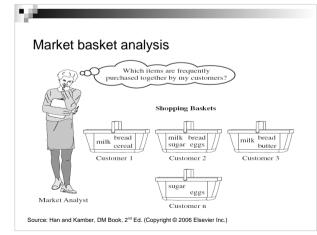


Lecture outline

- What is association mining?
- Market basket analysis and association rule examples
- Basic concepts and formalism
- Basic rule measurements
- The Apriori algorithm
- Performance bottlenecks in Apriori
- Multi-level and multi-dimensional association mining
- Quantitative association mining
- · Constraint based mining
- · Visualising association rules

What is association mining?

- Association mining is the task of finding frequent rules / associations / patterns / correlations / causual structures within (large) sets of items in transactional (relational) databases
- Unsupervised learning techniques (descriptive data mining, not predictive data mining)
- The main applications are
- Market basket analysis (customers who buys X also buys Y)
- · Web log analysis (click-stream)
- Cross-marketing
- Sale campaign analysis
- DNS sequence analysis



Association rules examples

- Rules form: body \Rightarrow head [support, confidence]
- · Market basket:
- buys(X, `beer') ⇒ buys(X, `snacks') [1%, 60%]
 If a customer X purchased `beer', in 60% she or he also purchased `snacks'
- \bullet 1% of all transactions contain the items `beer' and `snacks'

Student grades:

- major(X, `MComp') and takes(X, `COMP8400') \Rightarrow
- grade(X, `D') [3%, 60%]
- If a student X, who's degree is `MComp', took the course `COMP8400' she or he in 60% achieved a grade `D'
- The combination `MComp', `COMP8400' and `D' appears in 3% of all transactions (records) in the database

Basic concepts

- Given:
- · A (large) database of transactions
- Each transaction contains a list of one or more items (e.g. purchased by a customer in a visit)
- Find the rules that correlate the presence of one set of items with that of another set of items
- Normally one is only interested in rules that are frequent
- For example, 70% of customers who buy tires and car accessories also get their car service done

Question: How can this be improved to 80%? Possibly offer special deals like a 15% reduction of tire costs when the service is done

Formalism

- Set of items $X = \{x_1, x_2, ..., x_n\}$
- Database D containing transactions
- Each transaction *T* is a set of items, such that *T* is a subset of *X*
- · Each transaction is associated with a unique identifier, called TID (for example, a unique number)
- Let A be a set of items (a subset of X)
- An association rule is an implication of the form $A \Rightarrow B$. where A is a subset of X and B is a subset of X, and the intersection of A and B is empty
 - No item in A can be in B, and vice versa
 - No rule of the form: {`beer', `chips'} ⇒ {`chips', `peanuts'}

Basic rule measurements

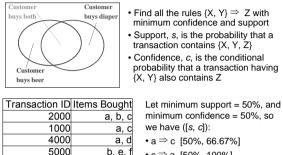
• A rule $A \Rightarrow B$ holds in a database D with support s. with s being the percentage of transactions in D that contain A and B

 $support(A \Rightarrow B) = P(A \cup B)$

• The rule $A \Rightarrow B$ has a *confidence* c in a database D if c is the percentage of transactions in *D* containing *A* that also contain B

> $confidence(A \Rightarrow B) = P(B|A) = P(A \cup B) / P(A)$ confidence($A \Rightarrow B$) = support($A \Rightarrow B$) / support(A)

Rule measurements example



b, e, f • $c \Rightarrow a$ [50%, 100%]

Source: Han and Kamber, DM Book, 1st Ed.

Rule measurements example (2)

Transaction ID	Items Bought	Itemset	Support
2000	a, b, c	а	75.00%
1000	a, c	b	50.00%
4000	a, d	C	50.00%
5000	b, e, f	a, c	50.00%

• Minimum support = 50% and confidence = 50%

• Rule $a \Rightarrow c$

• support (a \Rightarrow c): 50%

• confidence $(a \Rightarrow c) = \text{support}(a \Rightarrow c) / \text{support}(a) =$ 50% / 75% = 66.67%

Mining frequent item sets

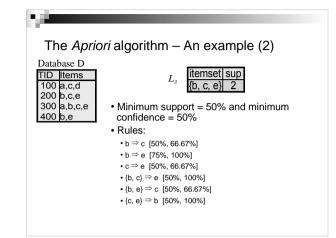
- Key step: Find the frequent sets of items that have minimum support (appear in at least xx% of all transactions in a database)
- Basic principle (Apriori principle): A sub-set of a frequent item set must also be a frequent item set
- For example, if {a,b} is frequent, both {a} and {b} have to be frequent (if `beer' and 'chips' are purchased frequently together, then `beer' is purchased frequently and `chips' are also purchased frequently)
- Basic approach: Iteratively find frequent item sets with cardinality from 1 to k (k-item sets), k > 1
- Use the frequent item sets to generate association rules • For example, frequent 3-item set {a,b,c} contains rules: $a \Rightarrow c, b \Rightarrow c, a \Rightarrow b, \{a,b\} \Rightarrow c, \{a,c\} \Rightarrow b, \{b,c\} \Rightarrow a, etc.$
- · We are normally only interested in longer rules (with all except one element on the left-hand side)

The Apriori algorithm (Agrawal & Srikant, VLDB'94)

- C_k: Candidate item set of size k
- L_k : Frequent item set of size k
- Pseudo-code:

 $L_{i} = \{\text{frequent items}\};$ for $(k = 1; L_{k}! = \{\}; k++)$ do begin C_{int} = candidates generated from L_{int} for each transaction t in database do increment the count of all candidates in C. that are contained in t L_{k+1} = candidates in C_{k+1} with min_support end do return L;





Important details of the Apriori algorithm

- How to generate candidate sets?
 - Step 1: Self-joining L_k (C_k is generated by joining L_{k-1} with itself)
 - Step 2: Pruning (any (k-1)-item set that is not frequent cannot be a subset of a frequent k-item set)
- Example of candidate generation:
 - $L_{_3} = \{\{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{a,c,e\}, \{b,c,d\}\}$
 - Self-joining: L₃ * L₃ ({*a,b,c,d*} from {*a,b,c*} and {*a,b,d*}, and {*a,c,d,e*} from {*a,c,d*} and {*a,c,d*}
 - Pruning: {a,c,d,e} is removed because {a,d,e} is not in L₃

• $C_4 = \{\{a, b, c, d\}\}$

· How to count supports for candidates?

How to generate candidate item-sets? Suppose the items in L_{k-1} are listed in an order (e.g. a < b) Step 1: Self-joining L_{k-1} insert into C_k select p.item, p.item₂, ..., p.item_{k-1}, q.item_{k-1} from L_{k-1} p, L_{k-1} q where p.item₁ = q.item₁, ..., p.item_{k-2}=q.item_{k-2}, p.item_{k-1} < q.item_{k-1} Step 2: Pruning forall item sets c in C_k do forall (k-1)-sub-sets s of c do if (s is not in L_{k-1}) then delete c from C_k

Apriori performance bottlenecks

• The core of the Apriori algorithm is to

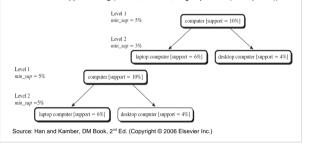
- Use frequent (k-1) item sets to generate candidate frequent k item sets
 Use database scan and pattern matching to collect counts for candidate item sets
- · Candidate generation is the main bottleneck
 - + 10^4 frequent 1-item sets (sets of length 1) will generate 10^7 candidate 2-item sets!
 - To discover a frequent pattern of size 100 (for example {a₁, a₂, ..., a₁₀₀}) one needs to generate 2¹⁰⁰ = 10³⁰ candidates
 - Multiple scans of the database are needed (n+1 scans if the longest pattern is n items long)

Methods to improve Apriori's efficiency

- Reduce the number of scans of the database
 - Any item set that is potentially frequent in the database must be frequent in at least one of the partitions of the database
 Scan 1: Partition database and find local frequent patterns
 Scan 2: Consolidate global frequent patterns
- Shrink number of candidates
 - Select a sample of the database, mine frequent patterns within sample using Apriori
 - Scan database once to verify frequent item sets found in sample
 Scan database again to find missed frequent patterns
- Facilitate support of counting candidates
 For example, use special data structures like Frequent-Pattern tree
 - (FP-tree)

Multi-level association mining

- Items often form hierarchies
- Items at lower levels are expected to have lower support
 Flexible support setting (uniform, reduced, or group-based (user specific))



Multi-level association mining (2)

- Some rules may be redundant due to ancestor relationships between items
- For example:
- $buys(X, `milk') \Rightarrow buys(X, `bread')$ [8%, 70%] $buys(X, `skim milk') \Rightarrow buys(X, `bread')$ [2%, 72%] • The first rule is said to be an *ancestor* of the second rule
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor
 - For example, if around 25% of all milk purchased is `skim milk', then the second rule above is redundant, as it has a ¼ of the support of the first, more general rule (and similar confidence)

Multi-dimensional association mining

- Single-dimensional rules: $buys(X, `milk') \Rightarrow buys(X, `bread')$
- Multi-dimensional rules: Two or more dimensions or predicates (or attributes)
- Inter-dimension association rules (*no repeated predicates*): age(X, `19-25') and occupation(X, `student') ⇒ buys(X, `coke')
 Hybrid-dimension association rules (*repeated predicates*):
- age(X, '19-25') and buys(X, 'popcom') ⇒ buys(X, 'coke') • Categorical Attributes: finite number of possible values,
- no ordering among values (data cube approach)
- Quantitative Attributes: numeric, implicit ordering among values (discretisation, clustering, etc.)

Quantitative association mining

- Techniques can be categorised by how numerical attributes, such as age or income, are treated
- Static discretisation based on predefined concept hierarchies
- Dynamic discretisation based on data distribution
 - A_{quant1} and $A_{quant2} \Rightarrow A_{cat}$
 - Example: age(X, `19-25') and $income(X, `40K-60K') \Rightarrow buys(X, `HDTV')$
- For quantitative rules, do discretisation such that (for example) the confidence of the rules mined is maximised

Mining interesting correlation patterns

Flexible support

Some items might be very rare but are valuable (like diamonds)
 Customise support we specification and application

• Top-*k* frequent patterns

 It can be hard to specify support_{min}, but top-k rules with length_{min} are more desirable

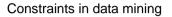
Achievable using special data structures, like Frequent-Pattern (FP) tree
 Dynamically raise support_{min} during FP-tree construction phase, and select most promising to mine

Constraint based data mining

• Finding *all* the frequent rules or patterns in a database autonomously is unrealistic

The rules / patterns could be too many and not focussed

- Data mining should be an *interactive* process
- The user directs what should be mined using a data mining query language or a graphical user interface
- Constraint-based mining
 User flexibility: provides constraints on what to be mined (and what not)
 System optimisation: explores such constraints for efficient mining



- Knowledge type constraint

 Correlation, association, etc.

 Data constraint (use SQL like queries)

 For example: *Find product pairs sold frequently in both stores in Sydney and Melbourne*
- Dimension / level constraint
 In relevance to region, price, brand, customer category, etc.
- Rule or pattern constraint
 Small sales (price < \$10) trigger big sales (sum > \$200)
- Interestingness constraint
 Strong rules only: support_{min} > 3%, confidence_{min} > 75%

