Blind Data Linkage using n-gram
Similarity Comparisons

Tim Churches! and Peter Christen?

! Centre for Epidemiology and Research, New South Wales Department of Health,
Locked Mail Bag 961, North Sydney NSW 2059, Australia,
tchur@doh.health.nsw.gov.au
2 Department of Computer Science, Australian National University,
Canberra ACT 0200, Australia, peter.christen@anu.edu.au

Abstract. Integrating or linking data from different sources increas-
ingly becomes an important task in the preprocessing stage of many
data mining projects. The aim of such linkages is to merge all records re-
lating to the same entity, such as a patient or a customer. If no common
unique entity identifiers (keys) are available in all data sources, the link-
age needs to be performed using the available identifying attributes, like
names and addresses. Data confidentiality often limits or even prohibits
successful data linkage, as either no consent can be gained (for example
in biomedical studies) or the data holders are not willing to openly pro-
vide their data. We present methods for confidential data linkage based
on hash encoding, public key encryption and n-gram similarity compar-
ison techniques, and show how blind data linkage can be performed.

Keywords: privacy preserving data mining, hash encoding, data match-
ing, public key infrastructure, n-gram indexing.

1 Introduction

The ability to find matches between confidential data items held in two (or more)
separate databases is an increasingly common requirement for many applications
in data processing, analysis and mining.

A medical research project, for example, may need to determine which indi-
viduals, whose identities are recorded in a population-based register of people
suffering from hepatitis C infection, also appear in a separate population-based
register of cases of liver cancer. Clearly such linkage between these two data-
bases involves the invasion of privacy of the individuals whose details are stored
in these databases. It is usually infeasible to obtain consent from each individual
identified in each of the register databases — instead one or more ethics com-
mittees or institutional review boards provide consent for the linkage of the two
databases on the behalf of the individuals involved, after weighing the public
good which is expected to accrue from the research against the unavoidable
invasion of individual privacy which the research involves.

Traditionally the linkage of records requires that identified data on every
registered individual be copied from one of the databases to the other, or from

both databases to a third party (often the researchers or their proxy) [8]. The
invasion of privacy which this entails could be minimised if there were some
method of determining which records in the two databases matched, or were
likely to match on more detailed comparison, without either database revealing
any identifying information to each other or to a third party. If this were possible,
then the researchers only need to be given access to a small subset of records
from each of the databases, and it may even be feasible to obtain direct consent
from the individuals concerned.

Similarly, consider two research databases of genetic sequences of DNA, each
of which are commercially valuable in their own right. The owners or custodians
of these two databases may wish to determine whether their databases contain
any sequences in common before deciding to collaborate and share their data,
without having to first reveal the contents of their database to the other party,
or to a third party.

In both cases, comparisons need to be made between sequences of symbols —
alphanumeric characters like names and addresses in the first example, nucleic
bases in the second — in order to measure their similarity, without revealing what
those sequences are.

This paper describes methods for achieving this goal by using hash encoding,
n-gram similarity comparison techniques and public key infrastructure. After an
overview of related work in the following Section 2, in Section 3 we describe two
methods of how to perform such confidential comparisons, and in Section 4 these
methods are extended to blind data linkage of two data sets. A discussion is then
given in Section 5 before conclusions and an outlook to future work is presented
in Section 6.

2 Related Work

Berman [1] has described a threshold protocol designed to address the following
problem (note that the names Alice, Bob and Carol — as traditionally used in
the cryptography literature — do not necessarily represent humans, but may
represent organisations or information systems):

”Bob has a file containing the medical records of millions of patients.
Alice has secret software that can annotate Bob’s file, enhancing its value
many fold. Alice won’t give Bob her secret algorithm, but is willing to
demonstrate her algorithm if Bob gives her his database. Bob won’t give
Alice the database, but he can give her little snippets of the database
containing insufficient information for her to infer patient identities.” [1]

As stated in this problem definition, the threshold protocol is only suitable for
cases in which: (a) it is possible to reliably extract non-confidential fragments
from the database in question, and (b) those non-confidential fragments are of
interest or utility to the other party. These conditions precludes its application
in the situations outlined in the previous section.

A number of protocols which allow for the all-or-nothing disclosure of secrets
have appeared in the cryptology literature [3,4,11], but to our best of knowledge
no-one has described a method of using these protocols for the comparison of
strings or sequences. The methods described in this paper do not make use of
these all-or-nothing disclosure protocols.

Anonymous data linkage based on SHA [13] hashed identifiers are used in
Switzerland [2] and France [10]. In the French system spelling transformations
are performed before the identifiers are hashed (with an added pad to prevent
dictionary attacks), and probabilistic linkage techniques are then applied based
on exact matches only. The Swiss system works in a similar way and is described
in more details in Section 3.1.

Schadow et. al. [12] describe a system for privacy preserving distributed
queries. They state that ”large accumulations of patient data are commonly
viewed as threatening patients’ privacy, and therefore may not be scalable.”
Having distributed databases and performing confidential data linkage therefore
becomes important for successful biomedical research. Their approach consists
of a mediator (to which a query poser submits a query), and a large number
of distributed data sources. The mediator sends the queries to the data sources
and then performs the linkage on the returned results. Patient identifiers are
key-hashed (using the HMAC algorithm), and deterministic linkage techniques
are applied using four different combinations of identifiers (which include first
and last names, dates of birth, and social security numbers). While fairly good
sensitivity and specificity are reported, this work does not address the important
issue of (typographical) errors in the patient identifiers (which occur in most real
world databases).

3 Methods

Alice holds a database, A, which contains one or more attributes (columns,
variables), denoted A.a, A.b and so on, containing confidential strings (like
names and addresses) or sequences (of perhaps nucleotide bases or amino acids).
The need for confidentiality may arise from the fact that the values in A.a
identify individuals, or because the information has some commercial value (such
as the base sequence for particular genes of known function). Bob holds a similar
but quite separate database, B, also containing one or more confidential columns,
B.a, B.b and so on.

Alice and Bob wish to determine whether any of the values in A.a match
any of the values in B.a without revealing to each other or to any other party
what the actual values in A.a and B.a are.

The problem is simple when ”matching” is defined as exact equality of the
pair of strings or sequences being compared, but becomes more complicated if
the strings contain errors (for example typographical variations in names). The
following section presents the protocol for the exact matching and Section 3.2
deals with the case of inexact matching using n-grams.

All transfers of data between parties are assumed to be secured and au-
thenticated using a public key infrastructure (PKI) [13] to sign and encrypt all
messages.

3.1 Exact Matching of Secret Strings or Sequences

Carol is a third party who is trusted by Alice and Bob to (a) perform the
processing described in this protocol, and (b) not to divulge the data which she
receives from Alice and from Bob to any other party, including Alice and Bob.
We will refer to this protocol as Protocol I

1. Alice and Bob mutually agree on a secret random key, K 4p, which they share only
with each other. They also agree on a secure one-way hashing function ko (.8
MD5 or SHA [13]), and on a standard protocol for preprocessing strings to render
them into a standard form (such as converting all characters to lower case, removal
or substitution of punctuation and extraneous whitespace, and so on). They also
agree on a standard method of transforming values using K4p — this might be as
simple as concatenation of a string representation of K 45 to a string representation
of the value to be transformed, or it might be symmetrical encryption of the value
to be transformed using an agreed algorithm with K4p as the encryption key.

2. Using KB, Alice transforms each of the secret strings in A.a in the agreed manner.
Alice then further encodes the transformed values using the secure one-way hash
function kowr. The resulting set of hashes, Ha, is sent to Carol. These hashes
carry no recoverable information about the values from which they were derived
(the hash functions are one-way). The use of K4p to transform the "raw” values
of A.a before hashing renders a dictionary attack by Carol infeasible (a dictionary
attack is one in which a large number of possible values for A.a are hashed by Carol
to discover whether the hashed value matches any of those contained in Hya).

3. Bob does the same with the values of B.a, and also sends the resulting set of
hashes, Hg, to Carol.

4. Carol finds the intersection of H4 and Hpg, which we will denote H4p.

What happens next depends on the overall intent. Carol can report the number
of hashes in common (that is |H4p|) to Alice and Bob, who may then enter into
further negotiation between themselves before revealing further information to
each other about those matching values (or records). Carol may just return Hap
to both Alice and Bob, in which case Alice immediately acquires information
about which of her values match Bob’s values, and vice-versa. Alternatively,
Carol may pass the list of intersecting hashed values to another party (say, a
researcher) who may make further use of the information.

An obvious limitation of this protocol is that only strings which are exactly
equal are matched. Even a single character difference between the strings will
result in different hash values (in which, if the one-way hash function is a good
one, a majority of bits will be different).

One method of overcoming this problem is to reduce the dimensionality of
the secret strings in A.a and B.a before they are hashed, using, for example, a
phonetic encoding function such as Soundex [9]. This renders the match which
Carol performs blindly on the hashed values somewhat more robust, at the ex-
pense of a greater number of false matches (homonym errors). A minor variation

of this technique is used in Switzerland and France to permit anonymous linkage
of patient records [2,10]. A compound ”linkage key” is formed from the Soundex
(or other phonetic encoding) code of the patient’s surname, the Soundex of their
given name, their date of birth and their sex, and this value is hashed (using
SHA) and the hash value is then encrypted with a secret key (to prevent dictio-
nary attacks against it).

However, Soundex and other phonetic transformations are not perfect — in
particular they are not robust to errors in the initial character, and to truncation
differences. For example, ” Christopher”, ” Christine”, ” Christen” and ” Cristina”
all have a Soundex code of C623 whereas ”Chris” has a code of C620; and
”Kristine” has a code of K623. In some cases it may be possible to mitigate
these problems by also hashing known alternatives, such as ”Liz” and ”Beth”
for ”Elizabeth”, in an attempt to get a match, but the generality of this approach
is limited and the rate of false matches will inevitably increase.

Ideally, a protocol is required which permits the blind calculation by Carol,
and/or other trusted third parties, of a more general and robust measure of
similarity between the pairs of secret strings. A description of such a protocol,
which implements blind n-gram comparisons, follows.

3.2 mn-gram Similarity Comparison of Secret Strings or Sequences

In this example, bigrams (2-grams, n = 2) are used, but the extension to trigrams
(n = 3) and other n-grams is direct. We will refer to the protocol described below
as Protocol II. Although the primary aim of this protocol is to permit Carol to
produce a set of similarity scores for pairs of Alice’s and Bob’s secret strings
without Carol being able to determine the nature of those strings, a secondary
aim is to prevent information about Bob’s secret strings leaking to Alice, and
vice versa.

Protocol IT assumes that Carol is trusted by Alice and Bob to (a) adhere to
the protocol, (b) not reveal information to other parties except where permitted
by the protocol, and (c) not try to determine the values of Alice’s or Bob’s
source strings using cryptologic techniques. The effects of violations of these
assumptions are considered in Section 3.3. There is no assumption that Alice
trusts Bob or vice versa. Note that Alice and Bob do need to share with each
other meta-data about the nature of the information contained in their databases
— in order to decide which columns/attributes can be validly compared — but
they do not need to share the actual values of those columns, nor summary
measures (such as frequency counts) derived from those values.

1. As in Protocol I, Alice and Bob mutually agree on (a) a secret random key, Kap,
(b) a secure one-way hashing function kowh, (¢) a standard protocol for preprocess-
ing strings, and (d) a standard method of transforming and encoding values using
K AB and kowh-

2. Alice computes a sorted list of bigrams for each preprocessed (as described in step
1 above) value in the column A.a — for example if a value of A.a is ”Peter” then
the sorted list of bigrams is ("er”,”et”,” pe”,”te”). Note that duplicate bigrams are
removed, so each bigram is unique in each list. Alice next calculates all possible
sub-lists of all lengths greater than zero for each bigram list — in other words, the

power-set of bigrams minus the empty set. For the example given above, Alice
computes bigram sub-lists ranging from length 1 to 4.

(7’ er”), (7) et”), (7’ pe”), (7) te”),

(7’ er” ,7’ et”)’ (7’ er” ,7’ pe”)’ (7’ er” ,7’ te”), (7’ et” ,7’ pe”)’ (” et” ,”te”), (” pe” ,7’ te”),
(77 er” 77’ et” 77) pe”)7 (7’ er” 77’ et77 ,7’ te”)7 (7’ er” 777 pe” 777 te”)7 (77 et” 77’ pe77 ,7’ te”)’

(7’ er” ,7’ et?’ ’71 pe)’ ’7) te”)

Assuming a bigram list contains b bigrams, the resulting number of sub-lists
is 2° — 1. Alice then transforms each of the calculated bigram sub-lists using
K ap and hashes the result using the agreed one-way hash function k,,p. These
hashes are stored in column A.a_hash_bigr_perm. Alice also creates an encrypted
version of the record identifier (key) for the string from which each value in
A.a_hash_bigr_perm was derived — she stores this in A.encrypt_rec_key. She
also places the length (that is, number of bigrams) of each A.a_hash_bigr_perm
in a column called A.a_hash_bigr_perm_len, and the length (that is, the number
of bigrams) of each original secret string in A.a, in a column A.a_len. Alice then
sends the set of quadruplets (A.a_hash_bigr_perm, A.a_hash_bigr_perm _len,
A.encrypt_rec_key, A.a_len) to Carol. Note that the number of quadruplets is
going to be much larger than the number of original records in A.a.

3. Bob carries out the same steps as in step 2 with his column B.a, and also sends
the resulting set of quadruplets to Carol.

4. Carol determines the set intersection of the values of A.a_hash_bigr_perm and
B.a_hash_bigr_perm which she has been sent by Alice and Bob respectively. For
each value of a_hash_bigr_perm shared by A and B, for each unique pairing of
(A.encrypt_rec_key, B.encrypt_rec_key), Carol calculates a bigram score

number_of_bigrams_in_common

b) =
ITSEOTE = 45 - (number_of _bigrams_in_A.a + number of bigrams_in_B.a)

and selects the maximum bigram score value for each possible unique pairing of
(A.encrypt_rec_key, B.encrypt_rec_key) — that is, the highest score for each
pair of strings from A.a and B.a. Note that a bigram score of 1.0 corresponds to
an exact match between two values.

What happens next again depends on the context. Carol may report the number
of strings with a bigram score above an agreed threshold to Alice and Bob, who
may then negotiate further steps, or Carol may simply report the similarity scores
and the encrypted record keys back to Alice and Bob. Alternatively, Carol may
send this information to another third party, David, who oversees an over-arching
blind data linkage protocol involving a number of different columns from Alice’s
and Bob’s databases (that is, not just A.a and B.a, but also A.b and B.b, A.c
and B.c and so on). This will be described in Section 4 below.

3.3 Defects in Protocol II, and Possible Remedies

There is no doubt that Protocol II meets its design aims of blinding Carol to the
values of Alice’s and Bob’s secret strings, while still permitting her to calculate
a measure of the similarity between those strings. The hashes of the transformed
bigram permutations which are sent to Carol do not, per se, carry any informa-
tion about the secret strings from which they were derived. However, Carol also

has quite a lot of additional information which she can use as clues or ”cribs”
(to use the cryptologic term) to help her infer some or all of the values of Alice’s
and Bob’s secret strings. Given sufficient data, Carol may be able to mount a
number of statistical attacks on the information hidden in the hashes.

One approach is for Alice and Bob just to trust Carol not to undertake
such attacks. This means that Carol must implement mechanisms to protect
the data which she processes from misuse by both insiders (Carol’s own staff)
and external ”attackers”, with protection against the former being particularly
difficult. However, the processing which Carol is required to carry out can be
completely automated, and for all but the largest data sets it could run entirely
in RAM (with needed disc-based swap space). Thus, all the data handled by
Carol could be volatile, and, if implemented on a secure operating system (such
as the NSA Security Enhanced Linux!), it may be possible to make it very
difficult to misappropriate Carol’s data or suborn her processing.

Another approach is to hide Alice’s and Bob’s real data amongst dummy
data. For example, Alice might add a large number of dummy records to her
database, and keep a list of the identifiers of these records. Bob does the same.
Carol is unaware which of the values she is processing are from dummy records,
and which are from real records. Ideally, both Alice and Bob will draw the values
for these dummy records from a shared pool of values, so that some of them will
match, just like the real data. However the proportion of Alice’s and Bob’s values
which match is usually unknown in advance, so it is difficult to ensure that the
degree of overlap between Alice’s and Bob’s dummy values is indistinguishable
from the overlap between the real values. Nevertheless, this approach would
make it significantly more difficult to obtain useful information from the data
supplied to Carol by Alice and Bob.

A third approach, which we will refer to as Protocol III, is as follows. Note
the use of an additional trusted third party, David. This protocol is suitable
when Alice and Bob both intend to share with each other the information which
matches, but where it is vital that third parties such as Carol cannot infer
information about Alice’s and Bob’s secret strings.

1. As in Protocols I and II, Alice and Bob mutually agree on (a) a secret random
key, Kap, (b) a secure one-way hashing function ko, (c) a standard protocol for
preprocessing strings, and (d) a standard method of transforming and encoding
values using Kap and kowh-

2. As in Protocol II, Alice creates the quadruplet of columns A.a_hash_bigr_perm,
A.a_hash _bigr_perm _len, A.encrypt_rec_key and A.a len. Unlike Protocol
II, Alice then sends only the set of hashes in A.a_hash_bigr_perm to Carol.

3. Bob carries out the same steps as in step 2 with his column B.a, and also sends
only the contents of the B.a_hash_bigr_perm to Carol.

4. Carol determines the set intersection of the values of A.a_hash_bigr_perm and
B.a_hash_bigr_perm which she has been sent by Alice and Bob respectively.
Carol reports back to Alice the hash values in A.a_hash_bigr_perm which are
shared by B.a_hash_bigr_perm, and she reports back to Bob the hash values
in B.a_hash_bigr_perm which are shared by A.a_hash_bigr_perm. In other

1 http://www.nsa.gov/selinux/

words, both Alice and Bob learn which bigram permutations they share with each
other. This obviously leaks some information about the nature of Bob’s secrets to
Alice, and vice versa. However, Carol has much less information on which to base
a cryptologic attack on the information she has received from Alice and Bob.

5. Alice now prepares a set of column quadruplets comprising A.a_hash_bigr_perm,

A.a_hash _bigr_perm_len, A.encrypt_rec_key and A.a_len, but only for those

records whose value for A.a_hash_bigr_perm appears in the list of hashes re-

turned to Alice by Carol in step 4. Alice sends this set of quadruplets to David.

Bob does the same with his columns.

7. David now joins the sets of quadruplets he has received from Alice and Bob on the
values of a_hash_bigr_perm, and for each joined record, calculates the bigram
score. Then, just as Carol did in step 4 of Protocol II, for each unique pairing
of (A.encrypt_rec_key, B.encrypt_rec_key), David determines the maximum
bigram score.

&

Clearly Protocol III can also be combined with the other strategies discussed
above for Protocol II, such as hiding information amongst many dummy records,
and ”hardening” Carol’s and David’s system to make misuse of the information
which they are sent much more difficult.

3.4 Protection through Last-Minute Election of Third Parties

One other strategy which would reduce the risk of misuse of the information
sent to Carol (or David) would be to have many Carols and Davids available,
all functionally equivalent, and for Alice and Bob to decide on which of these
Carols and Davids to use only at the very last moment. This would mean that
a potential attacker would need to suborn or compromise a large number of the
Carols in order to have a reasonable chance of gaining access to the information
provided to one particular Carol by Alice and Bob. The fully automated nature
of the processing carried out by Carol and David lends itself to replication on
multiple hosts on a network — which fits very neatly with the Grid model of
distributed computing [7].

3.5 Dealing with Non-String Data

Identifying data not only consists of strings or sequences, but often also con-
tains numerical, or date and time attributes. The similarity comparison of scalar
quantities (absolute or relative delta values) can be implemented quite easily.
Say Alice has a column A.age containing a value 35 (years) and she wants to
match it with values held by Bob which are within 1 year of that. Alice just
generates three hashed values 34, 35, and 36 of age for this particular record.
This principle can be extended to other quantities, including dates and times,
provided they are expressed in a suitable format — such as ticks since an epoch as
in Unix date/time. For comparisons of dates which take into account typograph-
ical errors, a type of modified bigram comparison would be more appropriate,
but it is still amenable to the general similarity comparison scheme described
above.

4 Blind Data Linkage

So far, we have demonstrated how blind similarity or distance comparisons of
strings and scalar quantities can be achieved. How can these be combined into
a method for blind data linkage?

The essence of modern data or record linkage techniques [6,14] is the inde-
pendent comparison of a number of partial identifiers (data elements) between
pairs of records, and the combination of the results of these comparisons into
a compound or summary score (called matching weight) which is then judged
against some criterion (or thresholds) to classify that pair of records as a match
(link), a non-match, or as undecided (potential match). Usually the result of the
comparison between individual data elements is weighted in some way —in deter-
ministic systems these weights are often binary, whereas in probabilistic systems
the weights are continuous and determined empirically based on the relative re-
liability of that data element in deciding matches and non-matches [6], and on
the relative frequency of the values of that data element [14]. The classification
criteria for the summary score are often determined heuristically or statistically,
for example using expectation maximisation (EM) techniques [15].

Thus, the first task is to compare each of the partially-identifying data el-
ements and return a similarity score for each pair. We have demonstrated how
this can be done blindly — in the following discussion, we will assume the use of
Protocol IT as described in Section 3.2, and thus refer to Carol as the third party
undertaking the blind comparisons. Note that because this comparison is being
done by finding the intersection between sets of 128-bit (or longer) hash values,
the intersection operation carried out by Carol can be very efficient. Also, the
processing is distributed, with Alice and Bob doing much of the work in creating
the n-gram permutations and the hashed values thereof to be compared — the
task for Carol is quite small, even though, effectively, multiple hashes for every
record in A are being compared to multiple hashes for every record in B.

So, for each of the partially-identifying (or partially-discriminating) data el-
ements, a, b, ..., %, in their databases A and B, Alice and Bob dispatch the
similarity (or distance) comparison task to different instances of Carol, which
we will term Carol,, Carolp, ..., Carol;. Each of these tasks is independent of
the others, and should use a different shared secret key K 4p. Each instance of
Carol sends the results back to another third party which oversees the entire
data linkage task between A and B — we will call this party Edith. Thus, Edith
accumulates a series of data sets containing comparison values (or similarity
scores) comp_val from the Carols of the form:

(A.encrypt_rec_key, B.encrypt_rec key) : data_item.comp_val

where data_item is a column, a, b, ..., ¢ shared by A and B. Note that not every
possible combination of the tuple (A.encrypt_rec_key, B.encrypt_rec_key)
will be present in the data sent to Edith by each instance of Carol — only those
record pairs for which the comparison value was greater than 0. In other words,
they are a sparse matrix of comparison values, with A.encrypt_rec_key the
row index and B.encrypt_rec_key the column index. Edith joins these data

10

sets and forms a sparse matrix where each entry contains all the compari-
son values a.comp-_val, b.comp_val, ..., i..comp_val for a record pair, with
a data_item.comp _val taken to be 0 if it is undefined.

It is now a simple matter for Edith to multiply this matrix by a vector of
weights (for each data item), and then sum across each row to create a summary
matching weight, which is compared to some criterion (thresholds) which have
been determined heuristically. Where the weights are binary, this is equivalent
to deterministic data linkage. Alternatively, the matrix of comparisons can be
used as input for a number of machine learning classification methods. Where
these methods are supervised, a pair of data sets which have already been linked
(and for which the match status of each pair of records is not secret) would need
to be used as the gold standard to train the classifier models.

If the full Fellegi €& Sunter [6] model of probabilistic data linkage was re-
quired, then Alice and Bob would need to communicate the relative frequency
of the value of each data item for each record in their databases to Edith (but
not to Carol), so Edith could use this information to further weight the simi-
larity comparison matrix. Note that Edith has no information about the length
of the values — just the similarity score between pairs of values. Nevertheless, it
would be important that Carol and Edith do not share any information other
than that described above.

We will assume that Edith arrives at a set of linked records — that is, pairs
of (A.encrypt_rec_key, B.encrypt_rec_key) — by some means. How can a
researcher, Freddy, be supplied with de-identified (or anonymous) data from
Alice and Bob’s databases for just these linked records without telling Alice
which of her records match Bob’s, and vice versa? There is a straightforward
solution using public key encryption [13]: Alice assembles the columns required
by researcher Freddy for every record in her database, and encrypts each record,
but not the encrypt_rec_key, with Freddy’s public key. Alice send this data
to Edith. Bob does the same. Edith now joins and subsets this data using her
list of matching records, and forwards the joined subsets to Freddy. Edith is
unable to see the data values contained in these records because they have been
individually encrypted with Freddy’s public key. Freddy decrypts the data for
each joined record using his private key. Thus, Freddy obtains just the columns
he needs for the linked records only, Edith knows the record keys of the linked
records but never sees the data (because it is encrypted with Freddy’s key), and
Alice and Bob learn nothing.

5 Discussion

Proof-of-concept implementations of the protocols described in this paper have
been developed as a series of Python? programs. In these implementations, Alice
generates the secret random key, K 4p, using a random number generator oper-
ating over a large number space, then transforms the result into an MD5 hash

2 www. python.org

11

Table 1. Overhead of bigram similarity comparisons and hash encoding.

Surnames Suburb names

ACT NSW ACT NSW
Number of records 115,558 2,323,355 115,658 2,323,355
Average string length (characters) 6.52 6.39 7.01 9.28
Average number of bigram sub-lists 210.5 166.2 236.3 2,521.0
Uncoded strings (KBytes) 736 14,500 791 21,047
Exact hashed matching (KBytes) 1,806 36,302 1,806 36,302
Bigram hashed matching (KBytes) 380,101 6,032,223 426,695 91,518,954
Ratio exact hash / uncoded 2.45 2.50 2.28 1.72
Ratio bigram hash / uncoded 516.7 416.0 539.3 4,348.3

value and transmits this value to Bob. The values in A.a and B.a (example
surnames) are transformed by simply concatenating Kap to a string represen-
tation of the values, followed by applying the one-way hash function encoding,
ie. kown(A.a+ Kap).

Compared to transferring the raw identifying strings between the parties of
a data linkage system, bigram similarity comparisons and hash encoding require
a much larger volume of data to be transfered. We performed simulations using
surnames and suburb names taken from two Australian phone directories, and
calculated the average lengths of the surname and suburb name strings, the
resulting number of bigram sub-lists, as well as the overhead resulting from
using bigrams and hash encoding. We assumed MDJ5 hash encoding which uses
128-bit (16 byte) hash codes.

Table 1 shows the amount of data (in Kilobytes) transfered and the resulting
overhead. The overhead can be reduced somewhat by only calculating and trans-
ferring bigram sub-lists of certain lengths (for example, bigram sub-lists of length
1 are very unlikely part of a successful match of longer strings or sequences).

6 Conclusions and Future Work

In this paper we have presented methods for blind fuzzy linkage of records using
hash encoding, public key encryption and n-gram similarity comparison tech-
niques. Proof-of-concept implementations have demonstrated the feasibility of
our approach, albeit at the expense of very high data transmission overheads.
On modern high-bandwidth research networks, we do not believe this is a funda-
mental problem. We are planning to include these blind data linkage techniques
into our open source data linkage system Febrl [5], and to perform large scale
linkage experiments using real world data sets.

References

1. Berman, J.J.: Threshold protocol for the exchange of confidential medical data.
BMC Medical Research Methodology, Nov. 2002, 2:12.

12

2. Borst, F., Allaert, F.A. and Quantin, c.: The Swiss Solution for Anonymous Chain-
ing Patient Files. MEDINFO 2001.

3. Brassard, G., Cr'epeau, C. and Robert, J.M.: All-or-Nothing Disclosure of Secrets.
Advances in Cryptology (Crypto’86), Lecture Notes in Computer Science, no. 263,
Springer Verlag, 1987, pp. 234-238.

4. Brassard, G., Chaum, D. and Cr’epeau, C.: Minimum Disclosure Proofs of Knowl-
edge. Journal of Computer and System Sciences (JCSS), vol. 37, no. 2, 1988.

5. Freely extensible biomedical record linkage (Febrl) project web page,

URL: http://sourceforge.net/projects/febrl

6. Fellegi, I. and Sunter, A.: A Theory for Record Linkage. Journal of the American
Statistical Society, 1969.

7. Foster, I. and Kesselman, C.: The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann; 1st edition, Nov. 1998.

8. Kelman, C.W., Bass, A.J. and Holman, C.D.J.: Research use of linked health data
— a best practice protocol. Australian and New Zealand Journal of Public Health,
26:3, 2002, pp. 251-255.

9. Lait, A.J. and Randell, B.: An Assessment of Name Matching Algorithms, Technical
Report, Department of Computing Science, University of Newcastle upon Tyne, UK
1993.

10. Quantin, C., Bouzelat, H., Allaert, F.A.A., Benhamiche, A.M., Faivre, J. and
Dusserre, L.: How to ensure data quality of an epidemiological follow-up: Qual-
ity assessment of an anonymous record linkage procedure. Intl. Journal of Medical
Informatics, vol. 49, pp. 117-122, 1998.

11. Salomaa, A. and Santean, L.: Secret selling of secrets with many buyers. EATCS
Bulletin 42, 178-186, 1990.

12. Schadow, G., Grannis, S.J. and McDonald, C.J.: Discussion paper: privacy-
preserving distributed queries for a clinical case research network. Proceedings of
the IEEE international conference on privacy, security and data mining, Maebashi
City, Japan, 2002, pp. 55-65.

13. Schneider, B.: Applied Cryptography. John Wiley & Sons, second edition, 1996.

14. Winkler, W.E.: The State of Record Linkage and Current Research Problems.
Research Report RR99/03, US Bureau of the Census, 1999.

15. Winkler, W.E.: Using the EM algorithm for weight computation in the Fellegi-
Sunter model of record linkage. Research Report RR00/05, US Bureau of the Census,
2000.

