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Abstract. Record linkage is a commonly used task in data integration
to facilitate the identification of matching records that refer to the same
entity from different databases. The scalability of multidatabase record
linkage (MDRL) is significantly challenged with the increase of both the
sizes and the number of databases that are to be linked. Identifying
matching records across subgroups of databases is an important aspect
in MDRL that has not been addressed so far. We propose a scalable
subgroup blocking approach for MDRL that uses an efficient search over
a graph structure to identify similar blocks of records that need to be
compared across subgroups of multiple databases. We provide an analysis
of our technique in terms of complexity and blocking quality. We conduct
an empirical study on large real-world datasets that shows our approach
is scalable with the size of subgroups and the number of databases, and
outperforms an existing state-of-the-art blocking technique for MDRL.
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1 Introduction

Many organisations, including government agencies, businesses, and research
centres, collect vast quantities of data on a daily basis [3]. To improve the ef-
ficiency and effectiveness of decision making, organisations increasingly require
data from different databases to be integrated. Multidatabase record linkage
(MDRL) is the process of identifying records that match (i.e. correspond to the
same entities) across multiple databases [4]. The process of linking records across
different databases is also known as ‘data linkage’ or ‘entity resolution’ [3].

A real-world example of MDRL would be a health surveillance system that
continuously links data from hospitals and pharmacies. The data collected from
these sources can facilitate the investigation of geographical and temporal effects
of diseases, or adverse drug reactions in certain patient groups [2]. Such anal-
yses require the linkage across subgroups of hospital and pharmacy databases
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collected at different locations since the linkage across all databases would not
be sufficient to identify subsets of matching records such as cancer patients who
visited a certain number of hospitals in a country, but not all hospitals.

In a MDRL context, potentially each record from one database needs to be
compared with all records in all other databases to determine if a set of records
corresponds to the same entity or not [15]. This becomes computationally ex-
pensive as the number of record pair comparisons grows exponentially with the
number of databases to be linked [12]. To overcome this issue, blocking is gener-
ally applied in the linkage process [10]. Blocking reduces the record comparison
space by grouping similar records, that likely correspond to true matches, based
on the values of a set of attributes into the same block, while inserting records
that likely correspond to non-matches into different blocks.

To identify subsets of matching records in multiple databases, it must be
possible to link records from subgroups of databases. Though various block-
ing techniques have been developed for MDRL [12,15], these techniques cannot
identify similar blocks across subgroups of databases because of two reasons. (1)
Existing blocking techniques for MDRL are only capable of generating candidate
blocks across all the databases, or for subgroups of a specific size [12], and (2)
the application of a blocking technique multiple times for linking subgroups of
different sizes is computationally infeasible due to the large number of potential
subgroup combinations that need to be considered. This makes subgroup linkage
for MDRL currently not scalable with an increasing number of databases.

We propose a subgroup blocking approach for MDRL which can efficiently
identify blocks of records within a user specific range of subgroup sizes. Assuming
d databases to be linked, we introduce two parameters, gα and gβ , with 2 ≤ gα ≤
gβ ≤ d, to specify the minimum and maximum number of databases, respectively,
that are to be included in a subgroup. Our approach accepts as input the sets
of blocks generated from the databases that are to be linked, and it generates a
set of candidate block tuples (CBT s) for each subgroup size from gα to gβ . The
records across the blocks in each CBT can then be compared in more detail [3].

To generate CBT s that need to be compared across subgroups of different
sizes, we first arrange the sets of blocks from different databases to be linked into
a graph structure G. We then introduce two constraints based algorithms for
the generation of CBT s by traversing over G. Additionally, our approach allows
for subgroups where some of the databases are fixed such that these databases
must appear in every subgroup combination that is generated by our approach.

Contributions: We propose (1) a scalable subgroup blocking approach for
MDRL that can be used under different real-world blocking scenarios, and (2)
two constraint based graph traversal algorithms to generate candidate block
tuples for subgroups of different sizes. (3) We analyse our subgroup blocking ap-
proach in terms of complexity and blocking quality, and (4) empirically evaluate
the approach using large real-world databases with millions of records to validate
its efficiency and effectiveness under different subgroup blocking scenarios. The
results show that our subgroup blocking approach outperforms a state-of-the-art
MDRL blocking approach [12] in terms of efficiency with no loss in effectiveness.



2 Related Work

Papadakis et al. [10] recently provided a survey of blocking techniques that
have been proposed for record linkage. Most of these techniques are limited to
linking two databases, and only few techniques have been developed for MDRL.
Sadinle and Fienberg [15] proposed a probabilistic technique for linking multiple
databases by extending the seminal work of Fellegi and Sunter [5]. This technique
uses standard blocking [3] to group records into blocks, however it can only be
used to match records across all the databases that are being linked.

Kong et al. [9] recently proposed an unsupervised technique to link records
from multiple heterogeneous databases. This approach uses locality sensitive
hashing (LSH) [7] to block each database to improve efficiency when generating
candidate record tuples. The authors then adapted [5] to calculate the likelihood
of a candidate record tuple being a match or a non-match based on several
attributes. This approach, however, does not scale with the number of databases
due to the large number of probability calculations required for each record tuple
to be compared, and it cannot perform subgroup matching across databases.

Ranbaduge et al. [12] proposed a distributed blocking technique for privacy-
preserving MDRL. This approach allows each owner to block its database inde-
pendently by conducting a local clustering over their database to generate blocks.
These blocks are then hashed using LSH [7] to identify the blocks that need to
be compared across databases. While this approach can identify the blocks that
need to be compared for a single subgroup size, it has to be run repeatedly for
subgroups of different sizes, making the approach neither efficient nor effective
in terms of identifying subgroup block tuples of different sizes.

In contrast to these existing multidatabase blocking approaches, our ap-
proach generates in one single run all candidate block tuples for subgroups of
different sizes. We also allow the user to specify the minimum and maximum size
of the subgroups, gα and gβ , that are to be generated. The approach efficiently
generates the most similar candidate block tuples by applying a constraints based
pruning technique over a graph structure that is created based on the generated
blocks. Fu et al. [6] proposed a graph based approach to match households across
time in historical census data, while a MDRL meta-blocking approach recently
proposed by Ranbaduge et al. [11] also uses a graph structure to remove redun-
dant record pair comparisons. However, both these approaches are not capable
of performing subgroup blocking across databases.

3 Subgroup Blocking Process

Let us assume d (≥ 2) de-duplicated databases are to be linked. We use the
notation DA,DB ,DC , and so on to represent different databases, while Ai, Bj ,
Ck and so on to represent the blocks generated for each corresponding database.
The aim of our approach is to generate candidate block tuples (CBT s) for sub-
group combinations across these d databases. A CBT is a tuple of blocks which
consists of a maximum of one block per database, and blocks from at least two
databases. As illustrated in Fig. 1, the approach consists of three steps:



, D B(DA , D C) , D C(DB

, ,< >B 11A C 1 ,< >C 11B D 1,

, D B(D , D , D )A C D

, ,< B 11A C 1 >,D 1 , ,< B 11A C 2 >,D 2

...

C
o

m
p

a
r
is

o
n

 a
n

d
 c

la
ss

if
ic

a
ti

o
n

cg
1

cg
4

cg
3

cg
2

A 1 1B

C 2

C1

1D D 2

2A

C

B

D
2 B 3

D 323

A 2 3CD 4

A

1D
1 B C 11

B 1

C 2 D 1A 1

D 2 C 1

A 2 C 3 D 4D 3

B 3

B 2

,1A< C 1 >

,2A< C 3 >

(D , D )A C(D , D )BA (D , D )C D

,2A B 2 ><
,1A B 1 >< 1C< D 1, >

2C< D 2, >

..
.

..
.

..
.

...

, D D

... )

..
.

..
.

Step 2 Step 3

Subgroup candidate generationCandidate graph construction

Step 1

Potential candidate

grouping (CG)

1

1

1

1

2

2

2 2

1
11

1

1

1

1

11

2

1

Subgroups of size 2

Subgroups of size 3

Subgroup of size 4

M
u

lt
id

a
ta

b
a

se
 b

lo
c
k

in
g

Fig. 1. Overview of our subgroup blocking approach with its three main steps. First,
in step 1 the set of candidate groups (CG) is generated. A graph is constructed in step
2, where each block description pair (BDP ) in a candidate group cg ∈ CG becomes
a vertex. Two vertices are connected by an edge if they occur in the same cg. Each
edge is assigned with a weight which in this example is the number of cg ∈ CG that
contain a given pair of BDP s. In step 3, candidate block tuples (CBT s) are identified
for subgroups that need to be compared. In this example, (gα, gβ) is set to (2, 4).

1. Potential Candidate Grouping : As we discuss in Sect. 3.1, the block descrip-
tion pairs (BDP s) of each database are grouped into a set of candidate
groups (CG) based on the similarities between their block representatives.

2. Candidate Graph Generation: A candidate graph G is constructed based on
the generated CG. This requires an iteration over each group in the CG
to create vertices and edges in G. Then weights (w) are calculated for each
edge in G, as we discuss in detail in Sect. 3.2.

3. Subgroup Candidate Generation: CBT s are generated for each subgroup
combination using G. As we describe in Sect. 3.3, a weight threshold (wt) is
used to remove low weighted edges (w < wt) in G to ensure the block pairs
that have a low similarity are excluded from the CBT generation process.

The two user defined parameters, gα and gβ , with 2 ≤ gα ≤ gβ ≤ d, specify
the minimum and maximum number of databases that are to be included into
subgroup combinations, respectively. As an optional parameter, the user can also
define the set of fixed databases (F ) that must be included in every subgroup
that is generated. Based on (gα, gβ), our approach is capable of generating CBT s
for the following three scenarios with d databases in a MDRL context:

1. gα = gβ = d: This setting gives the linkage between all databases only, i.e.
only sets of blocks that are to be compared across all databases are generated.

2. 2 ≤ gα ≤ gβ < d: This setting gives all possible linkages for subgroups with at
least gα to at most gβ databases, i.e. CBT s are generated for every subgroup
combination between sizes gα and gβ across all databases.

3. F = {Dx,Dy, · · · ,Dz}, |F | ≤ gα ≤ gβ < d: This setting generates CBT s for
subgroups with size at least gα to a maximum size of gβ out of d databases,
where databases Dx, Dy, · · · , Dz must appear in every subgroup.



As shown in Fig. 1, for example, if F = {DA} and (gα, gβ) = (2, 3) then the
subgroup combinations that will be considered in our approach are, for subgroups
of size 2: (DA,DB), (DA,DC), and (DA,DD); and for subgroups of size 3:
(DA,DB ,DC), (DA,DB ,DD), and (DA,DC ,DD).

To perform the linkage across subgroups of databases, as a prerequisite, first
each database needs to be blocked. Any blocking technique [3,10] can be used
to generate the set of blocks for each database, as long as the same technique is
used on all d databases. We assume each database is blocked independently, as
this provides flexibility and efficiency over the block generation process [12].

After blocking is completed, a block description pair (BDP ) is generated for
each block from each database. Each BDP (b, brep) consists of a block identifier
(b) and a block representative (brep). A brep can be generated in different forms,
such as a Min-Hash signature [7], a Bloom filter [12], or a phonetic encoding [3],
as long as the same technique is used on all databases to generate the breps for
all blocks. The set of generated BDP s of each database is then added to an
overall set of BDP s, B, which is used as input in our MDRL subgroup blocking
approach. Hence, we assume this local multidatabase blocking phase to be a
black box. We next describe the three steps of our approach in more detail.

3.1 Potential Candidate Grouping

In step 1 of our approach we identify the potential candidates among the sets
of blocks of each database by grouping the BDP s in B into a set of candidate
groups (CG). The grouping technique is based on the similarities calculated be-
tween the corresponding breps that have been generated. For example, a Jaccard
based LSH [7] technique can be used with breps based on Min-Hash signatures,
where blocks that hash to the same bucket become candidates and each bucket
is considered as a candidate group (cg) that is added to the overall set CG.

Each cg ∈ CG helps to identify the candidate blocks that need to be con-
sidered for comparison. If a pair of blocks appears in multiple cgs it is more
likely that these blocks are more similar. As in Fig. 1 (step 1), for example, the
pair (A1,C1) is more likely to be similar compared to (A1,C2), because (A1,C1)
occurs in two cgs while (A1, C2) only occurs in one. Hence, this grouping reduces
the overall number of block comparisons since only the blocks in a cg will be
compared next in the linkage process. Reducing the number of block comparisons
therefore reduces comparisons between records that are unlikely to be similar.

3.2 Candidate Graph Construction

In step 2 we construct the candidate graph G = (V,E) from CG, where G is an
undirected d-partite graph [1]. The construction of G requires a pass over the
CG where each BDP that appears in a cg ∈ CG becomes a vertex v ∈ V in G.

An edge ei,j ∈ E is created between two vertices, vi and vj , if their corre-
sponding BDP s (BDPi and BDPj) appear in the same cg, with the constraint
that edges are created only between BDP s from different databases. As shown
in Fig. 1 (step 2), a weight wi,j is calculated for each ei,j . The weight wi,j of



Algorithm 1: Apriori Candidate Generation

Input:
- G: Undirected candidate graph
- F : Set of fixed databases
- d: Number of databases
- wt: Weight threshold
- gα, gβ : Minimum and maximum subgroup size

Output:
- SBT: Inverted index of subgroup block tuples

1: SBT← {}, K ← {}
2: k ← 2
3: if k < gα then:
4: K.add(getCombinations(k, gα, d, F ))
5: K.add(getCombinations(gα, gβ , d, F ))
6: foreach S ∈ K[2] do:
7: E ← identifyEdges(G, S, wt))
8: C2.add(E)
9: SBT[2]← C2

10: k ← 3
11: while k ≤ gβ and Ck−1 6= ∅ do:
12: Ck ← getCliques(G, K[k], wt, Ck−1)
13: if gα ≤ k then:
14: SBT[k]← Ck
15: k ← k + 1
16: return SBT

Algorithm 2: Depth-first Candidate Generation

Input:
- G: Undirected candidate graph
- F : Set of fixed databases
- d: Number of databases
- wt: Weight threshold
- gα, gβ : Minimum and maximum subgroup size
- B: Set of block description pairs

Output:
- SBT: Inverted index of subgroup block tuples

1: SBT← {}, K ← {}
2: K.add(getCombinations(gα, gβ , d, F ))
3: foreach k ∈ K.keys() do:
4: foreach S ∈ K[k] do:
5: SBT[k].add(genCandidates(G, S, wt,B))
6: return SBT

Function genCandidates(G, S, wt,B):
7: if |S| = 2 then:
8: return identifyEdges(G, S, wt)
9: else:

10: C← []
11: D, LBDP ← getDBWithMinBlocks(B, S)
12: foreach (bi, brep) ∈ LBDP do:
13: Lv ← getNeighbours(G, {S −D}, wt, bi)
14: C ← genCandidates(G, {S −D}, wt, Lv)
15: C.add(updateCandidates(C, bi))
16: return C

edge (BDPi, BDPj) can be computed in different ways based on the generated
breps, such as the similarity between the corresponding block representatives
birep and bjrep, or the normalised cardinality of (BDPi, BDPj) which is wi,j =
|{cg : ∀cg∈CG (BDPi, BDPj) ∈ cg}| / |CG|, where | · | represents the cardinality
of a given set. These weights are used in the next step to generate the CBT s.

3.3 Subgroup Candidate Generation

In step 3 of our approach, CBT s are generated for each subgroup combination
required. For a given subgroup of size gα a CBT contains a maximum of one
block identifier per database, and identifiers from at least gα databases. Each
CBT is a clique c ∈ G, where each c ⊆ V , such that all pairs of vertices in c
must be connected by an edge, i.e., ∀vi, vj ∈ c : (vi, vj) ∈ E. For generating
CBT s we propose two candidate generation algorithms, as detailed below:

– Apriori based Candidate Generation: CBT s for subgroup sizes from gα to
gβ are generated using an Apriori based breadth-first search over G [1,8].

– Depth-first based Candidate Generation: CBT s for subgroup sizes from gα
to gβ are generated using a depth-first traversal through graph G [1,14].

Apriori based Candidate Generation (ACG): The proposed ACG ap-
proach is outlined in Algorithm 1. In lines 3 to 5, the function getCombinations()
generates all the required subgroup combinations from gα to gβ to be considered
in the candidate generation process which are then added to an inverted index K
using the subgroup sizes as keys. For example, with (gα, gβ) = (2, 3) of a linkage



between databases DA, DB , and DC , K[2] contains the list of subgroup combi-
nations (DA,DB), (DA,DC), and (DB ,DC), while K[3] contains the subgroup
combination (DA, DB , DC). If gα > 2 (line 3) ACG needs to generate the set
of subgroups of sizes 2 to gα because an Apriori based iterative approach [1,8]
is used to identify cliques (CBT s) of size k from the cliques of size k − 1 that
were identified in the previous iteration (starting from pairs, i.e. k = 2).

To control the number of CBT s generated for each subgroup, we use a con-
straint, named as weight threshold (wt), on the weight wi,j of each ei,j ∈ E,
which specifies the minimum weight that each ei,j must have in order to be con-
sidered in the CBT generation. wt helps to control the density of G by efficiently
pruning block pairs that have a low similarity. In practice, different wts can be
specified for different subgroup combinations depending on user requirements.

The function identifyEdges() generates the trivial cliques of size k = 2 for
each subgroup S which are the set of edges E ∈ G that satisfy wt (line 7). In line
12, the function getCliques() traverses through G to identify all cliques of size k
that satisfy wt. These cliques are then added to the set Ck. Following the Apriori
principle [1,8], in lines 11 to 15, ACG continues until k reaches gβ or no cliques
were generated in the previous iteration (i.e. Ck−1 = ∅). These generated CBT s
are added to an inverted index SBT using subgroup combinations as keys.

Depth-first based Candidate Generation (DCG): The proposed DCG
approach uses an iterative deepening depth-first search algorithm [14], as detailed
in Algorithm 2. DCG generates CBT s from size gα to gβ by incrementally ex-
panding the size of subgroups. DCG uses multi-branch recursion that allows G
to be searched progressively for similar blocks from the corresponding databases
of a subgroup combination until the required CBT size is reached.

Similar to ACG, DCG starts with generating subgroup combinations for all
databases by using the function getCombinations(). These combinations are then
added to K (line 2 of Algorithm 2). For each subgroup S in K the recursive
function genCandidates() is called to generate the set of CBT s (in lines 3 to
5). Similar to Algorithm 1, the function identifyEdges() is used to get the set of
edges from G for each subgroup of size |S| that satisfy the threshold wt (line 8).

For subgroup sizes greater than 2, the function genCandidates() first selects
the database D with the minimum number of blocks using a function getDB-
WithMinBlocks(). This function returns D and its list of BDP s LBDP in B.
This selection minimises the number of recursive branches in the CBT gener-
ation (line 11). Next, for each (bi, brep) in LBDP the function getNeighbours()
retrieves the neighbouring vertices for the remaining set of databases that con-
nect with bi (line 13). Those pairs of vertices that have an edge weight greater
than or equal to wt are added to the list of neighbouring vertices Lv.

For each bi in LBDP the function genCandidates() is called recursively with
the list Lv, wt, and the set of remaining databases as inputs (line 14). Each
of these recursive calls returns a list of block tuples C, where each tuple in C
is updated with the current processed bi using the function updateCandidates()
(line 15). This allows DCG to progressively generate CBT s until they reach the
required size k. These CBT s are finally added to SBT (line 5).



4 Analysis of Subgroup Blocking

We analyse our approach in terms of complexity and blocking quality. We neither
consider the block generation nor the comparison and classification techniques
since they are outside the scope of our approach. Let us assume d databases are
to be linked and the blocks of all these databases are added into the set B.

Complexity: Though the generation of the set of candidate groups (CG)
in step 1 depends on the grouping technique used, it would require a complexity
of O(|B|). We assume each candidate group cg ∈ CG contains d BDP s from
different databases. In step 2, CG is used to construct the graph G. This requires
to iterate over each cg ∈ CG to add a vertex v to G, and to create edges between
vertices if they share the same cg. A cg with d BDP s generates d(d− 1)/2 edges
in G. Hence, the construction of G has a complexity of O(|CG| · d2).

In ACG the CBT generation would require a complexity of O(ngα) [8] if
each of the gα databases generates n = |B|/d BDP s. In line 10 of Algorithm
1, the generation of cliques of size k depends on the number of (k − 1) size
cliques, Ck−1, generated previously. Hence, the complexity of ACG is O(|E| +∑gβ
gα=3

(
gα
gβ

)
|Cgα−1|2), where |E| is the number of edges (pairs of blocks) in G.

This becomes computationally infeasible when n, and gβ are increasing.
Based on the gα and gβ settings, DCG requires to generate CBT s for nc =∑gβ
gα=2

(
d
gα

)
subgroup combinations. For each combination, DCG uses a multi-

branch recursion to generate CBT s. In the function genCandidates() of Algo-
rithm 2, at each recursion a database D out of gα databases with the minimum
number of vertices is selected. Without loss of generality, let us assume the num-
ber of BDP s selected for D is m. m defines the maximum recursion branch factor
of D. The total number of vertex traversals in G for a given subgroup combina-
tion of size gα can be calculated as gα·m+(gα−1)·m2+· · ·+2·mgα−1+mgα which
is
∑gα
i=1(gα + 1− i) ·mi. Hence, for nc subgroup combinations DCG has a com-

plexity of O(
∑gβ
gα=2

∑gα
i=1

(
d
gα

)
(gα + 1− i) ·mi). However, DCG would require a

complexity of O(nc ·(|B|/d)gα) if G is a complete graph with ∀e ∈ E : e.w ≥ wt.

Blocking Quality: In step 1 the effectiveness of the candidate grouping
depends on the breps and grouping technique used on those breps. In step 2 the
density of the graph G depends on the number of blocks in each cg ∈ CG from
different databases to be linked. A large number of blocks in a cg will increase
the effectiveness of CBT generation as more edges are created in G.

In step 3 of our approach, the weight threshold wt provides a trade-off be-
tween the quality and efficiency of the CBT generation process. The threshold
wt is used to prune edges (block pairs) with weights lower than wt from the
candidate generation process. A lower wt will generate more cliques (CBT s) as
more edges are considered in the CBT generation process for a given subgroup.
This will increase the number of true matches as more block tuples are gener-
ated as cliques to be compared in the comparison and classification step, which
will improve the effectiveness of the overall linkage. However, a lower wt will
potentially increase the overall runtime and space requirements of our approach
because more edges are considered for a given subgroup combination.



Table 1. Datasets use in our experimental evaluation. ‘Dataset Size (min-max)’ is the
minimum and maximum number of records in the databases of a dataset, and ‘Avg.
overlap’ is the average percentage of records matched across the databases in a dataset.

Datasets Number of databases (d) Dataset size (min-max) Avg. overlap Provenance

NC-CLN 16 5,614,747 – 7,453,886 90% Real
NC-DRT 16 72,903 – 1,308,796 20% Real
NC-SYN 10 5,000 – 1,000,000 50% Synthetic
UKCD 6 17,033 – 31,059 5,000 records Real

5 Experiments and Discussion

For evaluation purposes we use two real-world datasets as outlined in Table 1.
NC contains registration records of around 8 million voters from the US state of
North Carolina (available from: http://dl.ncsbe.gov/). We use given name,
surname, city, and zipcode as the blocking key attributes, as these are commonly
used for record linkage [3,13].

We use 16 voter databases, collected at different points in time with two
months interval between each pair of databases. The records in these databases
can be grouped into three categories: (1) exact matching : those records (about
the same person) that are exactly matching with each other, (2) unique: those
records that are only appearing in one database, and (3) updated : those records
where at least one attribute value has changed across two consecutive databases.

We use three different variations of the NC datasets, named as NC-CLN,
NC-DRT, and NC-SYN. For NC-CLN we extracted unique and exact matching
records from each database. Due to the skewness of exact matching records NC-
CLN is only used to evaluate the scalability of our approach. For NC-DRT we
extracted unique and updated records from each database. Since each update
in an attribute value is considered as a modification in a record, NC-DRT is
used to evaluate the blocking quality of our approach. To evaluate our approach
with different levels of data quality, we use NC-SYN that contains 10 synthetic
databases, as used in and provided by [12], which was created by extracting
records from the original NC dataset. Some of these databases included corrupted
records, where the corruption levels were set to 20% and 40% [12].

UKCD is another real dataset used in and provided by [6], consisting of census
records collected from the years 1851 to 1901 in 10 year intervals for the town of
Rawtenstall and surrounds in the United Kingdom. It contains approximately
150,000 records of 32,000 households with partial gold standard data (records
manually linked by domain experts) for testing. Both NC and UKCD have been
used for the evaluation of various other RL approaches [6,11,12] and we are not
aware of any other available large real-world datasets that contain records from
more than two databases that could be used to evaluate MDRL.

For comparison we use the state-of-the-art MDRL blocking technique pro-
posed in [12] (named HDC for Hashing based Distributed Clustering) as this is
the only existing technique we are aware of that can be used for subgroup block-

http://dl.ncsbe.gov/
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Fig. 2. The average runtime required with different (a) number of databases; (b) weight
thresholds (wt); and (c) number of fixed databases (|F |) for the NC-CLN datasets.

ing. For the prerequisites of our blocking approach, we use the same steps and
parameter settings as used in HDC. Each database is blocked using a hierarchical
clustering approach to generate an average of 100 to 1,000 blocks per database.
Next, Min-Hash signatures are generated for each block as breps. As in HDC, we
hash these breps into a set of buckets using locality sensitive hashing (LSH) [7]
in step 1. Each bucket is added to the set CG as a candidate group. To measure
the similarity between the breps in step 2 we use the Jaccard coefficient [3].

We evaluated the complexity using runtime and memory, while the block-
ing quality was measured using pairs completeness (PC) and reduction ratio
(RR) [3]. PC was calculated as the ratio of the number of matched records
against the total number of true matched records across all databases. RR mea-
sures the reduction in the number of compared record pairs against the total
number of record pairs. All experiments were conducted on a server with 64-bit
Intel Xeon (2.4GHz) CPUs, 128 GBytes of memory, and Ubuntu 14.04. We im-
plemented all approaches using Python (version 2.7), and to allow repeatability
the programs and test datasets are available from the authors.

Discussion: As shown in Fig. 2 (a), the average runtime required for steps
1 and 2 of our approach increases linearly with the number of databases d. We
noted that the average runtime also increases linearly with the number of candi-
date groups (|CG|), which suggests that more edges are being generated in the
graph G. The average runtime decreases with an increase in the weight threshold
(wt) because the edges with lower similarity between their corresponding breps
are not considered in the CBT generation (see Fig. 2 (b)). However, the runtime
increases linearly with the size of subgroups as more combinations are considered
in the CBT generation while the runtime decreases when more databases are
included in the set of fixed databases F as shown in Fig. 2 (c).

Figures 3 (a) and (d) show the total runtime increases exponentially as the
number of subgroup combinations grows exponentially with d, while the runtime
grows linearly with d for a given subgroup size. Similar to Fig. 2 the average
runtime decreases with an increase in wt as shown in Fig. 3 (b) and (e). Figures 3
(c) and (f) show DCG requires less runtime compared to HDC and ACG, which
suggests that DCG is more efficient for CBT generation. However, ACG is still
competitive with DCG if the number of blocks from each database remains small.
We also measured the memory required for the CBT generation (not shown due
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(c) Candidate generation with
 subgroup sizes for NC-SYN
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(e) Subgroup sizes with
 weight threshods (wt) for UKCD
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(f) Candidate generation with
 subgroup sizes for UKCD
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Fig. 3. Runtime results, where plots (a) to (c) and (d) to (f) show the results for the
NC-SYN and UKCD datasets, respectively. Plots (a) and (d) show the total runtime
with different number of databases, and (b) and (e) show the average runtime with
different weight thresholds for different subgroup sizes. Plots (c) and (f) show the
average runtime required for DCG compared with HDC and ACG.

to limited space) where in average DCG only uses below 10% of the total memory
required by ACG and HDC. We were unable to conduct experiments for HDC
and ACG with subgroup size larger than 5 due to their memory requirements.

Figures 4 (a) and 5 (a) show RR increases with wt which suggests that less
CBT s are generated for a given subgroup size. This results in PC to decrease
as true matches are missed due to the lower number of CBT comparisons (see
Fig. 4 (b)). However, a lower wt value increases PC by generating more CBT s,
which increases the overall runtime of our approach (see Fig. 2 and Fig. 3). Also,
PC increases with |CG| which suggests that CBT generation becomes more fine
grained as the graph G becomes more dense (see Fig. 4 (c) and Fig. 5 (b)). After
step 3 of our approach, we applied the same ranking algorithm as used in HDC to
compare ACG and DCG with HDC [12]. HDC ranks the CBT s for comparison
according to an approximation of RR. As shown in Fig. 5 (c), we observed that
ACG and DCG achieve the same PC as HDC which suggests that our approach
can perform subgroup blocking more efficiently with no loss in effectiveness.

6 Conclusions and Future work

We proposed a subgroup blocking approach for multidatabase record linkage
(MDRL) based on a graph structure that is used for generating candidate block
tuples using cliques. The evaluation on real datasets showed that our approach
is scalable with the size of subgroups and it outperforms an existing MDRL
blocking approach in terms of subgroup blocking. In future we aim to adapt
pattern growth methodologies [1] and parallelisation into our blocking approach.
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Fig. 4. (a) RR and (b) PC for different weight thresholds for different subgroup sizes,
and (c) PC with different number of candidate groups (|CG|) for the NC-DRT datasets.
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(b) PC with corruption levels for NC-SYN
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Fig. 5. (a) PC and RR for different weight thresholds (with 0% corruption), and PC
with different (b) corruption levels and (c) subgroup sizes for the NC-SYN datasets.
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