Automatic training example selection for scalable unsupervised record linkage

Peter Christen

Department of Computer Science, The Australian National University, Canberra, Australia

Contact: peter.christen@anu.edu.au

Project Web site: http://datamining.anu.edu.au/linkage.html

Funded by the Australian National University, the NSW Department of Health, and the Australian Research Council (ARC) under Linkage Project 0453463.

Outline

- What is record linkage?
- Record linkage challenges
- The record linkage process
- Record pair comparison and classification
- Two-step record pair classification
 - Step 1: Training example selection
 - Step 2: Classification of record pairs
- Experimental results
- Outlook and future work

What is record (or data) linkage?

- The process of linking and aggregating records from one or more data sources representing the same entity (such as a patient, customer, or business)
 - Also called data matching, data scrubbing, entity resolution, object identification, merge-purge, etc.
- Challenging if no unique entity identifiers available For example, which of these three records refer to the same person?

Dr Smith, Peter	42 Miller Street 2602 O'Connor
Pete Smith	42 Miller St, 2600 Canberra A.C.T.
P. Smithers	24 Mill Street; Canberra ACT 2600

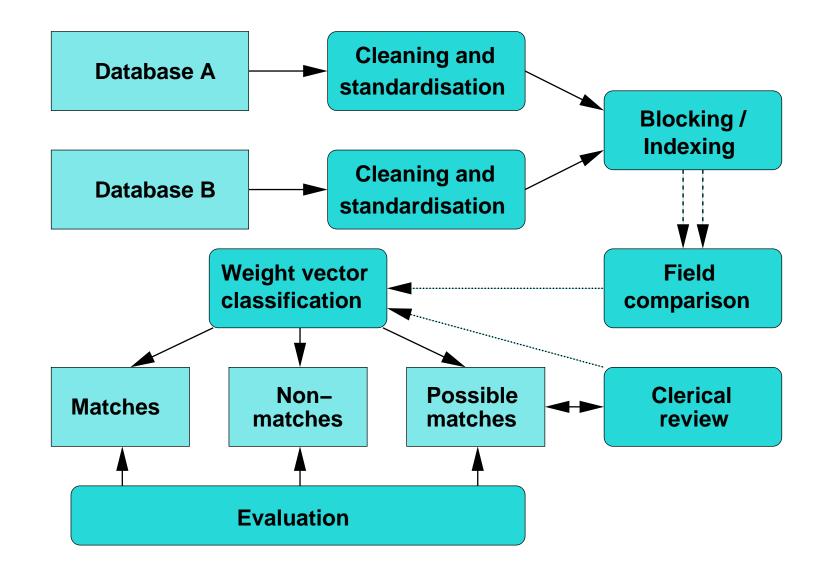
Record linkage challenges

 Real world data is dirty (typographical errors and variations, missing and out-of-date values, different coding schemes, etc.)

Scalability

- Naïve comparison of all record pairs is $O(n^2)$
- Some form of blocking, indexing or filtering required
- No training data in many linkage applications
 - No data sets with known true match status
 - Possible to manually prepare training data (but, how accurate will manual classification be?)

The record linkage process



Record pair comparison

- Pairs of records are compared field (attribute) wise using different field comparison functions
 - Such as exact or approximate string (e.g. edit-distance, q-gram, Winkler), numeric, age, date, time, etc.
 - Return 1.0 for exact similarity, 0.0 for total dissimilarity
- For each compared record pair a weight vector containing matching weights is calculated

 Record 1:
 ['dr', 'peter', 'paul', 'miller']

 Record 2:
 ['mr', 'john', '', 'miller']

 Matching weights:
 [0.5, 0.0, 0.0, 1.0]

 Weight vectors (record pairs) are classified into matches, non-matches (and possible matches)

Record pair classification

- Traditionally, matching weights are summed, and two thresholds are use for classification
- Various machine learning techniques have been investigated
 - Supervised: SVM, decision trees, neural networks, learnable string comparisons, active learning, etc.
 - Un-supervised: Different *clustering* algorithms
- Recently, *collective* entity resolution techniques have been investigated
 - Rather than classifying each record pair independently
 - Using relational attributes (i.e. graph based)
 - However, not all data is relational

Two-step record pair classification

Assumptions

- Weight vectors that have exact or high similarity values in all elements were most likely generated when two records were compared that refer to the same entity
- Weight vectors with mostly low similarity values were with high likelihood generated when two records were compared that refer to different entities
- Idea: Automatically select such weight vectors as training examples in a first step, and then use them to train a binary classifier in a second step
 - Combined, this will allow fully automated unsupervised record pair classification

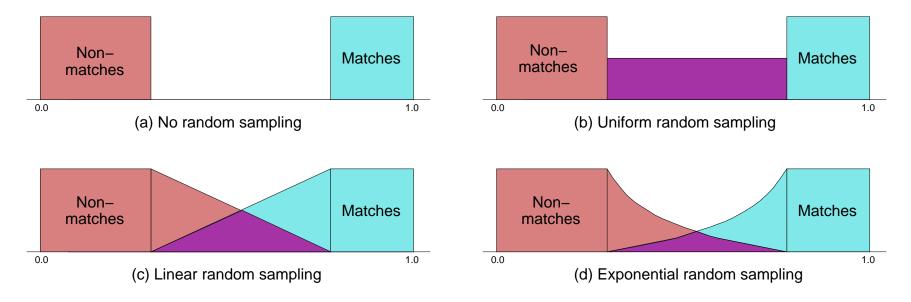
Records and weight vectors example

<i>R1</i> :	Christine	Smith	42	Main	Street
<i>R</i> 2:	Christina	Smith	42	Main	St
R3 :	Bob	O'Brian	11	Smith	Rd
R4 :	Robert	Bryce	12	Smythe	Road

<i>WV(R1,R2)</i> :	0.9	1.0	1.0	1.0	0.9
<i>WV(R1,R3)</i> :	0.0	0.0	0.0	0.0	0.0
<i>WV(R1,R4)</i> :	0.0	0.0	0.5	0.0	0.0
WV(R2,R3):	0.0	0.0	0.0	0.0	0.0
WV(R2,R4):	0.0	0.0	0.5	0.0	0.0
WV(R3,R4):	0.7	0.3	0.5	0.7	0.9

Step 1: Training example selection

- Weight vectors can be selected using either thresholds or nearest based
- Training examples are likely linearly separable
- Idea: randomly add more training examples (from gap between match and non-match examples)



Step 2: Classification of record pairs

- Any binary classifier can be used (in the following experiments, a linear SVM has been employed)
- Question investigated here: Does the random inclusion of additional weight vectors improve classification accuracy?
- Related work: Similar approaches have been developed for text and Web page classification
 - Called semi-supervised or partially supervised learning
 - PEBL (positive example based learning): train a SVM only on positive labeled examples, improve iteratively
 - S-EM (seed expectation-maximisation): add 'spy' documents from positive examples into unlabeled data

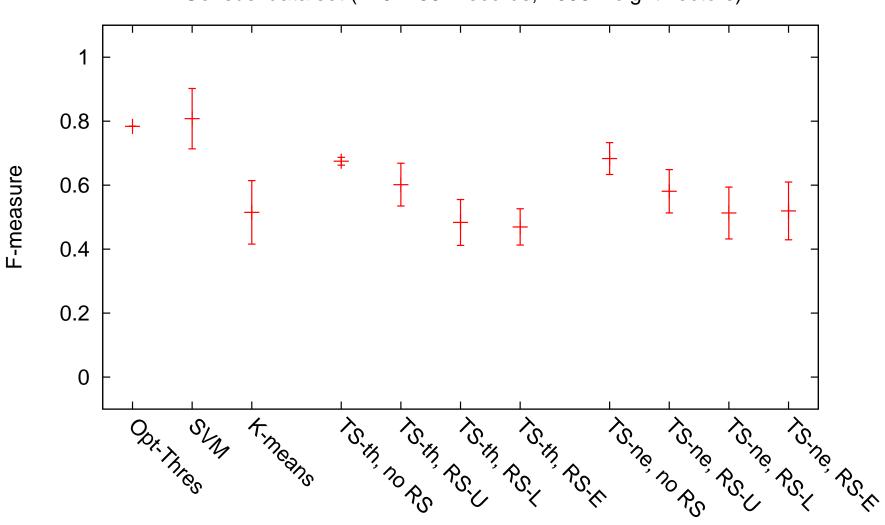
- All techniques are implemented in the Febrl open source record linkage system (available from: https://sourceforge.net/projects/febrl/)
- Experiments using both real and synthetic data (Secondstring repository and Febrl data set generator)
- Evaluation of step 1 (training example selection)
 - Percentage of true matches and true non-matches in the training example sets
- Evaluation of step 2 (record pair classification)
 - *F*-measure (harmonic mean of precision and recall) (average and standard-deviation are shown in graphs)

Quality of weight vectors selected

Data sets	Thresholds		Nearest	
	0.3	0.5	1%	10%
Census	100/-	96.2/100	100/100	100/100
Restaurant	98.5/—	4.5/100	100/100	58.6/100
Gen-1,000	100/100	100/100	100/100	100/95.5
Gen-2,500	100/100	100/100	100/99.0	100/98.2
Gen-5,000	100/100	100/100	100/99.7	100/99.6
Gen-10,000	100/99.7	100/100	100/99.8	100/99.7

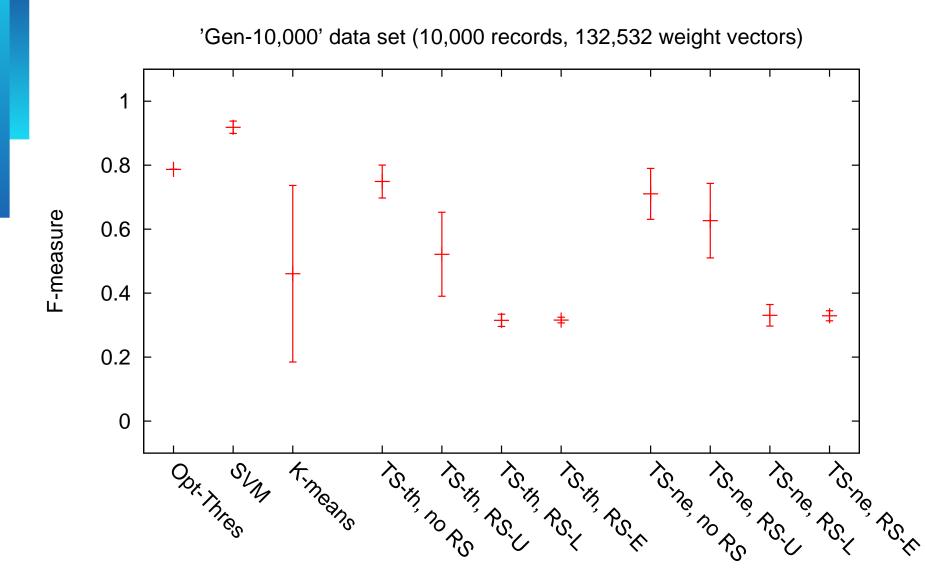
Results given here are percentage values for match/non-match sets

Record pair classification for Census



'Census' data set (449 + 392 records, 2093 weight vectors)

Record pair classification for Gen-10,000



Outlook and future work

- The proposed two-step record pair classification approach shows promising results
 - Can automatically select good quality training examples
 - Random inclusion of additional weight vectors does not improve classification accuracy (unlike improvements in Web and text classification)
- Improvements for second step (classification)
 - Apply classifier iteratively (as done in *PEBL* approach)
 - Investigate nearest-neighbour based classification
- More experiments on different data are needed
 - Also investigate the scalability of this approach

