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Abstract—Record linkage (RL) is the process of identifying
matching records from different databases that refer to the same
entity. It is common that the attribute values of records that
belong to the same entity do evolve over time, for example people
can change their surname or address. Therefore, to identify the
records that refer to the same entity over time, RL should make
use of temporal information such as the time-stamp of when a
record was created and/or update last. However, if RL needs
to be conducted on information about people, due to privacy
and confidentiality concerns organizations are often not willing
or allowed to share sensitive data in their databases, such as
personal medical records, or location and financial details, with
other organizations. This paper is the first to propose a privacy-
preserving temporal record linkage (PPTRL) protocol that can link
records across different databases while ensuring the privacy of
the sensitive data in these databases. We propose a novel protocol
based on Bloom filter encoding which incorporates the temporal
information available in records during the linkage process. Our
approach uses homomorphic encryption to securely calculate the
probabilities of entities changing attribute values in their records
over a period of time. Based on these probabilities we generate
a set of masking Bloom filters to adjust the similarities between
record pairs. We provide a theoretical analysis of the complexity
and privacy of our technique and conduct an empirical study on
large real databases containing several millions of records. The
experimental results show that our approach can achieve better
linkage quality compared to non-temporal PPRL while providing
privacy to individuals in the databases that are being linked.

I. INTRODUCTION

In application domains such as banking, health, and na-
tional security, it has become an increasingly important aspect
in decision making activities to integrate information from
multiple sources [1], [2]. Integrated databases can help to
identify similar records in different databases that correspond
to the same real-world entity which can facilitate efficient and
effective data analysis and mining not possible on an individual
database. However, since organizations collect vast amount of
data in their databases it is becoming increasingly challenging
to integrate and combine data from different databases [3].
The process of identifying records that belong to the same
real-world entity across different databases is known as record
linkage (RL), data matching or entity resolution [2].

RL has been studied extensively over the past two
decades [2]. Traditional RL techniques first compute the sim-
ilarity between each pair of records from different databases.
Next, the compared record pairs are grouped into clusters
based on the calculated similarities with the aim that all

records in the same cluster refer to the same entity while
records in different clusters refer to different entities. However,
these traditional techniques do not guarantee accurate linkage
of data that can change over time [4], [5].

In the real world, RL is challenged because unique identi-
fiers across all databases are not always available. Therefore,
the use of personal identifiers (known as quasi-identifiers [6]),
such as first and last name, address details, and so on, is
commonly used in RL for matching pairs of records across
different databases [2]. However, the use of personal identifiers
raises privacy and confidentiality concerns when the databases
to be linked belong to different organizations [7]. Often
organizations are not willing or authorized to reveal or share
any sensitive information about entities in their databases to
any other party which makes the linkage process challenging.

Privacy-preserving record linkage (PPRL) (also known as
private record linkage or blind data linkage) aims to develop
linkage techniques that can link databases with sensitive
information [7]. PPRL allows the linkage of databases without
the need of any private of confidential information to be
shared between the participating organizations involved in the
linkage process. In PPRL the attribute values of records are
usually encoded or encrypted before they are being compared
ensuring that approximate similarities between records can still
be calculated without the need of sharing the actual attribute
values. PPRL is conducted in such a way that only limited
information about the record pairs classified as matches is
revealed to the participating organizations. The techniques
used in PPRL must guarantee no participating party, nor any
external party, can compromise the privacy of the entities in
the databases that are linked [7].

In both traditional RL and PPRL the databases to be linked
are considered as static (records are not changing over time)
such that no attribute values of records would change over time
and any changes of values over time of records of the same
entity are considered as errors or variations. This assumption
can potentially leads to incorrect record pair classifications
because most linkage techniques consider record pairs that are
highly similar as matches, and therefore records with similar
attribute values (like a very similar address) that however refer
to two different entities will be linked together [8].

However, entities may change or evolve their attribute
values over time. For example, people often change their
addresses or phone numbers, and some may even change their



TABLE I
AN EXAMPLE TEMPORAL DATABASE THAT SHOWS THE ATTRIBUTE VALUE

CHANGES IN RECORDS THAT BELONG TO THE SAME ENTITY.

Record Entity First name Last name Street Address Creation date

r1 e1 Anne Miller 161 Main Road
Sydney 2002-09-11

r2 e2 Anne Smith 43 Town Place
Sydney 2005-05-23

r3 e2 Anne Miller 43 Town Place
Sydney 2006-11-05

r4 e1 Anne Smith 23 Town Place
Sydney 2007-04-10

r5 e2 Anne Miller 12 Main Road
Sydney 2007-12-21

r6 e3 Anne Miller 12 Main Road
Sydney 2010-02-11

names after getting married or divorced, as shown in Table I.
In both RL and PPRL, temporal information of records, such
as the time when a record was created or last modified
in a database, are not used in similarity calculations [9].
Incorporating temporal information into similarity calculations
between record pairs can help to identify similar records that
belong to the same entity over a period of time.

For example, given six records of three entities (records
r1 and r4 of entity e1, r2, r3, and r5 of entity e2, and
r6 of entity e3) in Table I, a linkage without considering
temporal information would potentially classify r1, r5, and r6

as matches because they have high attribute value similarities,
and it would potentially classify records r2 and r3 to refer to
different entities because they have different last names.

Temporal record linkage (TRL) matches records in
databases while considering temporal information in the form
of attribute values that evolve over time [9]. In TRL the
similarities between record pairs are calculated based on
temporal information. Such temporal information enables the
calculation of temporal similarities between records which can
then be used in TRL to adjust the overall similarity of a record
pair accordingly. For example, if 30% of entities change their
addresses over a period of 5 years then address similarity over
this time period should not be given a high weight in the
overall similarity calculation of record pairs. In the example
in Table I, the aim of TRL is to correctly link r1 with r4, and
r2, r3, and r5 using the temporal information provided in the
creation date attribute. The challenge of how to make use of
sensitive information in temporal linkage, while at the same
time ensuring the privacy of such information, is a problem
that not has been studied so far.

To this end we propose a novel PPRL technique that can be
used to link databases using temporal information. The aim of
our approach is to identify the records that belong to the same
entity across databases owned by two or more organizations
while preserving the privacy of the entities in those databases.
We adjust the similarities between a pair of records based on
their temporal distance since it is more likely to find similar
entities that have similar attribute values over a long period of
time. For example, it is more likely to have the same patient
with different addresses attend the same hospital over the past
10 years instead of at the same time.
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Fig. 1. Overview of our temporal PPRL protocol (for linking two databases)
with three main phases. As detailed in Section IV-A, the database owners
(DOs) Alice and Bob start the protocol by independently calculating the list
of decay intervals and corresponding decay probabilities in phase 1. In phase
2, Alice and Bob then encode the records in their databases (DA and DB ,
respectively) into Bloom filters (BF). As we explain in Section IV, only one
DO needs to generate the BF masking keys for comparison. Masking keys
and BFs are sent to a linkage unit (LU) in phase 3 for comparison, and the
final set of classified matched record identifiers (DM ) are sent back to the
DOs. Each step shown in rectangles with rounded edges is performed by the
LU while all other steps are performed by the DOs. Rectangular boxes with
dashed lines represent steps that are performed similarly by the DOs.

As shown in Fig.1, our temporal PPRL (PPTRL) protocol
accepts two or more databases as input and outputs a list that
contains the identifiers of record pairs that belong to the same
entity. We propose a secure protocol for each participating
organization to individually (1) calculate the probabilities for
an attribute value of an entity to change over different time
periods and (2) for different entities to share the same attribute
value over time. Such probability values are known as decay
values [9]. Using these decay values we assign a weight to
each attribute where the sum of attribute weights are used to
calculate the similarity between a pair of records. We use this
adjusted similarity value to decide if a pair of records is a
match or a non-match using a similarity threshold.



Contribution: We propose a novel protocol that can per-
form PPRL between different databases while incorporating
temporal information. We use a homomorphic encryption [10]
based technique to calculate decay values between different
databases. We then proposed a Bloom filter (BF) encod-
ing [11] and masking based technique to securely calculate
the similarities between record pairs. We analyze the privacy
of our protocol which shows no participating party can learn
anything about the entities in the other databases. An empirical
evaluation with large real databases shows our protocol is
scalable to large databases which make this protocol applicable
to Big Data applications. As we show in our experiments
our proposed protocol can easily be extended to multiple
databases which allows the protocol to be used in a multi-party
context [6], [7]. To the best of our knowledge, no temporal
linkage technique has been proposed for PPRL.

II. RELATED WORK

The concepts of using temporal information for linking
records was first introduced by Li et al. [9] who proposed
a supervised temporal model that considers the probability
of attribute value changes, known as time decays, over time.
These probabilities are used as weights to adjust the sim-
ilarities calculated between pairs of records based on their
time difference. The experiments conducted on a bibliographic
database showed that using temporal information of records
can improve linkage quality.

Christen and Gayler [4] proposed an approach to adaptively
train a temporal model using a stream of temporal records. The
proposed technique calculates the disagreement decay similar
to [9], but instead uses the agreement decay based on the
frequency distribution of attribute values. This approach is
thus similar to the frequency based weight adjustment applied
in traditional RL [2]. Further, this approach continuously
trains the temporal model using linkage results which leads
to improved linkage quality.

Chiang et al. [12] proposed an algorithm to learn a de-
cay value of an attribute value based on its re-occurrences
within different time periods. This approach uses a recurrence
function to calculate the probability of each attribute value to
reoccur after a certain period of time. Compared to [9] this
approach uses the entire temporal history (changes of values)
of an entity to adjust the similarities of pairs of records. A
recent approach by Li et al. [13] adapted [12] by introducing a
model that learns the transition probabilities between attribute
values based on the statistics of their occurrences in entity
profiles. The calculated transition probabilities are then used
in the process of linking a record to an entity profile. The
experimental results showed that the use of transition probabil-
ities of an attribute value in the similarity calculations between
records could potentially increase the overall quality of linking
records to generate a complete entity profile.

Recently, Hu et al. [5] proposed a linear regression model
added into the decay value calculation that uses a supportive
attribute to calculate the decay of an attribute. The idea behind
this approach is that the probability for an attribute value to

change over time can be affected by other attributes that it
depends upon. For example, any changes to the last name of
an entity might depend on the gender of the entity such that
female entities are more likely to change their last name over
time than male entities. Hence, using gender as the support
attribute in the decay calculation for last name enables the
linear regression model to learn gender specific decay models
for last name. Experiments conducted on a voter database
showed the use of support attributes for learning decay of a
given attribute can improve the linkage quality compared to
the original temporal linkage approach by Li et al. [9].

Another recently proposed approach by Christen et al. [14]
utilizes the relationships between entities to determine the
similarity of groups of entities in different households using a
graph-based method. The approach follows an iterative process
that first identifies high quality links between records thereby
limiting the more error-prone identification of links between
less similar records. The approach uses temporal information
such as age differences between entities to identify similar
households in different historical census databases.

To summarize, all these existing approaches to temporal
linkage use temporal information for similarity calculations on
pairs of records, and they assume all databases to be linked
belong to the same database owner. Therefore the privacy of
each individual represented by these records is not considered.
However, when databases are to be linked across different
organizations none of these temporal linkage techniques could
be used because they do neither protect the privacy of indi-
viduals nor the sensitive attribute values of these individuals.
On the other hand, existing PPRL techniques do not make use
of temporal information available in records when calculating
similarities which makes them unsuitable for linking temporal
databases [7]. To the best of our knowledge, ours is the first
work to address the problem of performing temporal RL on
different databases while preserving the privacy of individuals
in these databases.

III. PROBLEM STATEMENT

Let Di represents a database that belongs to database owner
DOi. Each record r ∈ Di represents an entity e from a set of
entities E. Each r consists of a list of attribute values A =[A1,
A2, · · · , AM ] and a time-stamp r.t. We use r.Am to denote the
value of attribute Am in r with 1 ≤ m ≤M where M = |A|
is the number of attributes. We use r.e to denote that record
r refers to entity e.

An entity e can have multiple records where each record
ri contains a time-stamp ri.t to denote its time of creation
or its last modification in the database. For a given entity e,
its records ri can contain the same or changed values in the
attributes A ∈ A. Let us assume two records ri and rj of
entity e (i.e., ri.e = rj .e). We can say an entity e has changed
the value of attribute A between time-stamps ri.t and rj .t if
ri.A 6= rj .A, and ri.t < rj .t. Our aim is to identify which
records across different databases D held by different DOs
refer to the same entity e ∈ E. We formally define the problem
of temporal privacy-preserving record linkage as follows.



Definition 1. Temporal privacy-preserving record linkage:
Assume d database owners DOi, 1 ≤ i ≤ d, with their
respective databases Di. Each record rij ∈ Di, 1 ≤ j ≤ |Di|,
in the form of (rij .A1, r

i
j .A2, · · · , rij .Am, r

i
j .t) where rij .t

is the time-stamp associated with record rij , and rij .Am,
m ∈ [1,M ], is the value of attribute Am at the time t
represents an entity e in a set of entities E, such that every
record rij must belong to exactly one entity e ∈ E. The linkage
across the databases Di, i ∈ [1, d], aims to determine which
of their records ri ∈ Di belong to the same entity e even
if ∃Am ∈ A : ri.Am 6= rj .Am, where ri ∈ Di, rj ∈ Dj ,
ri.e = rj .e, i 6= j, and i, j ∈ [1, d]. The aim of temporal
privacy-preserving record linkage is that at the end of the
linkage process the DOs learn only which of their records
belong to the same entity e ∈ E without revealing the attribute
values of the records ri ∈ Di to any other DO or any party
external to the DOs.

We now describe the calculation of decay values which we
will use to adjust the similarities between a pair of records. We
use the two decay values disagreement decay and agreement
decay, as proposed by Li et al. [9] in our approach. These
two decays describe the characteristics of attributes values of
entities across a time period. Disagreement decay defines the
probability that an entity changes its value for a given attribute
over a certain period of time, while agreement decay specifies
the likelihood that multiple entities share the same value for
an attribute over a period of time. We define the time period
(∆t), which also can be defined as a time interval, as the
difference between a start (ts) and an end time (te), denoted
as [ts, te], which can be measured in days, months, or years.
We measure the time distance (td) between two records ri and
rj as the difference between their time-stamps, such that td =
|ri.t− rj .t|. From here onward we use the terms time interval
and time period interchangeably.

Both disagreement and agreement decays can be learned
using training data or specified by domain experts [9]. In this
paper we use labeled records available in a training dataset
to calculate decays assuming DOs know the attribute value
changes that occur in records in their databases that belongs
to the same entity. With such labeled data we can identify the
number of occurrences where an entity changes its attribute
value(s) over a certain period of time. However, the need of
training data is a limitation of our approach.

To this end we formally define the disagreement and agree-
ment decays as follows [9]. Consider an attribute A and a time
period ∆t. Assume each entity e ∈ E has a list of records
T = [r1, r2, · · · , rn] such that ri.t < ri+1t, 1 ≤ i ≤ n− 1.

Definition 2. Disagreement decay (d 6=) [9] is the probability
that an entity e changes its value for attribute A in ∆t time
period. We calculate d6= as follows.

d
6=

(A,∆t) =
|{e : ∀e∈E∀ri,ri+1∈T (ri+1.t− ri.t) ≤ ∆t ∧ ri+1.A 6= ri.A}|

|Ec|+ |Enc|
,

where Ec represent the set of entities that change their values
in attribute A, Ec = {e : ∀e∈E∀ri,ri+1∈T ri+1.A 6= ri.A ∧

(ri+1.t − ri.t) ≤ ∆t}, and Enc represents the set of entities
that do not change their values in attribute A, Enc = {e :
∀e∈E∀ri,ri+1∈T (ri+1.t− ri.t) ≥ ∆t ∧ ri+1.A = ri.A}.

Definition 3. Agreement decay (d=) [9] for ∆t is the probabil-
ity that two entities ei and ej , such that ei, ej ∈ E and i 6= j,
share the same value for attribute A. This probability depends
upon how frequently a certain value a occurs in attribute A.
We calculate agreement decay d= as follows.

d
=

(A,∆t) =
|{(ei, ej) : ∀ei,ej∈E |ri.A− rj .t| ≤ ∆t ∧ ri.A = rj .A}|

|Ea|
,

where Ea represents the union of the set of entity pairs
that share the same attribute value of A and the set of
entity pairs that do not share the same value for attribute
A, Ea = {(ei, ej) : ∀ei,ej∈E |ri.A − rj .t| ≤ ∆t ∧ ri.A =
rj .A}∪{(ei, ej) : ∀ei,ej∈E |ri.A−rj .t| ≤ ∆t∧ri.A 6= rj .A}
and ri ∈ Ti of ei and rj ∈ Tj of ej .

For example, the probability that two entities share a rare
English surname like ’Mirren’ depends upon the likelihood
that a record contains such a value in the surname attribute.

The aim of our approach is to use these disagreement
and agreement decay probabilities to adjust the similarities
between a pair of records in a privacy-preserving manner
without revealing any attribute values. We next describe our
approach in more detail.

IV. TEMPORAL PPRL

Without loss of generality, let us assume two database
owners (DOs), Alice (DOA) and Bob (DOB), with databases
DA and DB , respectively. We assume a linkage unit (LU) is
employed in the protocol to facilitate the linkage [7], [2]. The
LU is a party that may or may not be external to the DOs [3].
In general, the LU does not have any data itself but it conducts
the linkage of the data sent to it by DOs. We assume the DOs
are honest and do not collude with any other party, and the
LU follows a semi-honest adversary model [10].

Our temporal PPRL protocol is designed to allow DOs to
compute the decay values globally based on the attribute value
changes of entities in both databases. We assume each database
is not de-duplicated such that each entity can be represented
by one or more records in a database. As shown in Fig. 1, our
protocol consists of three main phases:

1) Decay generation: As we describe in Section IV-A,
the DOs first individually compute a list of time in-
tervals, TI . These time intervals are used to calculate
disagreement and agreement decay probabilities which
are then used to adjust the similarity of pairs of records.
Each DO computes the attribute value changes of the
entities in its database independently. The LU computes
the summation of these attribute value change counts
which are then send to the DOs to compute the decay
probabilities for each attribute in each interval I ∈ TI .

2) Bloom filter generation: Each DO encodes the records
in its database using Bloom filter (BF) encoding [11].
As we describe in Section IV-B, to assist the LU in the
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Fig. 2. Decay probabilities for different attributes based on samples of
100,000 and 1,000,000 records from the North Carolina voter registration
database (described in Section VI). The top row shows disagreement decay
probabilities while the bottom row shows agreement decay probabilities. As
can be seen (and as expected [4]), disagreement decays increase monotonically
with time while agreement decays do not change over time.

third phase of our protocol one of the DOs generates
a list of masking BFs used to adjust the similarities of
pairs of BFs compared by the LU based on the temporal
distance of the corresponding records. Each DO then
sends its encoded database to the LU.

3) Bloom filter comparison: As we describe in Sec-
tion IV-C, the LU first applies a blocking technique
upon the received BF databases of each DO and then
generates a set of blocks, B. We use a Hamming distance
based locality sensitive hashing (HLSH) technique as
the blocking technique [15]. The BF pairs in each
block B ∈ B are compared using a similarity based
classification and the record identifiers of the classified
matching BF pairs are sent back to the DOs.

Prior to these three phases, as prerequisites, the participating
DOs agree upon the list of attributes A to be used, the param-
eters required for Bloom filter (BF) generation, including the
BF length l, the q-gram length q (in characters), the number
of hash functions k, a similarity function sim() to compare
the pairs of BFs, and the minimum similarity threshold st to
decide if a pair of BFs is a match or not. As we describe in
Section IV-A, all DOs also agree upon a public key pk and a
secret key sk to be used in a homomorphic cryptosystem [16]
in Phase 1 of our protocol. In the following three subsections
we discuss each phase in more detail.

A. Decay Generation

In the first phase of our protocol each DO computes
the disagreement and agreement decay probabilities that are
needed in the record comparison phase to adjust similarities
between record pairs. Algorithm 1 outlines the steps performed
by the DOs and the LU.

First the DOs compute the list of time intervals that need to
be considered when computing decay values (lines 2 to 4). The

Algorithm 1: Decay generation

Input:
- LD: List of databases, LD = [Di], 1 ≤ i ≤ d
- A: List of attributes, A = [A1, A2, · · · , AM ], 1 ≤M ≤ |A|
- ns: Sample size
- nI : Number of required temporal intervals
- nk: Minimum entity count
- pk, sk: Public and private key for encryption and decryption
1: TI = [ ] // Initialize an empty list for time intervals
2: foreach i ∈ [1, 2, · · · , nI ] do:
3: I = genInterval(LD, ns, nk) // Compute the time interval
4: TI .add(I) // Add the interval to list of intervals
5: foreach Di ∈ LD do:
6: Di

c = compChangeCounts(Di, ns,TI ,A) // Get change counts
7: D

i
c = encrypt(Di

c, pk) // Encrypt the local change counts
8: DOi sends D

i
c to the LU

9: LU receives D
i
c // The LU receives encrypted change counts

10: LU computes Dc =
∑

i∈[1,d] D
i
c // Homomorphic addition of counts

11: LU sends Dc to DOs // Sends encrypted sum to Alice and Bob
12: foreach i ∈ [1, d] do:
13: DOi receives Dc

14: Dc = decrypt(Dc, sk) // DOs decrypt summed change counts
15: d6=,d= = computeDecay(Dc, TI ,A) // Compute decay values

participating DOs need to agree on the number of intervals,
nI , that need to be considered. The DOs follows an iterative
approach where in each iteration each DO computes a possible
time interval that is added to the list of time intervals TI using
the function genInterval() (line 3).

In the function genInterval() each DOi randomly samples
ns records from its database. Each DOi then iterates through
its sampled records to calculate a possible time period that
can be used as an interval Ii. As explained in Section V, to
improve privacy each DOi ensures there are records of at least
nk > 1 entities available with their pairwise time distances
that are within Ii. This is required because if, for example,
an interval I contains attribute value changes or a new record
creation of an entity e in DA of Alice, then Bob can learn
in the decay computation step that Alice’s database contains
a single entity that has changed its attribute values within I .
This could potentially lead to the identification of e in the
record comparison phase. As shown in Fig. 1, all DOs follow
these steps independently.

Once each DOi has computed its interval Ii in a given
iteration, all DOs participate in a secure multi-party com-
putation protocol to calculate the maximum time interval I
out of all generated intervals Iis. This computation follows
Yao’s Millionaires problem [17] where we use a homomorphic
encryption technique to identify the maximum time interval I
from all computed Iis to ensure all DOs have records of at
least nk entities in the time interval I [18]. The interval I
is returned from the function genInterval() which is then
added into the list of time intervals TI in line 4. To avoid
such computations, as a prerequisite, all DOs could instead
agree on the list of time intervals to be considered in the decay
calculations which can be used as input to the algorithm.

In lines 5 to 9, each DOi computes the list of change counts
Di

c independently for each time interval I ∈ TI . Following



Definitions 2 and 3, in line 6 each DO computes the number of
times an entity does change and does not change its value for
each attribute A ∈ A, and the number of entity pairs that share
the same value and different values for each attribute A ∈ A
for each interval I ∈ TI . To improve the efficiency each DO
first samples a set of records and computes the required change
counts. As shown in Fig. 2, given a large enough sample size,
adding further records to the sampling does not significantly
affect the calculation of decay probabilities.

Each DOi then encrypts the calculated list of local change
counts Di

c into D
i

c using the function encrypt() and the public
key pk (line 7). Each DOi then sends its D

i

c to the LU (line
8). Once all D

i

cs are received, the LU uses homomorphic
addition [16], [18] to add all encrypted D

i

cs into Dc (line
10). The LU sends Dc to all DOs.

Once Dc is received by a DO, the DO decrypts Dc into Dc

using the function decrypt() and using the secret key sk (line
14). The function computeDecay() is used to generate the list
of disagreement (d6=) and agreement (d=) decay probabilities
(as discussed in Section III) using Dc for each attribute A ∈ A
for each interval I ∈ TI (line 15). These decays probabilities
are used next in the second phase of our protocol to generate
a set of masking BFs.

B. Bloom Filter Generation

As shown in Fig. 1, the second phase of our protocol
consists of two main steps. First each DO encodes its database
into Bloom filters (BFs). A BF is a bit vector of length l
bits initially set to 0. To encode a value into a BF a set of
hash functions is used where based on the output of each
hash function the corresponding bits are set to 1 [11]. BF
based PPRL techniques have the advantage of being efficient
and facilitate the linkage of large real-world databases, where
approximate matching is crucial due to errors and variations
in attribute values [1].

As outlined in Algorithm 2, we use an adapted record
level BF (RBF) encoding approach, where RBF has shown
to be secure against frequency attacks [15]. In RBF the
values of each attribute in a record are hash-mapped into
different BFs, which are then concatenated to create a single
BF for a record. The aim of using RBF is to allow the
LU to adjust the similarities based on the calculated decay
values for each attribute separately. Before generating RBFs,
the number of bits required for each attribute A ∈ A is
calculated (lines 2 to 4). Each DOi first calculates the list
Li
b of average attribute value length for each A (line 2).

Once all DOs compute their Li
bs, each DOi sends its Li

b to
the other DOs to compute the list Lb of average attribute
value length across all DOs. For example with Alice and
Bob, ∀j∈|Lb|Lb[j] =

∑
i∈{A,B} L

i
b[j]/|{A,B}|. Following

[15] we then compute the corresponding number of bits for
each attribute that needs to be selected from a BF of length l
bits, and add these bit lengths to the list Lbf (line 4).

Next, each DO independently encodes its records into BFs
and sends these BFs to the LU (lines 6 to 15). In line 6,

Algorithm 2: Bloom filter generation

Input:
- Di: Database of database owner i (DOi)
- A: List of attributes, A = [A1, A2, · · · , AM ], 1 ≤M ≤ |A|
- ns: Sample size
- q, l: Length of a q-gram and a Bloom filter
- k: Number of hash functions
- H: List of hash functions, H = [h1, h2, · · · , hk]
- R: Random permutation of bit positions, |R| = l

1: Lbf = [ ] // Initialize an empty list for attribute bit lengths
2: Li

b = getAttrV alueLen(Di, A, ns) // Get attribute value lengths
3: Lb = computeSummation(Li

b) // Compute averages globally
4: Lbf = compAttrBFLen(l, Lb) // Get BF length for each A ∈ A
5: Bi = {} // Initialize an empty Inverted Index
6: foreach r ∈ Di do: // Loop over all records in database
7: b = [] // Initialize an empty Bloom filter
8: foreach A ∈ A do: // Loop over each attribute
9: Sq = genQgrams(r.A, q) // Generate set of q-grams

10: bA = genBF (Sq , Lbf , k, H) // Encode q-grams into the BF
11: b = b.concatenate(bA) // Concatenate the generated BF
12: bp = permute(b, R) // Permute the bit positions randomly
13: Bi[r.id] = (bp, r.t) // Add BF to the inverted index
14: DOi sends Bi to the LU
15: LU receives Bi

each DOi loops over each record r ∈ Di and first converts
each attribute value r.A into a set Sq = {q1, q2, · · · , qn} of
sub-strings of length q (line 9), known as q-grams [2]. Then
each q ∈ Sq is encoded into a BF bA by using k independent
hash functions, H = {h1, h2, · · · , hk}, and all bits having
index positions hj(s) for j ∈ [1, k] in the BF are set to 1
(line 10). All BFs bA as generated for the attributes A ∈ A
are concatenated into the final BF b (line 11). As detailed in
Section V, to improve the privacy the bit positions in each BF
are permuted according to a random sequence R (not shared
with the LU) which is agreed upon by all DOs (line 12). Each
permuted BF bp is added with its corresponding record time-
stamp r.t into an inverted index Bi using its corresponding
record identifier r.id as a key (line 13). Each DOi sends its
Bi to the LU for comparison in the third phase (line 14).

In the second step of phase 2, a list of masking BFs, Lm,
where each masking BF bm ∈ Lm is of length l, is generated
by one DO to be sent to the LU, as illustrated in Fig. 1. The
generation of masking BFs is based on selecting a random
subset of BF bits for each attribute. The number of masking
bits per attribute is calculated based on their corresponding
decay values. The aim of these masking BFs is to allow the
LU to adjust the similarity of a pair of BFs (bi, bj) according
to the corresponding decays of their time distance td = (ri.t−
rj .t). To adjust the similarities separately for each attribute
we generate each bm as a concatenated bit vector. For each
attribute A ∈ A we generate a bit vector segment bA using
the corresponding bit length lA for A in Lbf and concatenate
these bit vectors together to create a masking BF bm of total
length l. First all the bit positions in each bA are set to 0. We
calculate the number of bit that need to be set to 1 in bA using
the decay probabilities of A for a time interval I ∈ TI .

As can be seen in Fig. 2, since agreement decay (d=) does
not change over time we only consider disagreement decay



Algorithm 3: Bloom filter comparison

Input:
- B: List of inverted indexes of BFs, B = [Bi], i ∈ [1, d]
- Lm: List of masking Bloom filters
- sim(, ): Similarity function for comparing BFs
- st: Similarity threshold value
- λ, µ: Number of iterations and bit positions sampled for HLSH

1: DM = [ ] // Initialize an empty list of matching record identifiers
2: LB = compLSHBlocking(B, λ, µ) // Perform LSH based blocking
3: foreach B ∈ LB do: // Loop over all generated blocks
4: foreach (bi, bj) ∈ B : bi ∈ Bi, bj ∈ Bj , i 6= j do:
5: td = ri.t− rj .t // Compute time distance between BFs
6: bm = getMaskingBF (Lm, td) // Get the relevant masking BF
7: b′i = bi ∧ bm // Conjunct masking BF with BF bi
8: b′j = bj ∧ bm // Conjunct masking BF with BF bj
9: s = sim(b′i, b

′
j) // Compute similarity between masked BFs

10: if s ≥ st then: // Check if similarity above the threshold
11: DM.add((ri.id, rj .id)) // Add record identifiers into DM

12: LU sends the list of matching record identifiers DM to DOs

(d 6=) as weights for the number of bits to be selected. Hence,
the number of bits n1 that need to be set in bA for each
attribute is calculated as n1 = (1−d 6=(A, I)) · lA. As a result,
a maximum of n1 bit positions in bA is set to 1. For example,
if d6=(A, I) = 1.0 then n1 is equal to 0 and d6=(A, I) = 0.0
then n1 = lA. All bAs of the interval I are concatenated and
bit positions are permuted according to R. This ensures the bit
positions of each bA are correctly aligned with bit positions
in each permuted BF bp for each attribute A ∈ A. Each bm is
added into a list Lm and finally Lm is sent to the LU to be
used in the comparison phase. As explained in Section IV-C,
each BF b in a pair of BFs is conjuncted (logical AND) with
the corresponding masking BF bm based on td. This allows
to mask a set of bit positions from each b from the similarity
calculation, thereby reducing the similarity component of the
different attributes according to their decay values.

C. Bloom Filter Comparison

As shown in Fig. 1, in the third phase the LU conducts the
linkage upon the BFs of each DO as generated in phase 2.
In order to prevent a full pair-wise comparison of each BF
from a database with every BF of another database (which
has a quadratic complexity), the LU uses a privacy-preserving
blocking technique upon BFs to group them into blocks. We
employ Hamming distance based locality sensitive hashing
(HLSH) [15] which requires the two parameters λ (the number
of iterations) and µ (the number of bit positions selected in
an iteration). The LU then compares each BF pair in each
block using a similarity based linkage technique to identify
the record identifiers (IDs) that refer to the same entities.
Algorithm 3 outlines the steps involved in this phase.

Algorithm 3 starts by initializing an empty list of matching
record IDs DM (line 1), followed by the generation of the
list of blocks LB using the function compLSHBlocking()
(line 2). Each block B ∈ LB contains one or more BFs from
Bi from different DOis that share the same bit pattern for
randomly selected λ bit positions. In lines 3 and 4 of the
algorithm we loop over each block B ∈ LB and generate all

unique pairs of BFs (bi, bj) in each block B where bi and bj
are from different databases.

Next, the time distance td between the BF pair (bi, bj)
is calculated as the difference between the corresponding
time-stamps (line 5). In line 6, based on td the function
getMaskingBF () selects the appropriate masking BF bm
(line 6) which is then conjuncted with bi and bj to generate b′i
and b′j , respectively (lines 7 and 8). We calculate the similarity
s between the conjuncted BFs b′i and b′j using a similarity
function, such as Hamming distance or Dice similarity [2]. If
this similarity s is at least the minimum similarity threshold st
(line 10) then the corresponding record ID pair (ri.id, rj .id)
of bi and bj is classified as a match and is added to the list
DM. Finally, in line 12, the LU sends the list DM to all DOs.

V. DISCUSSION OF THE PROTOCOL

We now analyze our protocol in terms of complexity and
privacy. We assume d database owners (DOs) are participating
in the protocol and each DO has a database with nr records.
We assume all the parties in the protocol are directly connected
to each other through a secure communication channel.

A. Complexity Analysis

We compute the computation complexities for each step of
the three phases of our protocol, which are shown in Fig. 1.
We analyze these complexities in terms of a single DO and the
LU independently. In phase 1 all the DOs need to participate
to compute the list of time intervals TI . In the function
getInterval() in Algorithm 1, each DO samples ns records
from its database to compute a time interval I ∈ TI . This
requires each DO to loop over each record in the selected
sample to check if at least nk entities can be found with two
or more records that have time distances within I . This results
in a O(ns · nI) complexity for each DO to generate nI time
intervals in the first step of phase 1.

In the next step each DO computes the number of times
an entity changes the attribute values in its records and the
number of times a pair of entities share the same value for
each attribute A ∈ A. In the function compChangeCounts()
in Algorithm 1, each DO loops over the attribute values of each
attribute A ∈ A of the ns records sampled from its database
to calculate these counts. Hence, the second step of phase 1
is of O(n2

s · nI · |A|) complexity, where |A| represents the
number of attributes.

Once the change counts are computed, each DO then en-
crypts its list of these counts before sending the list to the LU.
This requires O(nI · |A|) complexity in the third step of phase
1. Each DO sends its encrypted list of change counts to the LU
in step 4 where the LU performs homomorphic addition on
each change count in these lists. This homomorphic addition
is of O(d · nI · |A|) complexity. As shown in Fig. 1, in the
last step of phase 1 each DO computes the decay probabilities
using the summation of the lists of encrypted change counts.
Hence, the function computeDecay() in Algorithm 1 requires
a complexity of O(nI · |A|) for computing decay probabilities
for each attribute A ∈ A under each time interval I ∈ TI .



In the first step of the second phase of our protocol, all DOs
encode the records in their databases into BFs and send their
encoded databases to the LU. We assume each attribute A ∈ A
has an average of nq q-grams. Hence, the generation of BFs
for a single database is of O(nr · nq · nk · |A|) complexity.
Once the BFs are generated, in the second step of phase 2 one
DO needs to generate the list of masking BFs to be used in
the similarity calculation step in phase 3. The generation of
masking BFs of length l is of O(nI · l · |A|) complexity.

In the third phase the LU performs HLSH blocking [15]
upon the BFs received from the DOs. This requires the LU
to iterate over each BF in each encoded database. Each BF is
added into (l/µ) blocks over λ iterations. Hence, the function
compLSHBlocking() in Algorithm 3 is of O(d ·nr ·λ · l/µ)
complexity. By assuming each block B ∈ LB contains nb BFs
from different databases, nb(nb − 1)/2 BF pairs need to be
compared by the LU for each B. Therefore, the comparison
of the list of blocks LB is of O(n2

b · |LB |) complexity.

B. Privacy

We analyze the privacy by assuming each DO is honest and
does not collude with any other party that participates in the
protocol. We assume the LU follows the honest-but-curious
adversary model [1], [7], [10]. This is a common assumption in
PPRL protocols [6], [7]. To consider the worst-case scenario,
let us assume all the DOs and the LU have access to a publicly
available database G where the private databases held by the
DOs are subsets of G, ∀i∈[1,d]D

i ⊂ G.
In the time interval computation step in phase 1, each DO

ensures that each time interval they compute contains records
of at least nk entities. This provides k-anonymous privacy
(k = nk) for the entities in each database as none of the DOs
will be able to identify specific information about individual
entities in each time interval [7]. For example, for the database
of a given DOi, if a given time interval I contains change
counts only about a single entity that changes its last name
then another DO could analyze the records in G to identify
potential entities who have changed their last names in I .
Hence, when nk ≥ k neither of the DOs would be able to
identify an entity in a database of another DO.

In the third phase of our protocol the LU applies a privacy-
preserving blocking and comparison step upon the BFs it
receives from all DOs. The LU does not know anything about
the parameters used in the BF generation process and the
random sequence R that has been used to permute the bit
positions in these BF. Since the masking BFs are also permuted
in the same way, without knowing R the LU cannot identify
the sets of bit positions that have been allocated to each
attribute A ∈ A. Hence, even if the LU uses a frequency
analysis using G upon the BFs it cannot learn any information
about the attribute values that have been encoded in the BFs.

VI. EXPERIMENTAL EVALUATION

We now provide the details of the experimental evaluation
of our proposed temporal PPRL protocol. The programs and
test datasets are available from the authors.

TABLE II
THE AVERAGE NUMBER OF ENTITIES WITH VALUE CHANGES IN THEIR

RECORDS FOR DIFFERENT ATTRIBUTES IN THE DATABASES USED IN OUR
EXPERIMENTAL EVALUATION.

Number
of DOs

Number of entities with value changes
First

Name
Last

Name
Street

Address City Zipcode

2 42,922 197,163 1,609,251 820,783 1,114,127
3 41,667 191,068 1,557,560 791,020 1,073,184
5 31,385 140,785 1,228,758 612,135 836,311
7 29,661 136,147 1,203,799 606,838 822,097
10 24,569 106,656 1,011,569 496,717 684,267

A. Experimental Setup

For experiments we used a real voter registration dataset
(NCVR) from the US state of North Carolina (NC) (available
from: http://dl.ncsbe.gov/). We have downloaded this dataset
every second month since October 2011 to April 2018 (in
total 25 datasets) and built a compound temporal dataset that
contains over 8 million records of voters names and addresses.
The records (about the same entity) in these datasets can
be grouped into three categories: (1) exact matching: those
records that are exactly matching with each other, (2) unique:
those records that are only appearing in one database, and (3)
updated: those records where at least one attribute value has
changed. In these records we only used first name, last name,
street address, city, and zipcode as the set of attributes A,
because these are commonly used for record linkage [6], [7].

From these NCVR datasets we extracted records for subsets
including 2, 3, 5, 7, and 10 DOs by assigning each dataset to a
DO in a round robin fashion. For example, with 2 or 10 DOs
in total, each DO is assigned at least 12 and 2 NCVR datasets,
respectively. We generated two variations of databases for
each DO by extracting records from each database assigned
to it. In the first variation (named as NC-20E) we extracted
20% of exact matching with all unique and updated records
while in the second variation (named as NC-0E) we only
include unique and updated records. Each database in NC-20E
and NC-0E contains an average of 5,185,859 and 3,705,233
records, respectively. Table II provides an overview of attribute
value changes in the databases we generated.

The scalability of our protocol is evaluated by using run-
time. We measured the runtime required for each phase of our
approach with different database sizes and different number of
databases. The linkage quality of our protocol is measured by
using precision and recall [2]. Precision is calculated as the
ratio of the number of true matched BF pairs found against the
total number of candidate BF pairs compared across databases,
while recall is calculated as the ratio of the number of true
matched BF pairs against the total number of true matched BF
pairs across all databases.

To evaluate the privacy we used the recently proposed
cryptanalysis attack by Christen et al. [19]. This attack aligns
frequent BFs and plain-text values in a public database G to
allow re-identification of the most frequent values encoded in
these BFs. We conducted this attack assuming the worst-case

http://dl.ncsbe.gov/


TABLE III
THE AVERAGE RUNTIME REQUIRED FOR EACH PHASE OF OUR APPROACH

COMPARED WITH THE NON-TEMPORAL PPRL TECHNIQUE. RUNTIMES
ARE SHOWN IN SECONDS AND K REPRESENTS 1,000 RECORDS.

Number
of records

Our temporal PPRL approach
Non-temporal

PPRL
Decay

Generation
Bloom filter
Generation

Bloom filter
Comparison

10K 3,997.1 19.0 56.3 54.2
50K 4,005.4 96.0 286.4 282.5
100K 4,018.2 201.4 595.2 559.6
500K 4,053.7 998.7 2,899.7 2,788.3

1,000K 4,105.8 2,156.2 5,819.4 5,761.8
5,000K 4,567.3 9,876.8 25,923.5 28,805.6

scenario of the LU gaining access to a database D of a DO,
where G ≡ D, and trying to re-identify the values in D by
using the BFs the LU received from the DO. However, note
that such an attack is highly unlikely in practice since the DOs
do not send their own databases to any other party.

For comparison we used a non-temporal state-of-the-art
PPRL technique proposed by Schnell et al. [11] as there are
no existing PPRL technique we are aware of that can be used
for temporal PPRL. This approach uses cryptographic long-
term key (CLK) for encoding records into BFs. Each DO first
converts the attribute values of each record in its database
into a set of q-grams and then each q-gram is encoded using
k hash functions into a BF. Each DO sends its BFs to the LU
for comparison, and if the similarity of a pair of BFs is at
least a given threshold (st) then it is considered as a match.

We set the sample size ns to 50,000, and computed the
list of time intervals from 1 to 10 years in one-year gaps and
from 10 to 50 years in ten-year gaps in phase 1 by setting
nk = 10. We set the public (pk) and private (sk) key lengths
to 128 bits. Following earlier work in PPRL [6], [7], [11], in
phase 2 and the CLK encoding in non-temporal PPRL we set
the BF parameters as l = 1,000 bits, k = 30 hash functions,
and q = 2. In phase 3 for HLSH blocking we used parameter
settings in a similar range as used by the authors [15], where
the number of iterations is set to λ = 20 and the number of
bits to be sampled from the BFs at each iteration is µ = 100.
Following [11] we set the threshold st to 0.8 and used Dice
coefficient as the function sim() in Algorithm 3.

We implemented all the approaches using Python program-
ming language (version 2.7.3). All experiments were run on
a server with 64-bit Intel Xeon (2:4 GHz) CPUs, 128 GBytes
of main memory, and running Ubuntu 14.04.

B. Results and Discussion

Table III show the scalability of our protocol in terms of
average runtime required in each phase with different database
sizes. As can be seen from this table, the runtime required in
phase 1 does not vary with the database size because we use
the same sample size ns (ns = 50,000 records) in the change
count computation step for each database. As we expected
the runtime required by a DO to encode its database in the
second phase and the runtime required by the LU to compare
the BF pairs in the third phase scale linearly with the number

of records and the number of databases, respectively. However,
we noted that our approach consumes more runtime compared
to the non-temporal PPRL technique because each DO has to
compute the decay probabilities in phase 1 which requires the
comparison of ns(ns − 1)/2 record pairs.

Fig 3 shows the precision and recall of our approach for the
linkage of different number of databases compared with the
non-temporal PPRL technique. Figs. 3 (a) to (d) show that our
approach achieves better precision compared to non-temporal
PPRL (Figs. 3 (e) to (h)). Our approach achieves a precision of
0.913 while non-temporal PPRL achieves a precision of 0.802
for the linkage of 10 databases with five attributes in A. This is
because the use of masking BFs helps to adjust the similarities
between pairs of BFs based on the time distance between them.
We also noted that our proposed approach achieves higher
precision even with an increasing number of attributes used
in the linkage process. This is because the similarities of each
pair of BFs are adjusted separately for each attribute which
reduces the number of false positives in the BF comparison
phase. Hence, the use of temporal information improves the
overall linkage quality of our approach.

However, as shown in Figs (c), (d), (g), and (h), the recall
drops in the linkage of the NC-0E databases compared to the
NC-20E databases. This is because each record of an entity
in NC-0E contains one or more attribute value changes that
potentially results in the corresponding BFs of true matching
record pairs to be grouped into different blocks in the HLSH
step in Algorithm 3. Hence, further investigation is required
to incorporate temporal information into blocking of BFs.

Finally, Fig. 4 shows the re-identification results from the
cryptanalysis attack applied in the third phase of our approach.
We evaluate the re-identification accuracy [19] of the attack by
calculating (1) the percentage of correct guesses with 1-to-1
matching, (2) the percentage of correct guesses with 1-to-m
(many) matching, (3) the percentage of wrong guesses, and
(4) the percentage of no guesses, where these four percentages
sum to 100. These four categories are labeled as 1-1 corr, 1-m
corr, Wrong, and No in Fig. 4, respectively. We conducted the
attack for different attribute (two to five) combinations.

As can be seen in this figure, in both temporal (Fig. 4 (a))
and non-temporal (Fig. 4 (b)) PPRL techniques the attack can
exactly or partially re-identify a considerable percentage of
encoded plain-text values when two attribute are used in the
BF encoding process. This is because the frequencies of q-
grams can be correctly identified as a lower number of q-
grams is mapped to a certain bit position. Also we note that for
two attribute combination more values are re-identified in our
approach compared to non-temporal technique. This is because
q-grams from different attributes are mapped to independent
bit positions in RBF, and therefore the frequencies of these
q-grams can potentially be analyzed. However, as we increase
the number of attributes an attacker could not re-identify plain-
text values as not enough frequency information is available
to identify q-grams that are encoded in the BFs. Hence,
conducting such cryptanalysis upon BFs that are encoded with
q-grams from different attributes will unlikely be successful.
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Fig. 3. The linkage quality results with different number of databases, where the left two columns and the right two columns show the results for the NC-20E
and NC-0E datasets, respectively. The top row shows the results for our approach and the plots in the bottom row shows results for non-temporal PPRL.
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Fig. 4. Results of the cryptanalysis attack performed on the (a) temporal and
(b) non-temporal PPRL approaches with different number of attributes.

VII. CONCLUSION

We have proposed a novel scalable privacy-preserving tem-
poral record linkage protocol. Our approach consists of three
phases, where in the first phase all database owners (DOs)
securely compute decay probabilities using homomorphic en-
cryption (likelihoods that an entity changes it attribute values
and two entities share the same values for attributes over a
given period of time). In the second phase all DOs encode
their databases using Bloom filters (BFs) and send these BFs
to a linkage unit (LU). In the third phase the LU uses a
set of masking BFs that are generated based on the decay
probabilities to adjust the similarities between pairs of BFs to
identify the matching record pairs. Our experimental results
showed that the proposed approach can achieve better linkage
quality when incorporating temporal information in the linkage
process compared to non-temporal PPRL while providing
privacy to individuals in the databases that are being linked.

As future work we aim to investigate the use of active learn-
ing strategies [8] for learning decay probabilities to overcome
the need of training data in phase 1 of our approach. We plan
to incorporate other secure BF encoding mechanisms [6] in
our approach to improve privacy. We also aim to experiment
with different real data sets and PPRL techniques.
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