classic or high impact paper was formalised using a novel
metric of paper impact. This is a weighted average of the percentile ranks of
citations of a paper across its disciplinary classifications, with an exponential
discount rate favouring more recent citations to identify papers with enduring
influence. The number of citations of the paper in the early years after publica-
tion, the number of citations by the paper, the average number of citations of
citing and cited papers, and more interdisciplinary citations of the paper and of
citing papers, were found to positively correlate with the paper’s future impact.

Three prediction algorithms - linear regression, decision trees and random
forest - were proposed to predict the future impact of individual papers. The
percentage of RMSE improvement over the training set mean baseline was used
to evaluate prediction performance. The results found that random forest was



most predictive, achieving an 18% improvement predicting from the year of a
paper’s publication, and a 34% improvement predicting from two years after it.

This predictive capacity can assist universities, governments and investors
by alerting them to future high impact papers, as well as to researchers, insti-
tutions and fields producing such papers. There is exciting potential for such an
analytical tool to assist policy development and decision making.

Improved prediction can be achieved using a longer time window; adding
other features such as author, journal and article text; and employing more so-
phisticated prediction algorithms such as support vector machines. Another op-
tion is the collective classification approach, simultaneously making predictions
for individual papers and allowing these predictions to influence each other [32].
While in this paper the task is predicting citation counts, link prediction in the
citation network [33] would provide the user with more detail.

The predictions about individual papers may be aggregated at the field level
using co-citation analysis [34]. A co-citation graph can be constructed, where pre-
dicted classic papers are nodes, and edges occur when the citation behaviours
of two papers are sufficiently similar using a metric such as weighted cosine
similarity. Emerging fields of research can be predicted using community detec-
tion in the co-citation network of predicted high impact papers, for example by
extracting the maximal cliques or components of the network. The authors of
this paper anticipate a forthcoming publication on this topic, with the goal of
creating a powerful tool to aid strategic research investment.
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