
Unsupervised Blocking Key Selection

for Real-Time Entity Resolution

Banda Ramadan(B) and Peter Christen

Research School of Computer Science, College of Engineering and Computer Science,
The Australian National University, Canberra, ACT 0200, Australia

{banda.ramadan,peter.christen}@anu.edu.au

Abstract. Real-time entity resolution (ER) is the process of matching
query records in sub-second time with records in a database that rep-
resent the same real-world entity. Indexing is a major step in the ER
process, aimed at reducing the search space by bringing similar records
closer to each other using a blocking key criterion. Selecting these keys
is crucial for the effectiveness and efficiency of the real-time ER pro-
cess. Traditional indexing techniques require domain knowledge for opti-
mal key selection. However, to make the ER process less dependent on
human domain knowledge, automatic selection of optimal blocking keys
is required. In this paper we propose an unsupervised learning technique
that automatically selects optimal blocking keys for building indexes that
can be used in real-time ER. We specifically learn multiple keys to be
used with multi-pass sorted neighbourhood, one of the most efficient and
widely used indexing techniques for ER. We evaluate the proposed app-
roach using three real-world data sets, and compare it with an existing
automatic blocking key selection technique. The results show that our
approach learns optimal blocking/sorting keys that are suitable for real-
time ER. The learnt keys significantly increase the efficiency of query
matching while maintaining the quality of matching results.

Keywords: Record linkage · Unsupervised learning · Automatic block-
ing · Key selection · Sorted neighbourhood indexing

1 Introduction

Massive amounts of data are being collected by most business and government
organisations. Given that many of these organisations rely on information in their
day-to-day operations, the quality of the collected data has a direct impact on
the quality of the produced outcomes [4]. Data validation and cleaning are often
employed to improve data quality [4]. One important practice in data cleaning is
entity resolution (ER),which is the task of identifying records that refer to the same
real-world entity.

This research was funded by the Australian Research Council (ARC), Veda, and
Funnelback Pty. Ltd., under Linkage Project LP100200079.

c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part II, LNAI 9078, pp. 574–585, 2015.
DOI: 10.1007/978-3-319-18032-8 45

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Unsupervised Blocking Key Selection for Real-Time Entity Resolution 575

The ER process encompasses several steps [4]: data preprocessing, which
cleans and standardizes the data to be used; indexing or (blocking), which
reduces the search space; record comparison, which compares candidate records
in detail using a set of similarity matching functions [8]; classification, where
pairs or groups of candidate records are classified into matches (records that are
assumed to refer to the same entity) and non-matches (records that are assumed
to refer to different entities); and finally, evaluation, where the ER process is
evaluated with regard to matching accuracy and completeness [4]. Since many
services in both the private and public sectors are moving online, organisations
increasingly require real-time ER (with sub-second response times) on query
records that need to be matched with existing entity databases [7,15].

Indexing is a vital step in the ER process especially for large databases as
it reduces the number of candidate records to be compared in detail to find
matching records. This can be achieved by two main approaches. The first is to
partition a database to be matched into several blocks according to a blocking key
criterion, where only records that are inserted into the same block are compared
with each other [9]. The second approach is to sort the records in a database
according to a sorting key criterion that brings similar records close to each
other, so that only records that are close to each other will be compared [11].

A good indexing technique should group similar records into one block or
close to each other in the index [5]. This depends mainly on the blocking/sorting
key used to partition/sort the records in a database. An optimal key needs to
find all the true matching records, while keeping to a minimum the number of
true non-matching records. However, an optimal key for one domain will likely
not work for another domain [5].

Moreover, an optimal key for batch ER might not be suitable for real-time
ER, because for real-time ER we need to have small block sizes to achieve fast
query matching. Selecting an optimal key needs expert knowledge of the nature
of the data and the requirements of the domain. To the best of our knowledge,
no existing learning technique for indexing considers real-time ER. Therefore,
there is a need for novel techniques that learn optimal keys for different real-time
ER domains without the need for manual intervention.

Contribution: In this paper, we propose a general learning technique that auto-
matically selects optimal keys for building indexes to be used in real-time ER in
order to find matches in a database effectively and efficiently. Our approach can
be used with different indexing techniques. We demonstrate how this automatic
key selection can be used with an existing sorted neighbourhood-based real-time
indexing technique [19]. We learn more than one key to be used with multi-pass
sorting or blocking techniques. We evaluate the proposed technique on three
real-world databases and compare it with an existing technique [12].

2 Related Work

The earliest proposed indexing approach is standard blocking [9], which inserts
records into blocks according to a blocking key criterion. This criterion is usually

576 B. Ramadan and P. Christen

based on one or more attribute values. Only records within the same block are
compared with each other. This approach has the disadvantage of assigning
records into the wrong block in case of errors in the attributes used as blocking
keys (i.e. dirty data). To prevent this from occurring, iterative blocking [24] can
be applied where multiple blocking keys are used and each record can be inserted
into more than one block.

The sorted neighbourhood method (SNM) [11] arranges all records in the
database(s) to be matched into a sorted array using a sorting key. Then a fixed-
size widow is used to scan over the sorted records comparing only records within
the window at any step. The main drawback of this method is its sensitivity to
errors and variations at the beginning of the attribute values that are used as
sorting keys, which can significantly affect the quality of the matching results [5].
This drawback is handled by performing a multi-pass approach [11] where dif-
ferent sorting keys are used in each pass to improve the matching quality of the
approach. Various other indexing techniques that are based on either one of the
above main approaches have been proposed [1,13,15,17,20,21]. However, for all
of these techniques blocking or sorting keys need to be defined manually by an
expert who has domain and application knowledge.

Various automatic techniques were proposed that allow learning optimal
blocking/sorting keys based on supervised learning which requires the use of
gold standard data for training. Bilenko et al. [2] proposed an approach that
deals with the learning process as an approximation problem that is based on
the red-blue set cover problem. Michelson et al. [18] proposed a related approach
for learning which attributes are more suitable as blocking keys, and which sim-
ilarity measures should be used for comparing these attributes.

Another supervised approach was recently proposed by Vogel and Naumann
[23]. The authors use unigrams of attribute values (i.e. a combination of single
characters from different attributes) as blocking keys. Both accuracy and effi-
ciency of the generated blocks are used to learn the set of optimal blocking keys.
They also improved their approach by taking the length of attribute values into
consideration when generating the unigrams to be used as keys. All of the above
automatic approaches require labeled training data. However, such labeled data
is not always available and is usually expensive to generate.

To overcome this problem, several un-supervised automatic blocking key
selection techniques have been developed [3,10,12,16]. Ma et al. [16] has pro-
posed an approach that is based on type semantics, where the authors con-
sider the type of entities when learning the blocking keys for data from the
web. Another unsupervised learning approach was proposed by Kejriwal and
Miranker [12] where the authors automatically generate a weakly labeled data
set. This labeled data is then used as a training set to learn the optimal blocking
keys using the Fisher discrimination criterion [12]. Giang [10] on the other hand
proposed a technique that learns the blocking keys in context of the classifier
function that is used in the classification step of the ER process. The classifier is
used to generate labeled data. The authors then use the Probably Approximately
Correct (PAC) approach to learn the blocking keys.

Unsupervised Blocking Key Selection for Real-Time Entity Resolution 577

All mentioned unsupervised approaches focus mainly on the quality of the
generated blocks and do not consider the block sizes when selecting blocking
keys. However, a blocking key that can be used with real-time ER must also
ensure that the sizes of the generated blocks are small enough to be able to
resolve queries in real-time. In this paper, we propose an automatic blocking key
selection technique that considers the coverage of a key, the maximum size of the
generated blocks, as well as the distribution of the size of the generated blocks.
Our aim is to learn blocking keys that are suitable for real-time ER.

3 Preliminaries and Overview

We use the following notation to present our approach. We assume a database R =
{r1, r2, ..., r|R|}, where each ri ∈ R contains several attributes A=(a1, a2, ..., a|A|).
We denote the attribute value aj in ri with ri.aj , where 1 ≤ i ≤ |R| and 1 ≤ j ≤
|A|.

A blocking key (BK), denoted as kj,l = 〈aj , fl〉, is a pair consisting of an
attribute aj ∈ A and a blocking function fl ∈ F , with F being the set of candi-
date blocking functions. Examples of such functions include exact value (isExact),
same first character (sameFirst1), or same last three characters (sameLast3). The
blocking function fl is applied on attribute aj , and the resulting value for a record
ri is called a blocking key value (BKV) and denoted as kj,l(ri) = fl(ri, aj). We
denote the set of all candidate BKs with K. We assume the functions in F
are manually selected by domain and ER experts, but for future work we aim
to investigate techniques to automatically identify suitable blocking functions
based on the content of a database. Our optimal key selection approach will
identify the best BKs for real-time ER based on three criteria, as described in
Sect. 4.

A block b ∈ Bj,l is a set of records Rb where all ri ∈ Rb have the same BKV:
Rb = {ri ∈ R : kj,l(ri) = fl(ri, aj)}. Bj,l is the set of all blocks generated by a
BK kj,l on all records in R.

Current approaches for learning blocking/sorting keys [3,10,12,16] do not
learn keys that are suitable for real-time ER. In real-time ER, the selected BK(s)
should generate block sizes within a controllable range to make sure that the
number of detailed comparisons needed to match a query record (denoted as q)
is within an allocated time. Also, keys that generate blocks of similar sizes are
more suitable for real-time ER than keys that generate blocks of different sizes,
as the time required to resolve different query records will be the same [6].

In our work, we aim to learn a list of optimal blocking/sorting keys, O ⊂ K,
to be used with multi-pass indexing techniques [19] to perform ER and deliver
high quality matching results in real-time. Following [12], our approach does not
require existing training data sets to learn these optimal keys.

The overall framework of the proposed approach contains the following steps,
as illustrated in Fig. 1. In step (1) we generate positive and negative training data
sets (RP and RN) to be used in the learning process [12], as detailed below. In
step (2) the set of candidate blocking keys K is generated. The proposed learning

578 B. Ramadan and P. Christen

Database
q

k 1

q

k 3

q

k 2

Generate
training

data

Generate
candidate
keys (K)

Learn
optimal

keys

RP

RN Optimal
keys

Remove pairs covered
by selected key

Remove selected key

Build index using
selected optimal keys

Use index for entity
resolution process

Query Matched
records

K

(1)

(2)

(3)

(4)

(5) Query records

q1 q2 q3 q5

Fig. 1. Framework of the proposed approach

algorithm, described in Sect. 4, is employed in step (3) using the generated
training data sets RP and RN to select a set of optimal blocking keys O ⊂ K.
The selected optimal keys O are used in step (4) to index (block) all records from
the database R. Any real-time indexing technique can be used for this step [19].
Finally, in step (5), the built index is used for matching query records q with
records within the index in real-time.

3.1 Generating Training Data Sets

As in most practical applications of ER no training data sets (gold standard
data) are available, such data can be generated using classification functions as
in [10,12]. In this step we use Kejriwal’s [12] approach to generate weakly labeled
training data sets using a TF-IDF weighting scheme to calculate the similarity
between record pairs (rx, ry) ∈ R as follows.

A lower and upper thresholds 0 < l < u < 1 are used to generate the
training data sets. Record pairs (rx, ry) that have a TF-IDF similarity value
sim(rx, ry) below l are labeled as negative matches, and all pairs that have a
TF-IDF value above u are labeled as positive matches. We generate a positive
training set RP ⊂ R where the similarity between record pairs is greater than
or equal to the upper threshold u: RP = {rx, ry ∈ R : sim(rx, ry) ≥ u}; and a
negative training set RN ⊂ R where the similarity between record pairs is less
than or equal to the lower threshold l: RN = {rx, ry ∈ R : sim(rx, ry) ≤ l} with
RP ∩ RN = ∅.

Both RP and RN are then used to generate a set of blocking key vectors, VP

and VN respectively, by applying all keys kj,l ∈ K on the record pairs in RP and
RN [12]. Each record pair is converted into a vector of Boolean values (i.e 0 or 1
bits), with one value for each candidate key kj,l ∈ K. If a record pair (rx, ry) in
RP or RN for a certain candidate key kj,l results in having the same key value,
i.e. kj,l(rx) = kj,l(ry), then the corresponding element in the pair’s vector is set

Unsupervised Blocking Key Selection for Real-Time Entity Resolution 579

to 1 and the pair is said to be covered by this key. Otherwise, the corresponding
vector element is set to 0, and the pair is said to be uncovered by that key.

The generated set of key vectors VP and VN are then used in our key selec-
tion algorithm to learn the optimal keys, as described in the following section.
Alternatively, if a truth training set is available, step (1) of our framework is not
required. The rest of the steps of our framework are described in more detail in
the following sections.

4 Optimal Key Selection

The indexing step of real-time ER should bring similar records close to each
other while maintaining small block sizes to be able to match query records in
real-time. The BKs used in the indexing step have an impact on the quality and
efficiency of query matching. To make sure that the keys we select are suitable
for real-time ER we use three criteria:

– Key coverage: The coverage C of a key kj,l that is applied on record pairs
(rx, ry) in database R is defined as the number of record pairs that evaluate
to the same key value: Ckj,l

= |{rx, ry ∈ R : kj,l(rx) = kj,l(ry)}|. A key
with a high coverage value leads to grouping a high number of true positive
matches into the blocks generated using that key while having a minimal
number of negative matches in the blocks. We use the blocking key vectors
VP and VN (described in Sect. 3.1) to measure the coverage of a BK by
calculating its Fisher score [12] as follows:

Ck =
|VP |(μp,k − μk)2 + |VN |(μn,k − μk)2

|VP |σ2
p,k + |VN |σ2

n,k

(1)

where μp,k and μn,k are the mean of all bits generated from evaluating the key
k ∈ K on all pairs in VP and VN respectively, σ2

p,k and σ2
n,k are the variance of

corresponding bits of k in VP and VN respectively, and μk is the mean of the
corresponding bits of key k in VP ∪ VN . Note that a key will have a high Fisher
score if it has high coverage in VP and low coverage in VN . The aim of using
thismeasure is to select keys that produce high quality blocks (withmostly true
matches, and only few negative matches grouped within the generated blocks).

– Block Size: The size of a block b is the number of records that are inserted
into that block and it is denoted as Sb = |Rb|. In this criterion we use two
measures: the maximum block size denoted as Sb(max) = max{Sb : b ∈ B},
and the average block size denoted as Sb(ave) = ave{Sb : b ∈ B}. The aim of
using the size criterion is to control the number of candidate records that are
required to be compared with a query record within a desired time range.

– Distribution of blocks: For the set of blocks B generated from applying
a key k on all records in database R, the distribution of k is measured by
calculating the variance Vk of the sizes of all blocks in B (which reflects how
far the generated block sizes are spread) using:

580 B. Ramadan and P. Christen

Vk =
∑|B|

b=1(Sb − μS)2

|B| (2)

where Sb is the size of a block b ∈ B and μS is the mean of all block sizes
in B. A variance value that is equal to 0 means that all generated blocks
have exactly the same size. For real-time ER it is better to generate blocks
of similar sizes where the time required to match a query record is similar
for different query records. Therefore, a BK is more suitable for real-time
ER if its variance of the sizes of the generated blocks is close to 0.

Generating Candidate Keys: The candidate key list is the list of all keys
which we select our optimal keys from. The candidate BKs can differ based
on the domain, the used indexing technique, and the databases to be matched.
Because we are evaluating our key selection algorithm using a sorted neighbour-
hood indexing technique (as will be discussed in Sect. 5), we generate a list of
candidate BKs K that capture the beginning of attribute values (i.e. isExact,
sameFirst1, sameFirst2, sameFirst3, sameFirst4, sameFirst5, and concatenatedIs-
Exact). To generate a set of K blocking keys we apply all blocking functions in
F on all ri.aj ∈ R. The generated set of blocking keys K is given to the proposed
learning algorithm along with VP and VN to select optimal keys as follows.

Learning Optimal Keys: Our learning algorithm (see Algorithm 1) automat-
ically selects the list of optimal keys O based on the three criteria discussed
earlier (key coverage, generated block sizes, and distribution of block sizes) to
ensure that the selected keys can be used with real-time ER to provide matching
results efficiently. We start the algorithm by initialising the valid key list (Kv)
to be empty. This list is then filled with keys that cover less than nm pairs in
VN , where nm is the maximum allowed number of covered vectors from negative
key vectors (lines 1-4). Then, for each key in the valid key list Kv, if the key has
a maximum block size Sbmax

that is greater than the maximum allowed block
size sm, it is removed from Kv (lines 5-8). In lines 9-13, for all keys k left in Kv,
we calculate an overall score SCk to determine which keys should be added to
the optimal key list O based on the following equation:

SCk = α · (1 − Ck) + β · Sb(ave)k
+ (1 − α − β) · Vk (3)

where Ck is the coverage of k (as calculated in Equation 1), Sb(ave)k
and Vk are

the average block size and the variance between the block sizes, respectively.
We assume that the blocks are generated by applying the blocking key k on all
records in R. The aim is to select a set of blocking keys that have high coverage,
low average block size, and low variance between block sizes (note that keys with
large maximum block size Sb(max) were removed earlier from Kv in line 8). The
parameters α and β are used to control the weights of the three criteria based
on the domain and application area. Each weight parameter is a value between
0 and 1 where the total of all weights is equal to 1. Regardless of the weight
parameters used, the lower the overall score for a key is, the more this key is
suited for real-time ER.

Unsupervised Blocking Key Selection for Real-Time Entity Resolution 581

Algorithm 1. LearnOptimalBK(VP , VN , K, nm, sm, L)
Input:
- Positive key vectors: VP

- Negative key vectors: VN

- Candidate blocking keys: K
- Maximum allowed covered vectors from negative key vectors: nm

- Maximum allowed block size: sm
- Number of blocking keys to be selected: L

Output:
- List of optimal blocking keys: O

0: while l ≤ L do
1: Kv := [], O := [], scores := [] // Initialise valid keys, optimal keys,

// and scores to be empty
2: for k ∈ K do
3: if k covers pairs in VN that are < nm then
4: Kv .add(k) // Add k to the valid key list Kv

5: for k ∈ Kv do
6: Sb(max)

:= GetMaxBlockSize(k) // Get the maximum block size for k

7: if Sb(max)
> sm then // Remove keys with large block size

8: Kv .remove(k)
9: for k ∈ Kv do
10: Vk := GetV ariance(k) // Get the variance for k
11: Sb(ave)

:= GetAveBlockSize(k) // Get the average block size for k

12: SCk := CalcScore(VP , VN , Sb(ave)
, Vk) // Calculate overall score for k

13: scores.add(SCk) // Add this key’s score to the list of scores
14: Sort scores ascending
15: o := scores[0] // This optimal key has the lowest score value
16: O.add(o) // Add this optimal key to optimal key list
17: Vc := getCoveredPairs(k, VP) // Get pairs from VP that are covered by k
18: VP .remove(Vc) // Remove all pairs covered by k from VP

19: K.remove(o) // Remove the selected optimal key from K
20: l := l + 1
21: Return O // Return the optimal key list

After calculating the overall score SCk for all keys in Kv, these scores are
sorted in an ascending order, since a lower overall score is better (line 14). The
first key in the overall score list is then added to the optimal key list O (lines
15-16). In lines 17 − 18, all positive vectors that are covered by the selected
optimal key are removed from VP , and the optimal key is also removed from K
in line 19. This process continues until the required number of optimal keys L
is reached or until there are no positive vectors left in VP . The selected optimal
keys O are evaluated by performing the ER process on database R using the
keys selected in the indexing step as described next.

5 Experimental Evaluation

In our experiments, we use three data sets (see Table 1). The OZ data set contains
personal information that is generated by randomly selecting records from an Aus-
tralian telephone directory (a clean data set). Duplicates are added to this data set
by randomlymodifying attribute values basedon typing, scanningandOCRerrors,
or phonetic variations [22]. Both the Cora1 and DBLP/ACM [14] data sets contain
bibliographic information and are commonly used in ER research.
1 Available from: http://secondstring.sourceforge.net

http://secondstring.sourceforge.net

582 B. Ramadan and P. Christen

Table 1. Data sets used in our experiments

Data set Type Number of records Number of entities

OZ Real-world (modified) 34,588 30,292
Cora Real-world 1,295 112
DBLP2/ACM Real-world 2,616/2,294 2,686

We use the blocking key selection approach proposed in [12] as a baseline.
The authors in [12] propose a Fisher Disjunctive algorithm (FDJ) that uses
the Fisher discrimination criterion to select optimal blocking keys. Unlike our
approach (that considers key coverage, block sizes, and blocks distribution),
this approach only considers key coverage when selecting optimal blocking keys.
We compare our approach with the baseline approach using recall (the fraction
of relevant instances that are retrieved) to measure the quality of the compared
approaches, and query time (the time required to resolve a single query record) to
measure efficiency. In addition, we generate various statistics about the number
of candidate records required by both approaches to resolve a query record.

For generating the training data sets (described in Sect. 3.1) we used a lower
threshold l = 0.1 and an upper threshold u = 0.7 to weakly label record pairs into
positive and negative pairs. The generated training data sets are then used in
our learning algorithm as described in Sect. 4. To learn the optimal blocking keys
we used nmax = 100 for the maximum allowed number of covered vectors from
VN , we used a maximum block size of sm = 100, and for the weight parameters
we used α = 0.2 and β = 0.4. Weights and thresholds used are selected based
on an experimental investigation of using different values. We aim to investigate
learning these values to produce blocks with high quality and small size in our
future work.

To conduct the evaluation we use the keys selected by our approach and the
keys selected by the FDJ approach to build indexes that can be used to resolve
query records in real-time. A real-time forest-based dynamic sorted neighbour-
hood index (F-DySNI) is used for this purpose [19]. The index consists of multiple
tree data structures where each tree is built using a different sorting key. The
F-DySNI has two phases: a build phase where index trees are built using records
from an existing entity database, and a query phase where the built index can be
queried by retrieving candidate records for a query record from all index trees,
and the index is updated by inserting the query record.

When a query record arrives it is inserted into all trees in the index. Then, in
each tree, a window of size w is used to generate a set of candidate records from
the tree node that contains the query record and the neighbouring tree nodes that
fall within the window w. The query is then compared (using an approximating
string similarity function [4]) with the generated candidate records. Candidate
records with similarities above a specific threshold are considered to be matches.
We use 50% of the records in each data set to build the indexes, and the remain-
ing records are used as query records. For generating the candidate records we
use a window of size w = 2 (the same window size used in [19]).

Unsupervised Blocking Key Selection for Real-Time Entity Resolution 583

Fig. 2. Time and recall measures for the different data sets generated using the keys
selected by our approach and the Fisher Disjunctive (FDJ) approach proposed in [12].
D/A in the left plot refers to DBLP/ACM and P refers to the proposed approach.

6 Results and Discussions

The aim of the experiments is to investigate if the optimal keys selected by
our learning approach are suitable for real-time ER. Results in Fig. 2 illustrate
the query time required to resolve a single query in milliseconds (ms) and recall
values for the three data sets. The results show that the blocking keys selected by
our approach improve the efficiency of query matching significantly. The selected
keys using the proposed approach achieved an average query time of 2, 8, and
9 ms for the OZ, Cora, and DBLP-ACM respectively, while the selected keys
using the baseline achieved an average query time of 206, 175, and 938 ms for
OZ, Cora and DBKP-ACM respectively. This significant improvement in query
time is achieved while maintaining recall for the OZ and DBLP-ACM but with
a 5% decrease in recall value for Cora. Note that in our experiments the weight
(α = 0.2) that we use for the quality (i.e. key coverage) is half of the weight
(β = 0.4, γ = 0.4) that we use for the block size and the distribution.

The results in Table 2 show various statistical measures for the number of
candidate records generated using the proposed and the FDJ approaches using
the F-DySNI with a window of size w = 2. It is clear from the table that the
proposed approach has decreased the number of candidate records greatly which
is the reason behind the significant decrease in query times.

Fig. 3 illustrates the distribution of the block sizes generated using the keys
selected by the proposed and the FDJ approaches on the OZ data set (the other
two data sets were too small to clearly show how the blocks are distributed).
The results show that the keys selected by our approach lead to having block
sizes that do not exceed the maximum allowed block size. It also shows that
the generated blocks using our approach have similar sizes. In contrast, the keys
selected by the FDJ approach lead to blocks of various sizes. These results are
also supported by Table 2 where the standard deviation values (which measure
the amount of variation from the average) of the number of candidate records
required using our selected keys are small (compared to the values of the baseline)
for the three data sets. This means that the block sizes tend to be close to

584 B. Ramadan and P. Christen

Table 2. Statistics for the number of candidate records generated using F-DySNI with
three trees and a window w = 2. The keys selected by our learning approach and by
the FDJ approach are used to build the trees in the index.

OZ Cora DBLP-ACM

Proposed FDJ Proposed FDJ Proposed FDJ

Average 10 2,041 28 274 30 2,643
Median 10 1,936 26 268 17 2,853
St.deviation 2 800 11 107 30 1,170
Minimum 6 162 10 54 10 13
Maximum 18 6,134 70 583 235 4,389

Fig. 3. Frequency distribution of the sizes of the blocks generated using the blocking
keys selected by the proposed approach and the FDJ approach on the OZ data set

the average block size. We can conclude that the blocking keys selected by our
proposed approach are suitable for use with real-time ER.

7 Conclusion and Future Work

We proposed an unsupervised blocking key selection algorithm that automati-
cally selects optimal blocking keys for building indexes that can be used with
real-time ER. We specifically learnt multiple keys to be used with multi-pass
sorted neighbourhood indexing. We evaluated our approach using three real-
world data sets and compared it with an existing automatic blocking key selec-
tion technique. The results show that our approach can learn keys that are
suitable for real-time ER. The keys selected by our approach reduced query
times significantly while maintaining matching quality. For future work we aim
to investigate how we can automatically identify candidate blocking functions
based on the content of the database. We also aim to investigate learning the
weights that are used in our key selection algorithm to produce blocks with high
quality and small size. Additionally, we plan to compare our proposed approach
with other existing blocking key selection approaches.

References

1. Aizawa, A., Oyama, K.: A fast linkage detection scheme for multi-source informa-
tion integration. In: WIRI, Tokyo (2005)

Unsupervised Blocking Key Selection for Real-Time Entity Resolution 585

2. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: learning to scale up
record linkage. In: IEEE ICDM, Hong Kong (2006)

3. Cao, Y., Chen, Z., Zhu, J., Yue, P., Lin, C.Y., Yu, Y.: Leveraging unlabeled data
to scale blocking for record linkage. In: IJCAI, Barcelona (2011)

4. Christen, P.: Data Matching. Springer (2012)
5. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-

plication. IEEE Transactions on Knowledge and Data Engineering 24(9) (2012)
6. Das Sarma, A., Jain, A., Machanavajjhala, A., Bohannon, P.: An automatic block-

ing mechanism for large-scale de-duplication tasks. In: ACM CIKM, Hawaii (2012)
7. Dong, X.L., Srivastava, D.: Big data integration. In: IEEE ICDE, Brisbane (2013)
8. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A

survey. IEEE Transactions on Knowledge and Data Engineering 19(1) (2007)
9. Fellegi, I., Sunter, A.: A theory for record linkage. Journal of the American Statis-

tical Association 64(328) (1969)
10. Giang, P.H.: A machine learning approach to create blocking criteria for record

linkage. Health Care Management Science (2014)
11. Hernandez, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In:

ACM SIGMOD, San Jose (1995)
12. Kejriwal, M., Miranker, D.P.: An unsupervised algorithm for learning blocking

schemes. In: IEEE ICDM, Dallas (2013)
13. Kim, H., Lee, D.: HARRA: fast iterative hashed record linkage for large-scale data

collections. In: ICDT, Lausanne, Switzerland (2010)
14. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on

real-world match problems. VLDB Endowment 3(1–2) (2010)
15. Liang, H., Wang, Y., Christen, P., Gayler, R.: Noise-tolerant approximate blocking

for dynamic real-time entity resolution. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H.,
Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part II. LNCS (LNAI), vol. 8444,
pp. 449–460. Springer, Heidelberg (2014)

16. Ma, Y., Tran, T.: Typimatch: type-specific unsupervised learning of keys and key
values for heterogeneous web data integration. In: ACM WSDM, Rome (2013)

17. McCallum, A., Nigam, K., Ungar, L.: Efficient clustering of high-dimensional data
sets with application to reference matching. In: ACM SIGKDD, Boston (2000)

18. Michelson, M., Knoblock, C.A.: Learning blocking schemes for record linkage. In:
AAAI, Boston (2006)

19. Ramadan, B., Christen, P.: Forest-based dynamic sorted neighborhood indexing
for real-time entity resolution. In: ACM CIKM, Shanghai (2014)

20. Ramadan, B., Christen, P., Liang, H.: Dynamic sorted neighborhood indexing for
real-time entity resolution. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS,
vol. 8506, pp. 1–12. Springer, Heidelberg (2014)

21. Ramadan, B., Christen, P., Liang, H., Gayler, R.W., Hawking, D.: Dynamic
similarity-aware inverted indexing for real-time entity resolution. In: Li, J., Cao, L.,
Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013 Workshops.
LNCS (LNAI), vol. 7867, pp. 47–58. Springer, Heidelberg (2013)

22. Tran, K.N., Vatsalan, D., Christen, P.: Geco: an online personal data generator
and corruptor. In: ACM CIKM, New York (2013)

23. Vogel, T., Naumann, F.: Automatic blocking key selection for duplicate detection
based on unigram combinations. In: VLDB Workshops, Istanbul (2012)

24. Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina, H.:
Entity resolution with iterative blocking. In: ACM SIGMOD, Providence (2009)

