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Why Parallel Computing?

Large data sets and long processing times
(e.g. simulations in physics and chemistry, weather forecast, etc.)

Limitations of sequential computers
Processor speed, 1/0- and memory bandwidth

Many applications and algorithms contain parallelism
(e.g. pipelining, domain decomposition)

Data Mining: Data sets from Giga-Bytes to Peta-Bytes, several scans
over data set needed, complex algorithms
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Parallel Architectures: Two Examples

CSIRO Capricorn

ANU DCS Bunyip

— Sun Enterprise 4500 Server

— Shared memory (SMP)

— 12 UltraSPARC 400 MHz RISC
(8 Mega-Bytes cache each)

— 6,912 Mega-Bytes main memory

— 250 Giga-Bytes disk storage
array (RAID)

— Beowulf Linux Cluster

— Distributed memory

— 96 Dual Pentium |1l 550 MHz

— 36,864 Mega-Bytes main memory
(384 Mega-Bytes per node)

- 1,305.6 Giga-Bytes disk
(13.6 Giga-Bytes per node)

— 100 Mega-Bit Ethernet network

According to the last www.top500.0rg (Nov'99) the ANU Beowulf is Australia’s

fastest supercomputer.
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Parallel Architectures: ANU Beowulf Topology

24 x Dual Pentium
[l Nodes —p

24 x 100MB
Ethernet Links
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Parallel Architectures: ANU Beowulf Implementation
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Different Kinds of Parallelism

e Functional Parallelism: Each processor runs a sub-job, the result is passed
to the next processor (pipeline principle).

e Data Parallelism: All processors do the same job on different parts of the
data (domain decomposition).
e Master-Worker: Master process distributes tasks to worker processes which

return result back. Good if workers can operate independently.

e Single-Program Multiple-Data (SPMD): The same program runs on all
processors, but on different sub-sets of the data.
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Parallel Programming

e Message Passing: Calls to communication routines, e.g.
SEND(data, P2) or BROADCAST (vector, P0)
Mainly on distributed memory architectures — PVM, MPI

e Threads: Program parts that can run independently.
Mainly on shared memory architectures — OpenMP, Pthreads

e Parallel Compilers: Extensions of languages with parallel statements, e.g.
DISTRIBUTE A (BLOCK) ONTO P
DO IN PARALLFEL ...
— High Performance Fortran (HPF)
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Parallel Performance

e Speedup: Sequential time divided by parallel time: Sp(p) =11/,
Desired: Sp(p) = p (hard to achieve).

e Efficiency: Speedup divided by the number of processes: Ef(p) = Sp(p) <1

Sometimes: Super-linear speedup Sp(p) > p — Ef(p) > 1
(Cache, memory and 1/0 effects, etc.)

e Scalability: Efficiency often drops as the number of processes is increased.
Scalability gives a measure how much the data size has to be increased to get
the same efficiency on more processes.
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Parallel Obstacles

e Amdahl's Law: Most algorithms and programs contain sequential parts,
which limit maximal speedup and inhibit scalability, e.g. 10% sequential code
— Maximal speedup 10!

e Balancing the load (distributing work onto processors) can be hard to achieve.

e Data distribution can become a bottleneck (e.g. if all processors are connected
to only one I/O system).

e Parallel programs often have to be adapted to a given architecture to get
maximum performance.
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Data Mining Cycle
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Example: Assembly

e The whole data set has to be read only o

data set and adds into a local matrix.

Reading and assembling is done in blocks

Each data record adds some values into a matrix.

nce.

The size of the matrix is independent of the number of data records.

of a given size.

Parallelism is easy to achieve: Each processor only reads a part of the
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Parallel Assembly - Two Implementations

Master-Worker SPMD
— Master process controls assembly — All processes compute distribution
— Master sends messages to workers — Each process reads and assembles
with start position in file and n/p data records
number of records to assemble — No communication needed during
— After assembling a block, worker assembly
sends ready message back to
master and gets next task

After the assembly is finished, the local matrices are collected and summed on
the host-processor (Reduce operation).
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Assembly on Sun Enterprise
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Assembly on Beowulf
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Assembly on Beowulf: Speedup and Efficiency
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Outlook

Parallel computing can help to solve bigger and more complex problems.
It can speed up existing applications.
Not all applications parallelise well or yield in good speedup and scalability.

Good parallel programs should be scalable both in data size (number of
records) and number of processors.

Parallel programming is still complicated and cumbersome (run-time effects).
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