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Abstract. In order to discover new insights from data, there is a grow-
ing need to share information that is distributed across multiple data-
bases that are often held by different organisations. One key task in data
integration is the calculation of similarities between records to identify
pairs or sets of records that correspond to the same real-world entities.
Due to privacy and confidentiality concerns, however, the owners of sen-
sitive databases are often not allowed or willing to exchange or share
their data with other organisations to allow such similarity calculations.
In this paper we propose a novel privacy-preserving encoding technique
that can be used to securely calculate similarities between sensitive val-
ues held in different databases. Our technique uses two-step hashing to
encode values into an integer set representation that provides strong pri-
vacy guarantees and allows accurate similarity calculations. We provide
a theoretical analysis of the accuracy and privacy of our encoding tech-
nique, and conduct an empirical study on large real databases containing
several millions records. Our results show that our technique provides
high security against privacy attacks and achieves better similarity ac-
curacy compared to two state-of-the-art encoding techniques.

Keywords: Hashing · Jaccard similarity · Integer representation

1 Introduction

Application domains such as banking, health, and national security, increasingly
require data from multiple sources to be integrated to allow efficient and ac-
curate decision making [1]. Integrating databases can help to identify similar
records that correspond to the same real-world entities. Linked records allow
improvement of data quality, enrichment of the information known about indi-
vidual entities, and facilitate the discovery of novel patterns and relationships
between the entities that are represented by records in linked databases.

Because there is often a lack of common entity identifiers across the databases
to be linked, the linking of records is commonly based on personal identifying
attributes (known as quasi-identifiers [13]), such as first and last names, address
details, and dates of birth [1]. Data quality issues, such as typographical errors
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Fig. 1: Overview of the main steps of a secure privacy-preserving record link-
age protocol using our proposed two-step encoding technique. After the initial
parameter agreement phase each database owner applies two-step encoding for
each record of their respective database. The encoded databases, EA and EB ,
are then sent to a linkage unit (third party) which conducts blocking, compar-
ison, and finally classification, resulting in the set M of matched record pairs.

and variations, in such attributes mean that approximate similarities need to be
calculated between quasi-identifiers. Pairs of records that are highly similar can
then be classified as matches (correspond to the same entity) [1,13].

However, quasi-identifying attributes can contain enough information to al-
low identification of unique individuals which can raise privacy and confidential-
ity concerns when the databases to be linked belong to different organisations.
This is especially the case when the participating organisations do not trust each
other, as is commonly the case in public-private sector collaboration [13].

Due to privacy and confidentially concerns, organisations are often not willing
or authorised to exchange or share any sensitive data about the entities stored in
their databases with any other party. This can severely limit or even prohibit the
integration of databases across organisations [8]. Research in the area of privacy-
preserving record linkage (PPRL) aims to develop techniques that facilitate the
linking of databases without the need of any sensitive data to be shared between
the organisations involved in the linkage process [5,13].

As shown in Fig. 1, PPRL is conducted by encoding or encrypting sensitive
data at the database owners (DOs) before being exchanged with other third
party organisations (such a linkage unit [5,13]) to calculate the similarities be-
tween records. At the end of such a PPRL process, only limited information
about those compared record pairs that were classified as matches is revealed to
the DOs [13]. Any PPRL technique must guarantee that no participating party
can learn anything about the sensitive data in any of the databases. The PPRL
process must also be secure such that no external adversary can learn any sen-
sitive information about the entities in the databases that are being linked [13].

Any encoding or encryption method used in PPRL must facilitate approxi-
mate similarity calculations between sensitive values without the need for sharing
the actual values [13]. Various techniques to securely calculate similarities be-
tween values have been proposed. They either rely on expensive security compu-
tations to achieve strong privacy guarantees, or they use efficient data masking
or perturbation techniques that, however, can be vulnerable to cryptanalysis
attacks that can re-identify sensitive values in an encoded database [2].
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Fig. 2: An example of the basic idea of our two-step encoding technique, as
described in Sect. 3. The two input values, ‘peter’ and ‘pete’, are first converted
into character q-gram sets, Q1 and Q2, and then hashed into bit vectors (rows)
using the four hash functions H1 to H4, resulting in the two shown bit matrices.
All non-zero column bit patterns, Bp, are then hashed again using a second hash
function, G, which maps bit patterns to integers that are unique per position
(for example, ‘0110’ from positions p=1 and p=5 is hashed into 53 and 256,
respectively). The sets of integers, E1 and E2, are then the encodings of the
input values which we use to privatly calculate the Jaccard similarity.

As illustrated in Fig. 2, we propose a novel efficient encoding technique
that can be used to securely encode sensitive values while facilitating accurate
similarity calculations between encoded values. Unlike existing encoding tech-
niques [8,11], the aim of our technique is to provide privacy guarantees against
recently proposed re-identification attacks [2,14] while at the same time allowing
the accurate and efficient calculation of similarities between encoded values.

As we describe in Sect. 4, frequency attacks, a known weakness of the Bloom
filter encoding technique [2,6,14], are prevented in our encoding technique be-
cause of the two hashing steps, while dictionary attacks [13] are prevented by
adding a secret salt value to the second hashing step of our technique.

Contribution: We propose an encoding technique that allows the efficient cal-
culation of similarities between sensitive string values in a privacy-preserving
manner. We analyse the accuracy and privacy protection of our technique and
apply it in the context of PPRL. We show that our encoding technique is signifi-
cantly more secure than popular Bloom filter encoding [8,13,13], which is known
to be vulnerable to cryptanalysis attacks [2,6,14]. We evaluate our technique
on large real databases, which validates that, compared to existing PPRL en-
codings [8,11], this technique can efficiently and accurately calculate similarities
between encoded values while providing privacy against cryptanalysis attacks.

2 Related Work

Encoding techniques for PPRL can be categorised into perturbation and secure
multi-party computation (SMC) based techniques [13]. While SMC techniques
are provably secure, they often incur high computation and communication costs.
Perturbation based techniques are generally more efficient than SMC based tech-
niques but have a trade-off between linkage quality, scalability, and privacy.
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Schnell et al. [8] proposed a PPRL approach using Bloom filter (BF) encod-
ing. A BF is a bit vector where all positions are initialised to 0. The elements of a
set are mapped into a BF using k > 1 hash functions that set certain bit positions
to 1. In PPRL, commonly character q-grams extracted from quasi-identifiers are
hashed into BFs. Due to its efficiency of encoding and approximate matching of
attribute values, BFs has almost become a standard for PPRL [13].

However, BF encoding can be susceptible to privacy attacks [2,6,14]. Due to
the mapping of q-grams into bit positions, information about how the encoding
has been performed can be learnt [2]. This can allow the re-identification of the
encoded values. Sensitive values that occur frequently in an encoded database
can lead to frequent bit patterns in BFs that can be identified [6], and even
individual frequent q-grams can be found using pattern mining techniques [14].
This raises serious concerns about the applicability of BF encoding for PPRL.

BF hardening techniques, such as salting [10], balancing [9], and XOR-folding
[9] have been proposed to improve the privacy of BF encoding. These techniques
have a trade-off between improved resilience to attacks at the costs of linkage
quality because similarities between hardened BFs are likely distorted. No de-
tailed studies have been conducted on these trade-offs, and we therefore do not
consider hardening in our evaluation but leave experiments for future work.

Smith [11] recently proposed a tabulation Min-hash based approach which
showed both improved similarity and privacy protection on small data sets. To
generate a bit vector of length l, first l hash tables each containing random 64-
bit strings are generated. For each value to be encoded, l random bit strings are
selected based on the Min-hash values generated from the value’s q-gram set.
From the bit strings the least significant bits are then concatenated to generate
the final bit vector for the value. This prevents the mapping of 1-bits to q-grams,
and existing privacy attacks will not be successful on this encoding method.

However, as we discuss in Sect. 5, this tabulation hash encoding approach [11]
has significantly higher computational complexity compared to BF encoding. As
a result, for encoding very large databases the practical use of this approach
is questionable. Our proposed two-step hash encoding technique provides both
high privacy protection while also being computationally efficient.

3 Secure Two-Step Hash Encoding of Sensitive Data

Our encoding technique aims to prevent an adversary from learning any informa-
tion about what sensitive values have been encoded. To achieve this, we employ
a two-step hashing process where a sensitive value is first hashed into a bit ma-
trix, and then columns in this matrix are hashed again to generate an integer
set representation of the sensitive input value, as shown in Fig. 2.

Algorithm 1 outlines the main steps involved in our encoding approach. First
the quasi-identifier attributes, A, from each record r in the database D are
converted into sets of character q-grams of length q in line 4 using the function
genQGramSet() which returns one q-gram set Q for each record r ∈ D.
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Algorithm 1: Secure Two-step Hash Encoding

Input:
- D: The database to be encoded - l: Length of bit vectors (rows)
- A: List of quasi-identifier attributes - q: Q-gram length
- H: List of hash functions, Hi, with 1 ≤ i ≤ k - s: Secret salt value
- G: Hash function used in the second step
Output:
- E: Encoded database

1: E = {} // Initialise an inverted index for the encoded database
2: k = |H| // Get number of bit vectors (rows) to be generated
3: foreach r ∈ D do: // Loop over all records r in the database
4: Q = genQGramSet(r, A, q) // Generate q-grams from attribute values in r
5: E = {}, B = [ ] // Initialise empty integer set and bit vector list for r
6: foreach Hi ∈H, 1 ≤ i ≤ k do: // Step 1: Loop over each hash function in H
7: Bi = genBitVector(l) // Generate a bit vector of length l with all 0s
8: Bi = hashQGrams(Bi,Hi, Q) // Hash the q-gram set into the bit vector
9: B[i] = Bi // Add the bit vector to the list B (a new row)
10: foreach p ∈ [1, · · · , l] do: // Step 2: Loop over all positions (columns) in the matrix
11: Bp = genColumnVector(B, p) // Generate the bit vector for position p
12: if HW (Bp) > 0 do: // Check the position bit vector has at least one 1-bit
13: ep = G(Bp, p, s) // Hash the position bit vector with secret salt
14: E = E ∪ {ep} // Add the integer representation to the set E
15: E[r.id] = E // Add the set of encoded values for r to the database
16: return E

Similar to BF encoding [8], as the first step of our encoding process, in line
6 we iterate over the k hash functions Hi, with 1 ≤ i ≤ k. For each Hi, we first
generate an empty (all 0s) bit vector Bi of length l in line 7, and then hash each
q-gram in the set Q into Bi using Hi in the function hashQGrams() in line 8.
The resulting bit vector Bi is then added to the list B in line 9. This first hashing
step generates a bit matrix with k rows and l columns, as shown in Fig. 2.

The second step of our encoding process starts in line 10, where we loop over
the l positions in the bit matrix. For each position 1 ≤ p ≤ l, we first generate
its column bit vector, Bp, in line 11 using the function genColumnV ector().
We then check if Bp contains at least one 1-bit (i.e. its Hamming weight (HW)
is larger than 0). This check is required because generating an integer value
from a column bit vector that contains only 0-bits can lead to incorrect Jaccard
similarity calculations. If we do generate integers from 0-bit columns that are
common to two bit matrices then we will have additional common integer values
in their encodings, while not common 0-bit columns would lead to not common
integer values. This can be seen in Fig. 2, where no integers are generated for
positions 3 and 6 in B2. If there would, then these two extra integers in E2 would
result in a wrong Jaccard similarity between E1 and E2, calculated as 6/10.

In line 13 in Algo. 1, if a column bit vector, Bp, does contain at least one
1-bit, then we use it, together with the position number, p, and the secret salt,
s, to generate the integer, ep, for that position using the hash function G. The
secret salt value is only known (and needs to be agreed upon) by the database
owners before starting the encoding process. Using a secret salt provides security
against dictionary attacks, because even if an adversary knows the hash function
G she cannot simply try all possible bit patterns of length k combined with all
l position numbers because they are not an input to G by themselves.
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The requirement on the hash function G is that it returns integer values in
a certain range, and that the probability of a hash collision is very low. One
possibility for G is to use a hash function from the SHA family [1], such as
ep = int(sha(gp)), where gp = str(Bp)⊕ str(p)⊕ s, where str() converts it input
into a string, and ⊕ indicates the string concatenation. The collision probability
for such an approach will be very low, however the resulting integers will be very
large and thus require more storage and communication time.

An alternative approach for G is to use the value gp calculated above as
the seed for a pseudo random number generator [4] which generates integer
values within a certain range, such as [1, r]. For a given range r, the probability
of a collision (that two different inputs gp result in the same integer value)
can then be calculated using the birthday paradox [12]. The total number of
unique possible values of gp (the concatenation of Bp with p and s as described
above) is x = l · (2k − 1). The collision probability then is [12]: P (x, r) = 1 −∏x−1

i=1 (1− (i/r)) ≈ 1 − e−x(x−1)/2r. As we show in our experiments in Sect. 5,
this collision probability will be less than 3%. Note that a single collision will
only affect the estimated Jaccard similarity by a minor amount of around ±1/l.

It is even possible to construct a function for G that ensures there are no
collisions at all by mapping the bit patterns from each position into a distinct,
non-overlapping range of integers. Using again a pseudo random number gen-
erator, where gp is again the seed, we set the range for the possible integers
generated for position p as the interval [emin

p , emax
p ]. We set emin

p = (p − 1) · rp
and emax

p = p · rp − 1, and the range for a position as rp � 2k − 1.
Back to Algo. 1, once a column bit vector is hashed, in line 14 the generated

integer, ep, is added into the set of encoding values, E. Each set E is then added
into the encoded database E using the corresponding record identifier (r.id) as
the key (in line 15). Finally, E can be used to compare encodings from another
database where the same attributes A have been encoded, and the same hash
functions H and G, and the same secret salt value, s, have been used.

By assuming each hash operation is of O(1) complexity, for a record r that
contains n q-grams we require n · k hash operations in the first step and l hash
operations in the second step. Hence, the encoding of all |D| records in a database
D in Algo. 1 has an overall complexity of O(|D| · (n · k + l)).

4 Similarity Estimation and Privacy Analysis

We now discuss the two main aspects to of our two-step encoding technique: (1)
How accurate the Jaccard similarity calculations based on integer set represen-
tations are, and (2) how strong the privacy protection of our encoding is.

Accuracy of Similarity Estimation: Our encoding approach hashes similar
q-gram sets into integer sets that have more values in common, while dissimilar
q-gram sets are hashed into integer sets that have less values in common. Two
q-gram sets with a non-empty intersection should therefore be hashed into two
integer sets that have values in common with some non-negligible probability.
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Ideally, the Jaccard similarities [1] calculated on encoded integer sets should
be the same as the Jaccard similarity between corresponding q-gram sets. How-
ever, as with most hashing techniques [12], there is a chance of collisions espe-
cially in the first step of our encoding approach which might result in somewhat
different estimated Jaccard similarities.

Formally, given two q-gram sets Q1 and Q2, with Q1 6= Q2 and Q1∩Q2 6= ∅,
when using our encoding approach then the Jaccard similarity is calculated using
the encodings, E1 and E2. Therefore, if simJ(Q1,Q2) 6= simE(E1, E2), where
simJ() and simE() are the q-gram and integer sets Jaccard similarity functions,
respectively, then in the context of PPRL either a false match (simE > simJ)
or a false non-match (simJ > simE) might occur.

By assuming a family H of independent hash functions is used in step 1, we
can estimate simE between two integer sets compared to simJ between their
corresponding q-gram sets. We conduct this estimation based on the number of
hash collisions. Let us assume c = |Q1 ∩Q2| is the number of common q-grams,
and d = |(Q1 ∪ Q2) \ (Q1 ∩ Q2)| the number of different q-grams that occur in
only one of the two q-gram sets. simJ between Q1 and Q2 can now be calculated
as simJ(Q1,Q2) = c/(c + d). We assume k hash functions are used to hash q-
gram sets into bit vectors of length l, and that there are no hash collisions in
the second step of our approach, as we discussed in the previous section.

The likelihood that none of the k · c hashes of the c common q-grams are
hashed to a certain position in the bit vectors is ( l−1

l )kc. The expected number
of non-zero bit positions that are set by the c common q-grams will then be
nc = l · (1 − l−1

l )kc. Similarly, the number of non-zero bit positions set by all

c+d q-grams is na = l · (1− l−1
l )k(c+d). This allows us to calculate the estimated

Jaccard similarity simE between E1 and E2 as simE(E1, E2) = nc/na.

Using the actual and estimated Jaccard similarities, simJ and simE , cal-
culated between Q1 and Q2 and between E1 and E2, respectively, we can now
calculate the difference δ = simJ(Q1,Q2) − simE(E1, E2). For the values of
k=[10, 20, 30] and l=[250, 500, 1000] we use in the experiments in Sect. 5, the
average difference was δ = 0.03 when simJ ≥ 0.5 are considered (c ≥ d). This is
a reasonable assumption for PPRL where one is only interested in highly similar
values such as names that share at least half of their q-grams [1].

The estimated Jaccard similarities are unlikely to be higher than the ac-
tual similarities, i.e. simE ≤ simJ . This means for PPRL there can be missed
matches, however false matches will unlikely be generated by our encoding
method. This is different with popular Bloom filter encoding, which commonly
generates false matches [8], as can be seen in our experimental results in Fig. 4.

Preventing false matches and false non-matches are important in many ap-
plications of PPRL, such as health or national security, where linking people
wrongly or missing links of people that likely are a match can result in difficult
to correct biases and thus wrong conclusions [7]. When the length of the bit vec-
tors, l, increases the difference δ between the estimated and the actual Jaccard
similarities gets lower. δ is also smaller for more similar values being compared.
Longer bit vectors will therefore lead to higher linkage quality.
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Privacy Analysis: The use of a two-step hashing process prohibits that an
adversary can construct the corresponding list B of bit vectors using the fre-
quencies of integer values in the sets E. Each bit position can result in 2k − 1
possible non-zero bit patterns, and since the function G can be constructed in
different ways and it includes a secret salt value, the adversary cannot directly
map an integer value to its corresponding correct bit pattern. Over the l bit

positions, the total number of unique non-zero bit patterns in B is l2
k−1, while

a BF of length l can (only) hold 2l − 1 possible non-zero bit patterns.

A brute-force attack by an adversary to try to reconstruct B created in the
first step of our approach is therefore extremely difficult, especially when larger
values for k and l are used. Furthermore, even if the adversary can reconstruct
B, she still needs to then re-identify the way q-grams are hashed into bit rows
using the list of hash functions H in the first step of our approach.

An adversary can however try to conduct a frequency attack on the integer
values generated by our encoding approach to try to identify which q-gram(s)
are represented by which integer values(s). For Bloom filter encoding, it has
been shown that frequent encoded values and even frequent q-grams can result
in frequent bit patterns that can be successfully re-identified [2,6,14].

In our encoding approach, such a frequency based attack is only possible if
a single q-gram is hashed to a certain position. In such a case the frequency
of the resulting integer value would correspond to the frequency of the single
q-gram hashed to this position. However, such an attack becomes challenging if
several q-grams are hashed into the same position in the first step of our encoding
approach. This is because the combinations and frequencies of bit patterns will be
a mix based on several q-grams, thereby preventing an adversary from correctly
aligning the frequencies of integer values with the frequencies of q-grams.

To analyse the privacy provided by our approach we therefore calculate the
likelihood that several q-grams are hashed to the same position. We assume each
of the n = |Q| q-grams in a q-gram set Q is mapped into a different position
for each hash function Hi, with i ≤ i ≤ k, such that the probability of these
hash mappings are uniformly distributed across the l positions. The probability
that more than one (from n) q-gram in Q is hashed to the same position in B is

P (k, l, n) = 1−
(
l−1
l

)k(n−1)
. Assuming one of the n q-grams has been hashed to

a certain position, the factor in this equation is the probability that none of the
other n− 1 q-grams (each hashed k times) hits this position. One minus this is
then the probability that at least one other q-gram hits the position.

Assuming k = [10, 20, 30] and l = [250, 500, 1000], and with n = [10, 20], we
obtain probabilities ranging from P = 0.1 for l = 1000 and k = 10, up to P = 0.9
for l = 250 and k = 30. The probability increases as k and n get larger, but
decreases with increasing l. For many settings, more than half of all bit columns
will have at least two q-grams hashed to them. This will significantly reduce the
chances an adversary has to correctly align an integer value with its encoded
q-gram. Hence, any re-identification of sensitive values in a database based on
a frequency alignment of integer values with q-grams will unlikely be possible,
especially if values from more than one attribute are encoded.
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5 Experiment Evaluation

We used three data set pairs that are extracted from two real voter registration
databases from the US states of North Carolina (NC) (See: http://dl.ncsbe.
gov/) and Michigan (MC) (See: http://michiganvoters.info), respectively.
We use first name, last name, street address, city, and zipcode as the set of
attributes, A, because these are commonly used for record linkage [1,13].

We use two NC data sets (NCL) collected in April 2014 and October 2019,
and two MC data sets (MCL) collected in July 2013 and September 2016. Both
NCL and MCL contain between 6.2 and 7.6 million records where over 98%
are exact matching record pairs. Due the high skewness of exact matches we
only used NCL and MCL to evaluate scalability. To evaluate linkage quality we
used a data set pair (NCS) with 222,251 and 224,061 records, respectively, and
containing 66.6% matches. In this data set the vast majority of records (98.9%)
had at least one value change in any of the attributes we selected above.

We set k = [10, 20, 30] in the first hashing step, and l = [250, 500, 1000]. We
set the q-gram length q = 2 and used random hashing [9] in the first hash step
to encode q-grams. As we discussed in Sect. 3, we used a pseudo random number
generator in the second hash step to encode column bit vectors.

We compared our two-step hash (2SH) encoding approach with two baselines.
The first is popular Bloom filter (BF) encoding [8]. Following earlier BF work in
PPRL, we set the BF parameters as l =1000 bits, k = 30, and q = 2 [8,13]. The
second baseline is the tabulation hash (TH) encoding proposed by Smith [11].
Following [11], we used 8 tabulation keys each of 64 bits length to generate one
bit array of length l =1000 bits to encode the attribute values in a record.

As shown in Fig. 1, to evaluate linkage quality we simulated a three-party
PPRL protocol [13]. To allow fair comparison, we used phonetic blocking on all
encoding techniques where we used Soundex [1] on first name, last name, and
city, and the first three digits of zipcode as the blocking keys. Following [8], in
classification we set the threshold t ranging from 0.1 to 1.0, in 0.1 steps.

We evaluated the scalability using runtime, and measured linkage quality
using precision and recall [3]. Precision is the ratio of the number of true matches
correctly classified against the total number of record pairs compared, while
recall is the ratio of the number of true matches correctly classified against the
total number of true matches across two data sets.

We could not use any privacy attacks on bit vectors [2,14], such as BFs, on our
2SH encoding to evaluate privacy. Hence, we conducted a frequency attack [2]
on the integer values generated by our approach. We aligned frequent integer
values with frequent q-grams aiming to re-identify encoded attribute values. We
assumed the worst case scenario where the LU has gained access to an unencoded
database D of a database owner (DO), and is trying to re-identify the encoded
values in integer sets E of the other DO by using D. However, such an attack is
highly unlikely since the DOs do not send D to any other party.

For implementation we used Python (version 2.7). All experiments were run
on a server with 64-bit Intel Xeon (2.4 GHz) CPUs, 128 GBytes of memory, and
Ubuntu 14.04. The programs are available from the authors.

http://dl.ncsbe.gov/
http://dl.ncsbe.gov/
http://michiganvoters.info
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Fig. 3: Average runtime plots of BF [8], TH [11], and our 2SH encoding with
different data sets. We stopped TH on NCL and MCL after two weeks.
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Fig. 4: Similarity plots of BF [8] (left), TH [11] (middle), and 2SH (right) encod-
ing, with different attributes. We used k = 30 and l =1000 for 2SH encoding.

Results and Discussion: Figure 3 illustrates the scalability of our encoding
approach in terms of average runtime. As can be seen, 2SH scales linearly with
the data set size. However, 2SH consumes slightly higher runtime compared to
BFs due to the second hashing step of l column bit patterns into integer values.
Both 2SH and BF encodings are significantly faster than TH which requires more
hash encodings. Furthermore, 2SH consumes around 10% to 20% more memory
compared to BF and TH encodings due to the integer set encoding.

Figure 4 shows scatter plots of q-gram based similarities versus corresponding
similarities on encodings. For BFs we used Dice similarity [1], while for TH
and 2SH we used Jaccard similarity. As can be seen, similarities calculated on
BFs are much higher than the corresponding q-gram set similarities especially
between sets that only have a few common q-grams. This is due to collisions
where different q-grams are hashed to the same BF bit positions. TH results
in more accurate similarities, where encoded similarities can be both above and
below the q-gram set similarities. Hence, the similarities calculated on BFs and
with TH can lead to inaccurate PPRL results, and thus wrong follow-up analysis.

As also shown in Fig. 4, 2SH results in more accurate similarities calculated
on encoded integer sets compared to both BF and TH. 2SH unlikely results in
false matches which will lead to more precise classification of record pairs [7]. We
also note that as l increases the similarity difference between the integer and q-
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Fig. 5: The linkage quality results of BF [8], TH [11], and our 2SH encoding for
the NCS data set. We used k = 30 and l =1000 for our 2SH encoding.

Table 1: The number of correct 1-to-1 attribute value re-identifications based on
the alignments of the top nq frequent q-grams with corresponding integer values
for different k, l, and different number of attributes using the NCL data set. all
represents frequency alignment of all extracted q-grams from the data set.

Three attributes Four attributes Five attributes

l k nq = 10 / 100 / all nq = 10 / 100 / all nq = 10 / 100 / all

250
10 0 / 0 / 1 0 / 0 / 1 0 / 0 / 0
20 0 / 0 / 1 0 / 0 / 0 0 / 0 / 0
30 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0

500
10 0 / 1 / 2 0 / 1 / 1 0 / 0 / 1
20 0 / 1 / 1 0 / 0 / 1 0 / 0 / 0
30 0 / 0 / 1 0 / 0 / 0 0 / 0 / 0

1000
10 1 / 2 / 4 0 / 1 / 2 0 / 1 / 1
20 1 / 1 / 2 0 / 1 / 1 0 / 0 / 1
30 0 / 1 / 2 0 / 1 / 1 0 / 0 / 1

gram sets gets lower which results in less false negatives. Figure 5 shows linkage
quality results in terms of precision and recall. 2SH achieves higher recall and
precision compared to both BF and TH. As we encode more attribute values,
recall decreases similar to BF and TH encodings. This is because different q-
grams are hashed into the same positions leading to different integer values to
be generated for similar q-gram sets and resulting in false negatives. As we
discussed in Sect. 4, increasing l can reduce the number of false negatives.

Finally, Table 1 shows the number of correct attribute value re-identifications
based on the 1-to-1 assignment of integer values to q-grams that only hash
individually in a column position. We noted the number of such correct re-
identifications increases for smaller numbers of attribute values and with the
increase of l. This is because the frequencies of q-grams can be correctly identified
as less q-grams are mapped to a certain column position in the first hashing
step. However, as we hash more attribute values with more hash functions, an
adversary will not be able to re-identify attribute values because not enough
frequency information is available to identify q-grams that are encoded into
integer values. Hence, conducting such a frequency attack upon integer sets that
are encoded with q-grams from different attributes will unlikely be successful.
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6 Conclusion and Future work

We have presented a novel encoding approach that can be used for privacy-
preserving record linkage (PPRL). We used a two-step hashing process to en-
code sensitive values into integer sets. Our analysis showed that our encoding
can provide high linkage quality, validated on large real databases, where it can
achieve higher quality similarity calculations compared to other encoding tech-
niques used in PPRL. Our approach also provides privacy against frequency
attacks on integer sets which prevents the re-identification of encoded sensitive
values. As future work we aim to extend the experiments with different hashing
techniques in our encoding approach. Another future research avenue is to find
the optimal values for the length of bit vectors and the number of hash function
used in the encoding process that can maximise both linkage quality and pri-
vacy. Furthermore, we plan to adapt existing privacy attacks for our encoding
and conduct a privacy comparison with other PPRL techniques.
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