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ABSTRACT
Record linkage is the process of identifying which records within or
across databases refer to the same entity. Min-hash based Locality
Sensitive Hashing (LSH) is commonly used in record linkage as a
blocking technique to reduce the number of records to be compared.
However, when applied on large databases, min-hash LSH can
yield highly skewed block size distributions and many redundant
record pair comparisons, where only few of those correspond to
true matches (records that refer to the same entity). Furthermore,
min-hash LSH is highly parameter sensitive and requires trial and
error to determine the optimal trade-off between blocking quality
and efficiency of the record pair comparison step. In this paper, we
present a novel method to improve the scalability and robustness of
min-hash LSH for linking large population databases by exploiting
temporal and spatial information available in personal data, and by
filtering record pairs based on block sizes and min-hash similarity.
Our evaluation on three real-world data sets shows that our method
can improve the efficiency of record pair comparison by 75% to
99%, whereas the final average linkage precision can be improved
by 28% at the cost of a reduction in the average recall by 4%.
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1 INTRODUCTION
Record linkage (RL), also known as entity resolution, is the process
of identifying records that refer to the same real-world entity within
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or across databases [3]. Due to its widespread applicability, over
the past five decades researchers have developed various methods
for conducting RL [29]. Recent research in RL has focused on im-
proving the scalability of linkage algorithms [6, 8, 28, 36], and the
applicability of learning based techniques [18, 22, 24, 26, 32, 35].

While RL methods are generally applicable in different domains,
they are of significant value in linking data about people (which
we refer to as population data [4, 23]) such as those available in the
health and government sectors [5, 25]. However, commonly used
data sets for RL research are from domains related to publications,
consumer products, or movies rather than about people [11, 13].
This is primarily due to privacy concerns which prevent making
population data publicly available [9]. Furthermore, population data
contain information about complex entities [19] that change over
time, which requires the development of novel methods for linking
such data. As a result, research which explores how RL methods
can be applied for public or social good [5] have been limited.

Even those works that do explore population RL often do not ex-
ploit characteristics that are inherent to personal data. These include
time and space related constraints that can help improve linkage
quality [27], such as two siblings cannot be born four months apart,
twins are with very high likelihood born at the same location, and
the death of a person must occur after their birth and marriage.
Another example is the implausibility for a student to concurrently
attend two schools in different cities for full-time studies. Devel-
oping RL techniques that are tailored to linking population data
is important because such types of data often have high ambigu-
ity, while also having shorter attribute values with highly skewed
frequency distributions and low data quality [10, 18].

In this paper, we focus on the problem of enhancing the scalabil-
ity of population RL with temporal and/or spatial constraints avail-
able. Different blocking and indexing techniques for RL have been
proposed over the years [30], where their aim is to efficiently re-
move as many true non-matches as possible while retaining (almost)
all true matching pairs [7]. Even though numerous ‘hand-crafted’
techniques exist for blocking, these techniques require domain ex-
pertise and extensive knowledge about suitable attributes in the
databases to be linked. Such information is often unavailable or
limited in real-world applications. Therefore, attribute agnostic
methods originally developed for other large-scale data applica-
tions such as Web search engines have been adopted for blocking
in RL [30]. One widely used approach is min-hash based locality
sensitive hashing (LSH) [16, 21], which has been employed for RL
blocking for over a decade [12, 17, 33].

Even though min-hash LSH is an effective blocking method,
tuning its parameters, the band size and number of bands [21], is
difficult due to their sensitivity with regard to how many blocks are
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Table 1: Blocking quality achieved when applying basic min-hash LSH on the data sets described in Table 2. Because ground
truth data are not available for the BHIC data set, its number of false negatives (FN) cannot be calculated.

LSH number LSH band Isle of Skye (IOS) Kilmarnock (KIL) Brabant Historical Information Center (BHIC)
of bands size Num. pairs Num. FN Max. / avr. block sizes Num. pairs Num. FN Max. / avr. block sizes Num. pairs Max. / avr. block sizes

25 4 7,650,418 251 849 / 5.0 75,301,860 566 4,661 / 6.4 > 2 Billion 37,704 / 15.3
25 6 1,302,842 888 483 / 2.9 8,245,291 980 1,418 / 3.1 482,695,380 7,068 / 5.1
25 10 90,637 3,686 54 / 2.1 330,702 2,691 249 / 2.1 9,390,284 722 / 2.8
50 4 15,217,162 52 1,669 / 5.2 101,684,899 479 3,429 / 6.5 > 3 Billion 25,447 / 13.6
50 6 2,423,487 502 625 / 2.9 17,844,234 616 1,645 / 3.2 479,332,067 5,972 / 4.7
50 10 147,222 2,282 71 / 2.1 747,008 1,769 202 / 2.1 15,918,082 784 / 2.8
100 4 22,666,733 15 2,129 / 5.1 179,175,757 457 5,169 / 6.9 > 6 Billion 29,059 / 13.6
100 6 4,183,730 188 713 / 2.9 33,255,513 538 1,636 / 3.2 1,088,031,531 6,335 / 4.7
100 10 265, 950 1,494 117 / 2.1 1,407,488 1,304 305 / 2.1 23,545,938 1,085 / 2.8

Table 2: Data sets used for experiments in Section 3. The GT
column indicates which data sets contain ground truth data.

Data set Description GT

Isle of Skye A Scottish population data set from the Isle of Skye containing ✓
(IOS) 17,613 birth records over the period from 1861 to 1901

Kilmarnock A Scottish population data set from the town of Kilmarnock containing ✓
(KIL) 37,121 birth records over the period from 1861 to 1901
BHIC A Dutch population data set from the Brabant Historical Information ×

Center containing 830,616 birth records from 1762 to 1919
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Figure 1: Temporal constraints as the plausibility for a
mother to be able to give birth to two children. The vertical
axis shows the plausibility of two births by the same mother
for a certain time difference, as we discuss in Section 2.

generated and their sizes [1]. As we show in Table 1, for different
LSH parameter settings we obtain vastly different blocking results
with considerable variations in the number of record pairs gener-
ated, the number of missed true matches (false negatives), and the
range of block size distributions. These are due to the highly skewed
frequency distributions of values (such as names and addresses) in
population data, that can result in a very large numbers of record
pairs even for small data sets in the population RL context.

To overcome this challenge, we develop a novel min-hash LSH
blocking method which filters record pairs based on block size
and min-hash similarity, and incorporates temporal and spatial
constraints that are commonly available in population data.

2 IMPROVED MIN-HASH LSH FOR BLOCKING
While min-hash based LSH is an efficient blocking technique that
can produce blocks with high recall because it inserts each record
into multiple blocks [21], for large data sets this can result in very
large blocks. Furthermore, LSH is a technique that can be highly
sensitive to parameter settings [1].

To mitigate these limitations of min-hash LSH, we incorporate
temporal and spatial constraints, which indicate the plausibility for
a record pair to be linked based on time (such as the biologically

Algorithm 1: Blocking and iterative classification
Input: D: Data set with records to be linked

T: List of plausible time ranges
P𝑇 , P𝑆 : Temporal and spatial plausibility indices
𝑏, 𝑟 : Number of bands and band size for min-hash LSH
𝜌, 𝜌′: Thresholds for block filtering (𝜌 ≥ 𝜌′)
Δ: Threshold for score filtering
𝛿𝑣 , 𝛿𝑚 : Thresholds for similarity filtering (𝛿𝑣 ≥ 𝛿𝑚 )
𝛼, 𝛽 : Weights for temporal and spatial plausibilities

Output: V ∪M: Set of classified matches obtained with blocking
1 V = { },M = { }
2 L = MinHashLSHIndexing(D, 𝑏, 𝑟 ) ; R = GenInvRecIndex(L)
3 L,R = BlockSizeFiltering(L,R, 𝜌) ; C = BlockSimFiltering(L,R, 𝜌′)
4 for (𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ) ∈ T do
5 C′ = GetPairsInTempRange(C, 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 )
6 for (𝑟𝑖 , 𝑟 𝑗 ) ∈ C′ do
7 if ∃𝑟𝑥 ∈ D : ( (𝑟𝑖 , 𝑟𝑥 ) ∈ V and IsNonTemporal( (𝑟 𝑗 , 𝑟𝑥 ), P𝑇 )) or

( (𝑟 𝑗 , 𝑟𝑥 ) ∈ V and IsNonTemporal( (𝑟𝑖 , 𝑟𝑥 ), P𝑇 )) then continue
8 if ∃𝑟𝑦 ∈ D : ( (𝑟𝑖 , 𝑟𝑦 ) ∈ V and IsNonSpatial( (𝑟 𝑗 , 𝑟𝑦 ), P𝑆 )) or

( (𝑟 𝑗 , 𝑟𝑦 ) ∈ V and IsNonSpatial( (𝑟𝑖 , 𝑟𝑦 ), P𝑆 )) then continue
9 𝑝𝑡 , 𝑝𝑠 = GetTempAndSpatialPlausibility( (𝑟𝑖 , 𝑟 𝑗 ), P𝑇 , P𝑆 )

10 𝑝𝑎 = CalcBlockSim( (𝑟𝑖 , 𝑟 𝑗 ),C′, 𝑏)
11 if (𝛼 · 𝑝𝑡 + 𝛽 · 𝑝𝑠 + (1 − (𝛼 + 𝛽)) · 𝑝𝑎) ≥ Δ then
12 𝑠𝑖,𝑗 = GetPairwiseSimilarity(𝑟𝑖 , 𝑟 𝑗 )
13 if 𝑠𝑖,𝑗 ≥ 𝛿𝑣 then V.𝑎𝑑𝑑 ( (𝑟𝑖 , 𝑟 𝑗 ))
14 else if 𝑠𝑖,𝑗 ≥ 𝛿𝑚 then M.𝑎𝑑𝑑 ( (𝑟𝑖 , 𝑟 𝑗 ))

possible time ranges for births by the same mother), and geographic
distance related constraints (such as the higher plausibility for the
families of a bride and groom to live in proximity), as commonly
available in population data [27]. We employ two techniques to
reduce the number of record pair comparisons in the blocks gen-
erated by LSH. In the first, we remove each record from a given
proportion of the largest blocks it occurs in [31]. The intuition here
is that larger blocks more often contain redundant record pairs
which are also included in smaller blocks. In the second technique,
we only retain those record pairs which occur together in multiple
blocks (have high block or min-hash similarity), since this indicates
higher attribute similarity of record pairs [2].

Algorithm 1 outlines our overall method. As input to the algo-
rithm, we provide a population data set D with records to be linked,
a list of time ranges Twhich are deemed to be plausible according to
the linkage application, and indexes P𝑇 and P𝑆 containing the tem-
poral and spatial plausibility values respectively. Figure 1 shows an
example for temporal constraints, where the plausible time ranges
is the list T = [(0, 3), (273, 14610)] of day differences. The temporal
plausibility index P𝑇 , however, contains more fine-grain plausibility
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Algorithm 2: Size filtering (function BlockSizeFiltering)
Input: L: Min-hash based LSH blocks

R: Inverted index of LSH blocks and their sizes per record
𝜌 : Number of smallest blocks to retain records in

Output: L,R: Filtered min-hash LSH blocks and inverted index
1 for 𝑟 ∈ R do
2 k = GetLargestBlockKeys(R[𝑟 ], |R[𝑟 ] | − 𝜌)
3 RemoveRecFromBlocks(L, k, 𝑟 )
4 RemoveBlocksForRec(R[𝑟 ], k)

values, such as a plausibility of 1.0 for 0 day difference, 0.66 for 1 day
difference, 0.33 for 2 days difference, and so on. Similarly, the spatial
plausibility index P𝑆 contains linkage plausibilities corresponding
to geographic distances between the records in a pair (such as the
distance of birth locations of siblings).

Input parameters 𝑏 and 𝑟 specify the number of bands and band-
sizes to be used in the LSH blocking algorithm. We also provide
threshold values (𝜌, 𝜌 ′), Δ, and (𝛿𝑣, 𝛿𝑚) for block filtering, score fil-
tering, and average attribute value similarity filtering, respectively,
and weights (𝛼, 𝛽) to be assigned to temporal and spatial plausibility
values in the overall score calculation, as we discuss below.

In line 1 of Algorithm 1, two setsV andM (whereV∪M comprises
the output of the algorithm) are initialised to contain the matches
with very high and moderately high confidence. We use two sim-
ilarity thresholds 𝛿𝑣 and 𝛿𝑚 to classify matches, where 𝛿𝑣 (> 𝛿𝑚)
helps to filter the very high confident matches V. These very high
confident matches, together with temporal and spatial constraints,
are used for early identification of likely non-matches which are
eliminated from the comparison step to improve efficiency. In line 2
we apply min-hash based LSH to generate a blocking index L, and
generate an inverted record index R for L which for each record
𝑟 ∈ D contains their blocking keys and the corresponding block
sizes. With 𝑏 bands used for LSH, each record is placed into 𝑏 blocks
with very high probability [21].

Next, we apply block size filtering, where we retain each record
in the 𝜌 ≤ 𝑏 smallest blocks, and update the LSH block index L and
the record index R as we discuss in Algorithm 2. We then apply
filtering based on block similarity as we describe in Algorithm 3,
where only those record pairs that occur in at least 𝜌 ′ ≤ 𝑏 common
blocks in L are returned as candidate record pairs in the set C.

The iterative processing of record pairs in C is then conducted in
lines 4 to 14. To improve the scalability of our method to large data
sets, in each iteration we retrieve a subset of candidate record pairs
C′ (line 5) within a given plausible time range (𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ) ∈ T.
Next, starting from line 6, we process each record pair (𝑟𝑖 , 𝑟 𝑗 ) ∈
C′, where in lines 7 and 8 we initially discard pairs which are
inconsistent with regard to temporal or spatial constraints, and
with previously identified very high confidence matches in V.

For each consistent record pair (𝑟𝑖 , 𝑟 𝑗 ), in line 9 we then calcu-
late the temporal and spatial plausibility values 𝑝𝑡 and 𝑝𝑠 , based
on pre-generated indexes reflecting a domain expert’s knowledge
of overall plausibilities (such as the plausibility of siblings being
born twenty years apart to be much less likely than them being
born two years apart). In line 10 we calculate the block (min-hash)
similarity 𝑝𝑎 of a record pair based on the number of blocks they
occur in common, and in line 11 we check whether the weighted

Algorithm 3: Similarity filtering (function BlockSimFiltering)
Input: L: Min-hash based LSH blocks filtered by size

R: Filtered inverted index
𝜌′: Threshold number of blocks per record pair

Output: C: Candidate record pair index
1 C = { },O = { }
2 for b ∈ L do
3 for (𝑟𝑖 , 𝑟 𝑗 ) ∈ b, 𝑖 < 𝑗 do
4 if 𝑟 𝑗 ∉ O[𝑟𝑖 ] and 𝑟 𝑗 ∉ C[𝑟𝑖 ] then
5 𝑐 = |R[𝑟𝑖 ] ∩ R[𝑟 𝑗 ] |
6 if 𝑐 ≥ 𝜌′ then C[𝑟𝑖 ] = C[𝑟𝑖 ] ∪ {(𝑟 𝑗 , 𝑐) }
7 else O[𝑟𝑖 ] = O[𝑟𝑖 ] ∪ {𝑟 𝑗 }

overall score of 𝑝𝑡 , 𝑝𝑠 and 𝑝𝑎 is at least a given threshold Δ. If this
score threshold condition is satisfied, in line 12 we calculate the
average attribute value similarity 𝑠𝑖, 𝑗 for the record pair (𝑟𝑖 , 𝑟 𝑗 ).
The constraint-based checks in lines 7 and 8, and the plausibility
and block similarity calculations in lines 9 and 10 are inexpensive,
index-based computations. Given the record pair comparison step
is computationally expensive [7, 29], reducing the number of com-
parisons in lines 7 and 8 using constraints, and the score check in
line 11, substantially improve the efficiency of our method.

In lines 13 and 14, we classify a record pair as a very high confi-
dence match, V, if its similarity 𝑠𝑖, 𝑗 is at least 𝛿𝑣 , or a moderately
high confidence match,M, if its similarity 𝑠𝑖, 𝑗 is at least 𝛿𝑚 .

Algorithm 2 outlines the functionality of the BlockSizeFiltering
function used in line 3 of Algorithm 1. As input we provide an index
of min-hash LSH blocks L, the corresponding inverted record index
R, and the threshold number of blocks to retain records in, 𝜌 .

We iterate over each record 𝑟 ∈ R, and in line 2 obtain the
set of keys k of the largest |R[𝑟 ] | − 𝜌 blocks (where |R[𝑟 ] | = 𝑏)
corresponding to 𝑟 . In line 3, we remove record 𝑟 from all blocks in
the LSH blocking index L with blocking keys in the set k. Similarly,
in line 4, we remove the blocking key and block size pairs from the
record index R that correspond to the blocking keys in k.

Algorithm 3 details the function BlockSimFiltering as used in
line 3 of Algorithm 1. As input we provide the filtered indices L and
R (output of Algorithm 2), and 𝜌 ′ indicating the threshold number
of blocks a record pair should appear in for it to be considered a
candidate. In line 1 we initialise two empty indices, C and O, to
hold the candidate and non-candidate record pairs, respectively.
In lines 2 to 7, we iteratively process each block b ∈ L, and every
record pair in a block (𝑟𝑖 , 𝑟 𝑗 ) ∈ b (where 𝑖 < 𝑗 ). If this record pair
has not been processed previously, in line 5 we obtain the number
of common blocks 𝑐 in which records 𝑟𝑖 and 𝑟 𝑗 appear. If the two
records occur together in at least 𝜌 ′ blocks, then the pair is added
to the candidate index C with the common block count 𝑐 in line 6.
Otherwise, the record pair is added to the non-candidate index O.

3 EXPERIMENTAL EVALUATION
We conducted an evaluation of the quality and efficiency of our
proposed method using the three data sets shown in Table 2, where
the task is to link all birth records by the same mother [4, 34].

For the basic min-hash LSH step in Algorithm 1, we set the
number of bands 𝑏 = 50 and the band size 𝑟 = 4 for the IOS and KIL
data sets since these settings resulted in few false negatives (FN)
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Figure 2: Final linkage quality achieved with different block
filtering thresholds, as discussed in Section 3.

while generating substantially less record pairs compared to using
the settings 𝑏 = 100 and 𝑟 = 4 which produced the smallest number
of FN, as shown in Table 1. However, for the BHIC data set we used
𝑏 = 100 and 𝑟 = 6 since the 𝑏 = 50 and 𝑟 = 4 settings generated
more than 3 billion record pairs, as can be seen in Table 1.

We use precision, recall, and the 𝐹 ∗ measure (an interpretable
variation of the F-measure [14]) to assess the linkage quality, where
𝐹 ∗ = 𝐹/(2 − 𝐹 ) [15]. Figure 2 shows the final linkage quality
achieved with our method for different block filtering threshold
pairs (𝜌, 𝜌 ′), where 𝜌 = 50 and 𝜌 ′ = 1 presents the quality achieved
with the baseline method excluding block filtering (line 3 of Algo-
rithm 1). As shown in Figure 2, the final linkage quality exceeds
or is on par with the quality of the baseline, while achieving a
significant improvement in the efficiency as is evident from the
reduction in the number of pair-wise comparisons shown in Table 3.
The reduction of redundancy with block filtering led to an increase
of precision (less false positives) while recall stayed stable.

As we show in Figure 3, our method is robust to changes in the
score filtering threshold Δ, and the plausibility weights 𝛼, 𝛽 , and 𝛾 ,
as indicated by the limited changes in the corresponding 𝐹 ∗ values.
We achieved the best linkage quality for both the IOS and KIL data
sets with the similarity thresholds 𝛿𝑚 = 0.7 and 0.8 ≤ 𝛿𝑣 ≤ 0.9. As
Table 3 shows, we achieved a significant reduction in the number of
record pair comparisons (of at least 75%) generated by our method
(|C|) compared with the numbers resulting from basic min-hash
LSH. A further 11% reduction in comparisons can be achieved with
the iterative temporal and spatial filtering conducted in Algorithm 1,
as per the results obtained for the BHIC data set.

Based on our evaluation, we can recommend choosing values
in the range [0.7, 0.9] for the similarity filtering thresholds 𝛿𝑣 and
𝛿𝑚 , with 𝛿𝑣 > 𝛿𝑚 . Our approach performs well when the threshold
number of blocks per record pair 𝜌 ′ is within the range [2, 6].

4 DISCUSSION AND FUTUREWORK
We have presented a novel method for improved min-hash LSH
aimed at linking population data. We exploit both temporal and
spatial constrains to substantially improve the scalability of RL
applications of such types of data by filtering redundant as well as

Table 3: The numbers of unique record pair comparisons
and corresponding percentage reductions achieved with our
blocking technique compared to basic min-hash LSH.

Block filtering IOS (𝑏 = 50, 𝑟 = 4) KIL (𝑏 = 50, 𝑟 = 4) BHIC (𝑏 = 100, 𝑟 = 6)
thresholds (𝜌, 𝜌′) (LSH: 15,217,162) (LSH: 101,684,899) (LSH: 1,088,031,531)

(100, 2) - - 121,037,748 (89%)
(50, 2) 3,804,882 (75%) 21,159,017 (79%) 1,554,921 (99%)
(40, 1) 2,157,206 (86%) 12,095,120 (88%) 2,213,576 (99%)
(30, 1) 552,020 (96%) 2,793,411 (97%) 1,180,213 (99%)
(50, 5) 371,148 (98%) 855,492 (99%) 1,025,202 (99%)
(40, 5) 77,839 (99%) 123,795 (99%) 924,654 (99%)
(30, 5) 43,652 (99%) 72,471 (99%) 849,550 (99%)
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Figure 3: Final linkage quality achieved with different score
and similarity filtering thresholds, and different weights.

less similar record pairs, and preventing many comparisons of likely
non-matches. Our experiments on two real data sets have shown
that our method can reduce the number of record pair comparisons
around 10-fold with no decline in the average recall, or more than
100-fold with a drop of the average linkage recall by only 4%.

In the futurewe aim to explore how errors in temporal and spatial
constraints can impact the performance of our method.We also plan
to conduct an ablation study to explore how the different filtering
techniques contribute to the overall efficiency enhancement.

We presented initial work in an ongoing project that aims to
develop scalable RL techniques for the automated (unsupervised)
linking of personal data at the scale of full populations. The full
reconstruction of (historical) populations [4] will allow a breadth
of research studies that are currently impossible, such as genetic
studies of hereditary diseases over many generations [20].
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APPENDIX: COMPLEXITY ANALYSIS
The basic min-hash LSH indexing conducted in line 2 of Algorithm 1
has a time complexity of𝑂 ( |D| · 𝑏) since each record is permuted 𝑏
times. The inverted index generation step in line 3, and the block
size filtering step in line 4 have a maximum time complexity of
𝑂 ( |D|) each. The time complexity of the block similarity filtering
step is 𝑂 ( |b2 | · |L|) where b ∈ L. The complexity of the for loop
from line 6 to 16 is 𝑂 ( |T| · |C′ |), since each step from line 9 to 16
has constant time complexity 𝑂 (1). The total time complexity of
our algorithm is therefore 𝑂 ( |D| · 𝑏 + |b2 | · |L| + |T| · |C′ |).
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