
Accelerating Molecular Modeling Applications with

Graphics Processors

JOHN E. STONE,1* JAMES C. PHILLIPS,1* PETER L. FREDDOLINO,1,2* DAVID J. HARDY,1*

LEONARDO G. TRABUCO,1,2 KLAUS SCHULTEN1,2,3

1Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
2Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign,

Urbana, Illinois, 61801
3Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801

Received 5 April 2007; Revised 27 June 2007; Accepted 30 July 2007
DOI 10.1002/jcc.20829

Published online 25 September 2007 in Wiley InterScience (www.interscience.wiley.com).

Abstract: Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules

at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State-

of-the-art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremen-

dous computational resource that can now be utilized for general purpose computing as a result of recent advances

in GPU hardware and software architecture. In this article, an overview of recent advances in programmable GPUs

is presented, with an emphasis on their application to molecular mechanics simulations and the programming techni-

ques required to obtain optimal performance in these cases. We demonstrate the use of GPUs for the calculation of

long-range electrostatics and nonbonded forces for molecular dynamics simulations, where GPU-based calculations

are typically 10–100 times faster than heavily optimized CPU-based implementations. The application of GPU accel-

eration to biomolecular simulation is also demonstrated through the use of GPU-accelerated Coulomb-based ion

placement and calculation of time-averaged potentials from molecular dynamics trajectories. A novel approximation

to Coulomb potential calculation, the multilevel summation method, is introduced and compared with direct Cou-

lomb summation. In light of the performance obtained for this set of calculations, future applications of graphics

processors to molecular dynamics simulations are discussed.

q 2007 Wiley Periodicals, Inc. J Comput Chem 28: 2618–2640, 2007

Key words: GPU computing; CUDA; parallel computing; molecular modeling; electrostatic potential; multilevel

summation; molecular dynamics; ion placement; multithreading; graphics processing unit

Introduction

Molecular mechanics simulations of biomolecules, from their

humble beginnings simulating 500-atom systems for less than

10 ps,1 have grown to the point of simulating systems containing

millions of atoms2,3 and up to microsecond timescales.4,5 Even

so, obtaining sufficient temporal sampling to simulate significant

motions remains a major problem,6 and the simulation of ever

larger systems requires continuing increases in the amount of

computational power that can be brought to bear on a single

simulation. The increasing size and timescale of such simula-

tions also require ever-increasing computational resources for

simulation setup and for the visualization and analysis of simula-

tion results.

Continuing advances in the hardware architecture of graphics

processing units (GPUs) have yielded tremendous computational

power, required for the interactive rendering of complex imagery

for entertainment, visual simulation, computer-aided design, and

scientific visualization applications. State-of-the-art GPUs

employ IEEE floating point arithmetic, have on-board memory

capacities as large as the main memory systems of some per-

sonal computers, and at their peak can perform over 500 billion

floating point operations per second. The very term ‘‘graphics

processing unit’’ has replaced the use of terms such as graphics

accelerator and video board in common usage, indicating the

increased capabilities, performance, and autonomy of current

generation devices. Until recently, the computational power of

GPUs was very difficult to harness for any but graphics-oriented

algorithms due to limitations in hardware architecture and, to a

lesser degree, due to a lack of general purpose application pro-

Contract grant sponsor: National Institutes of Health; contract grant num-

ber: P41-RR05969

*The authors contributed equally

Correspondence to: K. Schulten; e-mail: kschulte@ks.uiuc.edu; web:

http://www.ks.uiuc.edu/

q 2007 Wiley Periodicals, Inc.

gramming interfaces. Despite these difficulties, GPUs were suc-

cessfully applied to some problems in molecular modeling.7–9

Recent advances in GPU hardware and software have eliminated

many of the barriers faced by these early efforts, allowing GPUs

to now be used as performance accelerators for a wide variety

of scientific applications.

In this article, we present a review of recent developments in

GPU technology and initial implementations of three specific

applications of GPUs to molecular modeling: ion placement, cal-

culation of trajectory-averaged electrostatic potentials, and non-

bonded force evaluation for molecular dynamics simulations. In

addition, both CPU- and GPU-based implementations of a new

approximation to Coulomb energy calculations are described. In

the sample applications discussed here, GPU-accelerated imple-

mentations are observed to run 10–100 times faster than equiva-

lent CPU implementations, although this may be further im-

proved by future tuning. The ion placement and potential aver-

aging tools described here have been implemented in the

molecular visualization program VMD,10 and GPU acceleration

of molecular dynamics has been implemented in NAMD.11 The

additional computing power provided by GPUs brings the possi-

bility of a modest number of desktop computers performing cal-

culations that were previously only possible with the use of

supercomputing clusters; aside from molecular dynamics, a num-

ber of other common and computationally intensive tasks in bio-

molecular modeling, such as Monte Carlo sampling and multiple

sequence alignment, could also be implemented on GPUs in the

near future.

Graphics Processing Unit Overview

Until recently, GPUs were used solely for their ability to process

images and geometric information at blistering speeds. The data

parallel nature of many computer graphics algorithms naturally

led the design of GPUs toward hardware and software architec-

tures that could exploit this parallelism to achieve high perform-

ance. The steadily increasing demand for advanced graphics within

common software applications has allowed high-performance

graphics systems to flourish in the commodity market, making

GPUs ubiquitous and affordable. Now that GPUs have evolved

into fully programmable devices and key architectural limita-

tions have been eliminated, they have become an ideal resource

for acceleration of many arithmetic and memory bandwidth

intensive scientific applications.

GPU Hardware Architecture

GPU hardware is fundamentally suited to the types of computa-

tions required by present-day interactive computer graphics algo-

rithms. Modern GPU hardware designs are far more flexible

than previous generations, lending themselves to use by a much

broader pool of applications. Where previous generation hard-

ware designs employed fixed function pipelines composed of

task-specific logic intended to perform graphics computations,

modern GPUs are composed of a large number of programmable

processing units capable of integer operations, conditional exe-

cution, arbitrary memory access, and other fundamental capabil-

ities required by most application software. The recent evolution

of GPU hardware to fully programmable processing units has

removed the largest barrier to their increased use for scientific

computing.

While far more general purpose than previous generations,

current GPU hardware designs still have limitations. GPU hard-

ware is designed to exploit the tremendous amount of data paral-

lelism inherent in most computer graphics algorithms as the pri-

mary means of achieving high performance. This has resulted in

GPU designs that contain 128 or more processing units, fed by

multiple independent parallel memory systems. While the large

number of parallel processing units and memory systems

accounts for the tremendous computational power of GPUs, it is

also responsible for constraining the practical size of memories,

caches, and register sets available to each processor.

GPUs are typically composed of groups of single-instruction

multiple-data (SIMD) processing units. SIMD processors are

composed of multiple smaller processing units that execute the

same sequence of instructions in lockstep. The use of SIMD

processing units reduces power consumption and increases the

number of floating point arithmetic units per unit area relative to

conventional multiple-instruction multiple-data (MIMD) archi-

tectures. These issues are of paramount importance for GPUs,

since the space, power, and cooling available to a GPU are

severely constrained relative to what is afforded for CPUs in the

host computer. SIMD architectures have had a long history

within scientific computing and were used in parallel computers

made by IBM,12 MasPar,13 Thinking Machines,14 and others. In

the past several years, general purpose CPUs have also incorpo-

rated small-scale SIMD processing units for improved perform-

ance on computer graphics and scientific applications. These

add-on SIMD units are accompanied by CPU instruction set

extensions that allow applications to detect and utilize SIMD

arithmetic hardware at runtime.

Some of the large SIMD machines made in the past failed to

achieve their full performance potential due to bursty patterns of

main memory access, resulting in inefficient use of main mem-

ory bandwidth. Another weakness of very large SIMD arrays

involves handling conditional execution operations that cause

the execution paths of individual processors to diverge. Since

individual SIMD processors must remain in lockstep, all of the

processors in an array must execute both halves of conditional

branches and use predication to prevent writing of results on the

side of the branch not taken. Modern SIMD processors,

and especially GPU designs, make use of hardware multithread-

ing, clusters of smaller SIMD units, virtualized processors,

and other techniques to eliminate or at least ameliorate these

problems.15–17

To illustrate key architectural features of a state-of-the-art

GPU, we briefly summarize the NVIDIA GeForce 8800GTX

GPU. The GeForce 8800GTX was also the GPU used for the

algorithm design, benchmarking, and application results pre-

sented in this article. For the sake of brevity, we refer to this

architecture as ‘‘G80,’’ which is the name of the actual GPU

chip on the GeForce 8800GTX. The G80 GPU chip is the first

member of a family of GPUs supporting NVIDIA’s compute

unified device architecture (CUDA) for general purpose GPU

computation.18

2619Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

Continuing the recent trend toward larger numbers of pro-

cessing units, the G80 contains a total of 128 programmable

processing units. The individual processors are contained within

several hierarchical functional units. The top level of this hierar-

chy, referred to as the streaming processor array, is subdivided

into eight identical texture processor clusters, each containing

two streaming multiprocessors. Figure 1 illustrates the groupings

of G80 processing units and the functions they perform. Table 1

summarizes the relative numbers of these groupings along with

the amount of shared memory, cache resources, and the number

of registers apportioned to each. The multiprocessors operate in-

dependently of each other, though they share the same texture

processing unit. Each multiprocessor contains an eight-way

SIMD unit which executes instructions in lockstep on each of its

constituent streaming processors.
The full G80 streaming processor array can perform up to

330 GFLOPS peak single precision floating point arithmetic.

When combined with the processing capabilities of the special

graphics functional units, the entire system can perform an ag-

gregate of 550 GFLOPS single precision floating point arithme-

tic. In addition to this staggering floating point computation rate,

the G80 hardware can provide up to 80 GBytes per second of

memory bandwidth to keep the multiprocessors fed with data.

Like other GPUs, G80 includes dedicated hardware texturing

units, which provide caching with hardware support for multi-

dimensional locality of reference, multiple filtering modes, texture

coordinate wrapping and clamping, and many texture formats. A

fast globally accessible 64-kB constant memory provides read-

only data to all threads at register speed, if all threads read the

same data elements concurrently. The constant memory can be

an effective tool in achieving high performance for algorithms

requiring all threads to loop over identical read-only data.

Some of the unique strengths of GPUs versus CPUs include

support for fast hardware instructions implementing square roots,

exponentiation, and trigonometric functions, often augmented

with extremely fast reduced precision versions. These types of

operations are particularly important for the high performance

shading computations that GPUs are normally used for. The

G80 architecture includes super function units to perform these

operations that take longer to compute. The super function units

allow the streaming processors to continue on, concurrently per-

forming simpler arithmetic operations. Scientific codes that per-

form many square roots can perform square roots almost for

‘‘free,’’ assuming there is enough other work to fully occupy the

streaming processors. The overlapping of complex function eval-

uation with simpler arithmetic operations can provide a tremen-

dous performance boost relative to a CPU implementation.

The G80 architecture implements single precision IEEE-754

floating point arithmetic, but with minor variations from the

standard in areas such as floating point exception handling,

underflow handling, lack of configurable rounding modes, and

the use of multiply-add instructions and reciprocals in the imple-

mentation of other operations. Although worth noting, these lim-

itations are in line with the behavior of many optimizing com-

pilers used for CPU-based codes, particularly those targeting

CPU SIMD extensions such as SSE. The single precision hard-

ware implementation limits the G80 to applications for which it

is adequate, or to those for which techniques such as Kahan

summation or single–single arithmetic19,20 can be used to

improve numerical precision at the cost of performing more

operations. The CUDA software architecture is designed to sup-

port native IEEE double precision floating point, and the first

devices providing this functionality are expected to become

available in 2007.

The G80 architecture differs in several important ways from

prior GPU designs. G80 is capable of performing both scatter
and gather memory operations, allowing programs to access

arbitrary memory locations. Previous generation GPU designs

were limited to gather operations supporting a very restricted

range of memory reference patterns. Accesses to global memory

incur hundreds of clock cycles of latency, which the G80 can

hide from the application by dynamically scheduling other runn-

able threads onto the same processor while the original thread

waits for its memory operations to complete. The G80 has a

multithreaded architecture, which allows well-written computa-

tional kernels to take advantage of both the tremendous arithme-

tic capability and the high memory bandwidth of the GPU by

Figure 1. NVIDIA G80 hardware block diagram. 241 3 172 mm

(600 3 600 DPI). [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Table 1. NVIDIA GeForce 8800GTX Hardware Specifications.

Texture processor clusters (TPC) 8

Streaming multiprocessors (SM) per TPC 2

Super function units (SFU) per SM 2

Streaming processors (SP) per SM 8

Total SPs in entire processor array 128

Peak floating point performance GFLOPS 330, 550 w/Tex units

Floating point model Single precision IEEE-754

Integer word size 32-bit

Global memory size 768 MB

Constant memory 64 kB

Shared memory per SM 16 kB

Texture cache per SM 8 kB, 2-D locality

Constant cache per SM 8 kB

Registers per SM 8192 registers

Aggregate memory bandwidth 80 GB/s

2620 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

overlapping arithmetic and memory operations from multiple

hardware threads. The G80 architecture virtualizes processing

resources, mapping the set of independently computed thread

blocks onto the available pool of multiprocessors and provides

the means for multiple threads within a thread block to be run

on a single processing unit.21 The clustering of streaming pro-

cessors into relatively small SIMD groups limits the negative

impact of branch divergence to just the threads concurrently run-

ning on a single streaming multiprocessor.

The G80 incorporates a fast 16-kB shared memory area for

each separate multiprocessor. Threads can cooperatively load

and manipulate blocks of data into fast register-speed shared

memory, amortizing costlier reads from the large global mem-

ory. Accesses to the shared memory area are coordinated

through the use of a thread barrier synchronization primitive,

guaranteeing that all threads within a multiprocessor have com-

pleted their shared memory updates before other threads begin

accessing results. The shared memory area is a key architectural

feature of the G80 that allows programmers to deviate from the

strictly streaming model of GPU computation required with pre-

vious generation GPU architectures.

GPU Application Programming Interfaces

As GPU hardware became progressively more programmable,

new software interfaces were required to expose their pro-

grammability to application software. The earliest GPU pro-

gramming interfaces were based on hardware-independent pseudo-

assembly language instructions, making it possible to write

powerful shading and texturing routines that far exceeded the

capabilities provided by fixed-function hardware. Graphics appli-

cations refer to these programs executing on the GPU as shad-
ers, a name suggestive of the functions they perform in that con-

text. These pseudo-assembly programs were just-in-time com-

piled into native machine instructions at runtime by the graphics

driver and were then executed by the GPU, replacing the use of

some of the stages of the traditional fixed-function graphics

pipeline. Because of the tedious nature of writing complex shad-

ers at the assembly language level, high-level shading languages

were introduced, allowing shaders to be written in C-like lan-

guages with extensions for vector and matrix types, and includ-

ing libraries of highly optimized graphics functions. Up to this

stage of development, using a GPU for nongraphical purposes

required calculations to be expressed in terms of an image ren-

dering process. Applications using this methodology ‘‘draw’’ the

computation, with the results contained in a grid of pixels which

are read back to the host CPU and interpreted.

The hurdles posed by the limitations of previous generation

GPU hardware and software made early forays into GPU accel-

eration of general purpose algorithms an arduous process for

anyone lacking extensive graphics programming experience.

Subsequently, Buck et al. introduced a GPU-targeted version of

Brook, a machine independent stream programming language

based on extensions to C.22,23 The Brook stream programming

abstraction eliminated the need to view computations in terms of

graphics drawing operations and was the basis for several early

successes with GPU acceleration of molecular modeling and bio-

informatics applications.7,24

Over the past few years, data parallel or streaming imple-

mentations of many fundamental algorithms have been designed

or adapted to run on GPUs.25 State-of-the-art GPU hardware and

software developments have finally eliminated the need to ex-

press general purpose computations in terms of rendering and

are now able to represent the underlying hardware with abstrac-

tions that are better suited to general purpose computation. Sev-

eral high-level programming toolkits are currently available,

which allow GPU-based computations to be described in more

general terms as streaming, array-oriented, or thread-based com-

putations, all of which are more convenient abstractions to work

with for non-graphical computations on GPUs.

The work described in this article is based on the CUDA18

GPU programming toolkit developed by NVIDIA for their

GPUs. CUDA was selected for the implementations described in

the article due to its relatively thin and lightweight design, its

ability to expose all of the key hardware capabilities (e.g., scat-

ter/gather, thread synchronizations, complex data structures con-

sisting of multiple data types), and its ability to extract

extremely high performance from the target NVIDIA GeForce

8800GTX GPUs.

The CUDA programming model is based on the decomposi-

tion of work into grids and thread blocks. Grids decompose a

large problem into thread blocks which are concurrently exe-

cuted by the pool of available multiprocessors. Each thread

block contains from 64 to 512 threads, which are concurrently

executed by the processors within a single multiprocessor. Since

each multiprocessor executes instructions in a SIMD fashion,

each thread block is computed by running a group of threads,

known as a warp, in lockstep on the multiprocessor.

The abstractions and virtualization of processing resources

provided by the CUDA thread block programming model allow

programs to be written with GPUs that exist today but to scale

to future hardware designs. Future CUDA-compatible GPUs

may contain a large multiple of the number of streaming multi-

processors in current generation hardware. Well-written CUDA

programs should be able to run unmodified on future hardware,

automatically making use of the increased processing resources.

Target Algorithms

As a means of exploring the applicability of GPUs for the accel-

eration of molecular modeling computations, we present GPU

implementations of three computational kernels that are repre-

sentative of a range of similar kernels employed by molecular

modeling applications. While these kernels are interesting test

cases in their own right, they are only a first glimpse at what

can be accomplished with GPU acceleration.

Direct Coulomb Summation

What we here refer to as direct Coulomb summation is simply

the brute-force calculation of the Coulomb potential on a lattice,

given a set of atomic coordinates and corresponding partial

charges. Direct Coulomb summation is an ideal test case for

GPU computation due to its extreme data parallelism, high arith-

metic intensity, simple data structure requirements, and the ease

2621Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

with which its performance and numerical precision can be com-

pared with optimized CPU implementations. The algorithm is

also a good test case for a GPU implementation, as many other

grid-based function summation algorithms map to very similar

CUDA implementations with only a few changes.

No distance-based cutoffs or other approximations are

employed in the direct summation algorithm, so it will be used

as the point of reference for numerical precision comparisons

with other algorithms. A rectangular lattice is defined around the

atoms with a specified boundary padding, and a fixed lattice

spacing is used in all three dimensions. For each lattice point i
located at position ri, the Coulomb potential Vi is given by

Vi ¼
X
j

qj
4pe0 eðrijÞrij ; (1)

with the sum taken over the atoms, where atom j is located at rj
and has partial charge qj, and the pairwise distance is rij 5 |rj 2
ri|. The function e(r) is a distance-dependent dielectric coeffi-

cient, and in the present work will always be defined as either

e(r) 5 j or e(r) 5 jr, with j constant. For a system of N atoms

and a lattice consisting of M points, the time complexity of the

direct summation is O(MN).
The potential map is easily decomposed into planes or slices,

which translate conveniently to a CUDA grid and can be inde-

pendently computed in parallel on multiple GPUs, as shown in

Figure 2. Each of the 2-D slices is further decomposed into

CUDA thread blocks, which are scheduled onto the available

array of streaming multiprocessors on the GPU. Each thread

block is composed of 64–256 threads depending on the imple-

mentation of the CUDA kernel and the resulting give-and-take

between the number of concurrently running threads and the

amount of shared memory and register resources each thread

consumes. Figure 3 illustrates the decomposition of the potential

map into a CUDA grid, thread blocks, individual threads, and

the potential values calculated by each thread.

Since the direct summation algorithm requires rapid traversal

of either the voxels in the potential map or the atoms in the

structure, the decision of which should become the inner loop

was determined by the architectural strengths of the CUDA

hardware and software. CUDA provides a small per-multiproces-

sor constant memory that can provide operands at the same

speed as reading from a register when all threads read the same

operands at the same time. Since atoms are read-only data for

the purposes of the direct Coulomb summation algorithm, they

are an ideal candidate for storage in the constant cache. GPU

constant memory is small and can only be updated by the host

CPU, and so multiple computational kernel invocations are re-

quired to completely sum the potential contributions from all of

the atoms in the system. In practice, just over 4000 atom coordi-

nates and charges fit into the constant memory, but this is more

than adequate to amortize the cost of executing a kernel on the

GPU. By traversing atoms in the innermost loop, the algorithm

affords tremendous opportunity to hide global memory access

latencies that occur when reading and updating the summed

potential map values by overlapping them with the inner atom

loop arithmetic computations.

Performance of the direct Coulomb summation algorithm can

be greatly improved through the observation that components of

the per-atom distance calculations are constant for individual

planes and rows within the map. By evaluating the potential

energy contribution of an atom to several points in a row, these

values are reused, and memory references are amortized over a

larger number of arithmetic operations. By far the costliest arith-

metic operation in the algorithm is the reciprocal square root,

which unfortunately cannot be eliminated. Several variations of

the basic algorithm implement optimization strategies based on

these observations, improving both CPU and GPU implementa-

tions. The main optimization approach taken by CPU implemen-

tations is the reduction or elimination of floating point arithmetic

operations through precalculation and maximized performance

of the CPU cache through sequential memory accesses with unit

stride. Since the G80 has tremendous arithmetic capabilities, the

strategy for achieving peak performance revolves around keep-

ing the arithmetic units fully utilized, overlapping arithmetic and

memory operations, and making concurrent use of the independ-

ent constant, shared, and global memory subsystems to provide

data to the arithmetic units at the required rate. Although load-

ing atom data from constant memory can be as fast as reading

Figure 2. Decomposition of potential map into slices for parallel

computation on multiple GPUs. 190 3 91 mm (600 3 600 DPI).

Figure 3. Decomposition of potential map slice into CUDA grids

and thread blocks. 2353 172mm (600 3 600 DPI). [Color figure can

be viewed in the online issue, which is available at www.interscience.

wiley.com.]

2622 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

from a register (described above), it costs instruction slots and

decreases the overall arithmetic rate.

The performance results in Table 2 are indicative of the per-

formance levels achievable by a skilled programmer using a

high-level language (C in this case) without resorting to the use

of assembly language. All benchmarks were run on a system

containing a 2.6-GHz Intel Core 2 Extreme QX6700 quad core

CPU running 32-bit Red Hat Enterprise Linux version 4 update

4. Tests were performed on a quiescent system with no window-

ing system running. The CPU benchmarks were performed using

a single core, which is a best case scenario in terms of the

amount of system memory bandwidth available to that core,

since multicore CPU cores share a single front-side memory

bus. CUDA benchmarks were likewise performed on a single

GeForce 8800GTX GPU.

The CPU results included in Table 2 are the result of highly-

tuned C versions of the algorithm, with arrays and loop strides

explicitly arranged to allow the use of SSE instructions for peak

performance. The results show an enormous difference between

the performance of code compiled with GNU GCC 3.4.6 and

with the Intel C/Cþþ Compiler (ICC) version 9.0. Both of these

tests were performed enabling all SSE SIMD acceleration opti-

mizations for each of the compilers. The Intel compilers make

much more efficient use of the CPU through software pipelining

and loop vectorization. The best performing CPU kernels per-

form only six floating point operations per iteration of the atom

potential evaluation loop. Since the innermost loop of the calcu-

lation is so simple, even a small difference in the efficiency of

the resulting machine code can be expected to account for a

large difference in performance. This was also observed to a

lesser degree with CUDA implementations of the algorithm. The

CPU kernels benefit from manual unrolling of the inner loop to

process eight potential values at a time, making significant reuse

of atom coordinates and precomputed distance vector compo-

nents, improving performance by a factor of two over the best

non-unrolled implementation. It should be noted that although

the results achieved by the Intel C compiler show a significant

performance advantage versus GNU GCC, the resulting execut-

ables are not necessarily able to achieve this level of perform-

ance on non-Intel processors. As a result of this, GNU GCC is

frequently used to compile executables of scientific software that

is also expected to run on CPUs from other manufacturers.

The CUDA-Simple implementation loops over atoms stored

in constant memory, without any loop unrolling or data reuse

optimizations. It can compute 14.8 billion atom Coulomb poten-

tial values per second on the G80, exceeding the fastest single-

threaded CPU version (CPU-ICC-SSE) by a factor of 16, as

shown in Table 2. Given the inherent data parallelism of the

direct summation algorithm and the large number of arithmetic

units and significant memory bandwidth advantages held by the

GPU, a performance ratio of this magnitude is not surprising.

Although this level of performance improvement is impressive

for an initial implementation, the CUDA-Simple kernel achieves

less than half of the performance that the G80 is capable of.

As with the CPU implementations, the CUDA implementa-

tion benefits from several obvious optimizations that eliminate

redundant arithmetic and, more importantly, those that eliminate

redundant memory references. The CUDA-Precalc kernel is sim-

ilar to CUDA-Simple except that it precalculates the Z compo-

nent of the squared distance vector for all atoms for an entire

plane at a time, eliminating two floating point operations from

the inner loop.

The CUDA-Unroll4x kernel evaluates four values in the X
lattice direction for each atom it references as well as reusing

the summed Y and Z components of the squared distance vector

for each group of four lattice points, greatly improving the ratio of

arithmetic operations to memory references. The CUDA-Unroll4x

kernel achieves a performance level just shy of the best result

we were able to obtain, for very little time invested. The

CUDA-Unroll4x kernel uses registers to store all intermediate

sums and potential values, allowing thousands of floating point

operations to be performed for each slow global memory refer-

ence. Since atom data is used for four lattice points at a time,

even loads from constant memory are reduced. This type of opti-

mization works well for kernels that otherwise use a small num-

ber of registers, but will not help (and may actually degrade) the

performance of kernels that are already using a large number of

registers per thread. The practical limit for unrolling the CUDA-

Unroll4x kernel was four lattice points, as larger unrolling fac-

tors greatly increased the register count and prevented the G80

from concurrently scheduling multiple thread blocks and effec-

tively hiding global memory access latency.

The remaining two CUDA implementations attempt to reduce

per-thread register usage by storing intermediate values in the

G80 shared memory area. By storing potential values in shared

memory rather than in registers, the degree of unrolling can be

increased up to eight lattice points at a time rather than four,

using approximately the same number of registers per thread.

One drawback that occurs as a result of unrolling is that the size

of the computational ‘‘tiles’’ operated on by each thread block

increases linearly with the degree of inner loop unrolling, sum-

marized in Table 3. If the size of the tiles computed by the

thread blocks becomes too large, a correspondingly larger amount

of performance is lost when computing potential maps that are

not evenly divisible by the tile size, since threads at the edge op-

erate on padding values which do not contribute to the final

result. Similarly, if the total number of CUDA thread blocks

does not divide evenly into the total number of streaming multi-

processors on the GPU, some of the multiprocessors will

become idle as the last group of thread blocks is processed,

Table 2. Direct Coulomb Summation Kernel Performance Results.

Kernel

Normalized performance

Atom evals

per second GFLOPSvs GNU GCC vs Intel C

CPU-GCC-SSE 1.0 0.052 0.046 billion 0.28

CPU-ICC-SSE 19.3 1.0 0.89 billion 5.3

CUDA-Simple 321 16.6 14.8 billion 178

CUDA-Precalc 360 18.6 16.6 billion 166

CUDA-Unroll4x 726 37.5 33.4 billion 259

CUDA-Unroll8x 752 38.9 34.6 billion 268

CUDA-Unroll8y 791 40.9 36.4 billion 191

2623Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

resulting in lower performance. This effect is responsible for the

fluctuations in performance observed on the smaller potential

map side lengths in Figure 4.

For the CUDA-Unroll8x kernel, shared memory storage is

used only to store thread-specific potential values, loaded when

the threads begin and stored back to global memory at thread

completion. For small potential maps, with an insufficient num-

ber of threads and blocks to hide global memory latency, per-

formance suffers. The kernels that do not use shared memory

are able to continue performing computations while global mem-

ory reads are serviced, whereas the shared memory kernels im-

mediately block since they must read the potential value from

global memory into shared memory before beginning their com-

putations.

The CUDA-Unroll8y kernel uses a thread block that is the

size of one full thread warp (32 threads) in the X dimension,

allowing the global memory reads that fetch initial potential val-

ues to be coalesced into the most efficient memory transaction.

Additionally, since the innermost potential evaluation loop is

unrolled in the Y direction, this kernel is able to precompute

both the Y and Z components of the atom distance vector, reus-

ing them for all threads in the same thread block. To share the

precomputed values among all the threads, they must be written

to shared memory by the first thread warp in the thread block.

An additional complication arising in loading values into the

shared memory area involves coordinating reads and writes to

the shared memory by all of the threads. Fortunately, the direct

Coulomb summation algorithm is simple and the access to the

shared memory area occurs only at the very beginning and the

very end of processing for each thread block, eliminating

the need to use barrier synchronizations within the performance-

critical loops of the algorithm.

Multilevel Coulomb Summation

For problems in molecular modeling involving more than a few

hundred atoms, the direct summation method presented in the

previous section is impractical due to its quadratic time com-

plexity. To address this difficulty, fast approximation algorithms

for solving the N-body problem were developed, most notably

Barnes-Hut clustering26 and the fast multipole method (FMM)27–29

for nonperiodic systems, as well as particle-particle particle-

mesh (P3M)30,31 and particle-mesh Ewald (PME)32,33 for peri-

odic systems. Multilevel summation34,35 provides an alternative

fast method for approximating the electrostatic potential that

can be used to compute continuous forces for both nonperiodic

and periodic systems. Moreover, multilevel summation is more

easily described and implemented than the aforementioned

methods.

The multilevel summation method is based on the hierarchi-

cal interpolation of softened pairwise potentials, an approach

first used for solving integral equations,36 then applied to long-

range charge interactions,37 and, finally, made suitable for use in

molecular dynamics.34 Here, we apply it directly to eq. (1) for

computing the Coulomb potential on a lattice, reducing the

algorithmic time complexity to O(M þ N). Although the overall

algorithm is more complex than the brute force approach, the

multilevel summation method turns out to be well-suited to the

G80 hardware due to its decomposition into spatially localized

computational kernels that permit massive multithreading. We

first present the basic algorithm, then benchmark an efficient se-

quential implementation, and finally present benchmarked results

of GPU kernels for computing the most demanding part.

The algorithm incorporates two key ideas: smoothly splitting

the potential and approximating the resulting softened potentials

on lattices. Taking the dielectric to be constant, the normalized

electrostatic potential can be expressed as the sum of a short-

range potential (the leading term) plus a sequence of softened

potentials (the ‘ following terms),

Table 3. Data Decomposition and GPU Resource Usage of Direct Coulomb Summation Kernels.

Kernel

Block

dimensions

Tile

dimensions

Registers

per thread

Shared

memory

CUDA-Simple 16 3 16 3 1 16 3 16 3 1 12 0

CUDA-Precalc 16 3 16 3 1 16 3 16 3 1 10 0

CUDA-Unroll4x 4 3 16 3 1 16 3 16 3 1 20 0

CUDA-Unroll8x 4 3 32 3 1 32 3 32 3 1 21 4100 bytes

CUDA-Unroll8y 32 3 4 3 1 32 3 32 3 1 19 4252 bytes

All kernels use the entire 64-kB constant memory to store atom data.

Figure 4. Direct Coulomb potential kernel performance versus lat-

tice size.

2624 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

1

r
¼ 1

r
� 1

a
c

r

a

� �� �
þ 1

a
c

r

a

� �
� 1

2a
c

1

2a

� �� �
þ � � �

þ 1

2‘�2a
c

r

2‘�2a

� �
� 1

2‘�1a
c

r

2‘�1a

� �� �
þ 1

2‘�1a
c

r

2‘�1a

� �
; ð2Þ

defined in terms of an unparameterized smoothing function c,
chosen so that c(q) 5 q21 for q � 1, which means that each of

the groupings in the first ‘ terms of eq. (2) vanishes beyond a

cutoff distance of a, 2a , . . . , 2‘21a, respectively. The softened

region q � 1 of c is chosen so that cð
ffi
x2 þ y2 þ z2

p
Þ and its

partial derivatives are everywhere slowly varying and smooth;

this can be accomplished by using even polynomials of q, for
example, by taking a truncated Taylor expansion of s21/2 about

s 5 1 and then setting s 5 q2. The idea of splitting the 1/r ker-

nel into a local short-range part and a softened long-range part

has been previously discussed in the multilevel/multigrid litera-

ture (e.g., ref. 38). We note that eq. (2) is a generalization of the

two-level splitting presented in ref. 34, and its formulation is

similar to the interaction partitioning used for multiple time step

integration of the electrostatic potential.39

Multilevel approximation is applied to eq. (2) by nested

interpolation of the telescoping sum starting at each subsequent

splitting from lattices of spacings h, 2h , . . . , 2‘21h, respectively.
This can be expressed concisely by defining a sequence of func-

tions,

g�ðr; r0Þ ¼ 1

jr0 � rj �
1

a
c
� jr0 � rj

a

�
;

gkðr; r0Þ ¼ 1

2ka
c
� jr0 � rj

2ka

�
� 1

2kþ1a
c
� jr0 � rj

2kþ1a

�
;

k ¼ 0; 1; . . . ; ‘� 2;

g‘�1ðr; r0Þ ¼ 1

2‘�1a
c
� jr0 � rj

2‘�1a

�
;

(3)

and operators Ik that interpolate a function g from a lattice of

spacing 2kh,

Ikgðr; r0Þ ¼
X
l

X
v

/k
lðrÞ gðrkl; rkvÞ /k

vðr0Þ;

k ¼ 0; 1; . . . ‘� 1; ð4Þ

where /k
l and /k

v are nodal basis functions of points rkl and rkv
defined by

/k
lðrÞ ¼ U

� x� xkl
2kh

�
U
� y� ykl

2kh

�
U
� z� zkl

2kh

�
; (5)

in terms of a master basis function F(n) of unit spacing. The

multilevel approximation of eq. (2) can be written as

1

jr0 � rj ¼ ðg� þ g0 þ g1 þ � � � þ g‘�2 þ g‘�1Þðr; r0Þ

� g� þ I0 g0 þ I1 g1 þ � � � I‘�2 g‘�2 þ I‘�1g‘�1ð Þ � � �ð Þð Þð Þðr; r0Þ:
(6)

Using interpolation with local support, the computational work

is constant for each lattice point, with the number of points

reduced by almost a factor of 8 at each successive level. Sum-

ming eq. (6) over all pairwise interactions yields an approxima-

tion to the potential energy requiring just O(M þ N) operations
for N atoms and M points.

This method can be easily extended to use a distance-depend-

ent dielectric coefficient e(r) 5 jr, in which case the splitting in

eq. (2) (written to two levels) can be expressed as

1

r2
¼ 1

r2
� 1

a2
c

r2

a2

� �� �
þ 1

a2
c

r2

a2

� �
; (7)

where the short-range part again vanishes by choosing c(q) 5
q21 for q � 1. The region q � 1 of c(x2 þ y2 þ z2) and its par-

tial derivatives are smoothly bounded for all polynomials in q,
which permits the softening to be a truncated Taylor expansion

of q21 about q 5 1.

Use of multilevel summation for molecular dynamics

involves the approximation of the electrostatic potential func-

tion,

Uðr1; . . . ; rNÞ ¼ 1

2

X
i

X
j6¼i

qiqj
4pe0rij

; (8)

by substituting eq. (6) for the 1/r potential. The atomic forces

are computed as the negative gradient of the approximate poten-

tial function, for which stable dynamics with continuous forces

require that F be continuously differentiable. Ref. 35 provides a

detailed theoretical analysis of eq. (6), showing asymptotic error

bounds of the form

potential energy error < 12cpMp
hp

apþ1
þ O

� hpþ1

apþ2

�
;

force component error <
4

3
c0p�1Mp

hp�1

apþ1
þ O

� hp

apþ2

�
; ð9Þ

where Mp is a bound on the pth order derivatives of c, the inter-

polant F is assumed exact for polynomials of degree \ p, and
constants cp and c0p�1 depend only on F. An analysis of the cost

versus accuracy shows that the spacing h of the finest lattice

needs to be close to the inter-atomic spacing, generally 2 Å � h
� 3 Å, and, for a particular choice of F and c, the short-range

cutoff distance a provides control over accuracy, with values in

the range 8 Å � a � 12 Å appropriate for dynamics, producing

less than 1% relative error in the average force. For these

choices of h and a, empirical results suggest improved accuracy

by choosing c to have no more than the Cp21 continuity sug-

gested by theoretical analysis, where the lowest errors have been

demonstrated with c instead having Cdp/2e continuity. Ref. 35

also shows that comparable accuracy to FMM and PME is avail-

able for multilevel summation through the use of higher order

interpolation, while demonstrating stable dynamics using

cheaper, lower accuracy approximation.

Our presentation of the multilevel summation algorithm

focuses on approximating the Coulomb potential lattice in eq.

(1) to offer a fast alternative to direct summation for ion place-

2625Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

ment and related applications, discussed later. The algorithmic

decomposition follows eq. (6) by first dividing the computation,

from the initial splitting,

Vi � eshorti þ elongi ; (10)

into an exact short-range part,

eshorti ¼
X
j

qj
4pe0

1

rij
� 1

a
c

rij
a

� �� �
; (11)

and a long-range part approximated on the lattices. The nested

interpolation performed in the long-range part is further subdi-

vided into steps that assign charges to the lattice points, from

which potentials can be computed at the lattice points, and finally

the long-range contributions to the potentials are interpolated from

the finest-spaced lattice. These steps are designated as follows:

anterpolation: q0l ¼
X
j

/0
lðrjÞqj; (12)

restriction: qkþ1
l ¼

X
v

/kþ1
l ðrkvÞqkv; k¼ 0;1; . . . ; ‘�2; (13)

lattice cutoff: ek;cutoffl ¼
X
v

gkðrkl;rkvÞqkv;

k¼ 0;1; . . . ; ‘�1; ð14Þ

prolongation: e‘�1
l ¼ e‘�1;cutoff

l ;

ekl ¼ ek;cutoffl þ
X
v

/kþ1
v ðrklÞekþ1

v ;

k¼ ‘�2; . . . ;1;0; ð15Þ

interpolation: elongi ¼
X
l

/0
lðriÞe0l: (16)

There is constant work computed at each lattice point (i.e., left-

hand side) for eqs. (12)–(16), where the sizes of these constants

depend on the choice of parameters F, h, and a. To estimate the

total work done for each step, we assume that the number of points

on the h-spaced lattice is approximately the number of atoms N
and that the interpolation is by piecewise polynomials of degree p,
giving F a stencil width of p þ 1.

The anterpolation step in eq. (12) uses the nodal basis func-

tions to spread the atomic charges to their surrounding lattice

points, with total work proportional to p3N. The interpolation

step in eq. (16) sums from the N lattice points of spacing h to

the M Coulombic lattice points of eq. (1), which in practice has

a much finer lattice spacing. This means that the total work for

interpolation might take as much time as p3M and require evalu-

ation of the nodal basis functions; however, with an alignment

of the two lattices, the / function evaluations have fixed values

repeated across the potential lattice points, so a small subset of

values can be precomputed and reapplied across the points. A

further optimization can be made, because of the regularity of

interpolating one aligned lattice to another, in which the partial

sums are stored while marching across the lattice in each sepa-

rate dimension; this lowers the work to pM but requires addi-

tional temporary storage proportional to M2/3.

The restriction step in eq. (13) is anterpolation performed on

a lattice. Since the relative spacings are identical at any lattice

point and between any consecutive levels, the nodal basis func-

tion evaluations can all be precomputed. A marching technique

similar to that for the interpolation step can be employed

with total work for the charges at level k þ 1 proportional to

223(kþ1)pN. The prolongation step in eq. (15) is similarly identi-

cal to the interpolation step computed between lattice levels,

with the same total work requirements as restriction.

The lattice cutoff summation in eq. (14) can be viewed as

a discrete version of the short-range computation in eq. (11),

with a spherical cutoff radius of d2a/he 2 1 lattice points at every

level. The total work required at level k is approximately 223k

(2a/h)3N. Unlike the short-range computation, the pairwise gk
evaluation is between lattice points; this sphere of ‘‘weights’’

that multiplies the lattice charges is unchanging for a given level

and, therefore, can be precomputed. An efficient implementation

expands the sphere of weights to a cube padded with zeros at

the corners, allowing the computation to be expressed as a con-

volution at each point of the centered sublattice of charge with

the fixed lattice of weights. All of the long-range steps in eqs.

(12)–(16) permit concurrency for summations to the individual

lattice points that require no synchronization, i.e., are appropri-

ate for the G80 architecture.

The summation for the short-range part in eq. (11) is com-

puted in fewest operations by looping over the atoms and sum-

ming the potential contribution from each atom to the points

contained within its sphere of radius a. The computational work

is proportional to a3N times the density of the Coulombic lattice,

with each pairwise interaction evaluating a square root and the

smoothing function polynomial. This turns out to be the most

demanding part of the entire computation due to the use of a

much finer spacing for the Coulombic lattice. Best performance

is obtained by first ‘‘sorting’’ the atoms through geometric hash-

ing40 so that the order in which the atoms are visited aligns with

the Coulombic lattice memory storage. The timings listed in Ta-

ble 4 show for a representative test problem that the short-range

part takes more than twice the entire long-range part. To

improve overall performance, we developed CUDA implementa-

tions for the short-range computational kernel.

Table 4. Multilevel Coulomb Summation, Sequential Time Profile.

Time (s) Percentage of total

Short-range part 50.30 69.27

Long-range part 22.31 30.73

anterpolation 0.05 0.07

restriction, levels 0,1,2,3,4 0.06 0.08

lattice cutoff, level 0 13.89 19.13

lattice cutoff, level 1 1.83 2.52

lattice cutoff, level 2 0.23 0.32

lattice cutoff, levels 3,4,5 0.03 0.04

prolongation, levels 5,4,3,2,1 0.06 0.08

interpolation 6.16 8.49

2626 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

Unlike the long-range steps, the concurrency available to the

sequential short-range algorithm discussed in the preceding para-

graph does require synchronization, since lattice points will

expect to receive contributions from multiple atoms. Even

though the G80 supports scatter operations, with contributions

from a single atom written to the many surrounding lattice

points and also supports synchronization within a grid block of

threads, there is no synchronization support across multiple grid

blocks. Thus, a CUDA implementation of the short-range algo-

rithm that loops first over the atoms would need to either sepa-

rately buffer the contributions from the atoms processed in par-

allel, with the buffers later summed into the Coulombic lattice,

or geometrically arrange the atoms so as to process in parallel

only subsets of atoms that have no mutually overlapping contri-

butions, in which the pairwise distance between any two atoms

is greater than 2a.
An alternative approach to the short-range summation that

supports concurrency is to invert the loops, first looping over

the lattice points and then summing the contributions from the

nearby atoms to each point. For this, we seek support from the

CPU for clustering nearby atoms by performing geometric hash-

ing of the atoms into grid cells. The basic implementation

hashes the atoms and then loops over subcubes of the Coulom-

bic lattice points; the CUDA kernel is then invoked one or more

times on each subcube to sum its nearby atomic contributions.

The CUDA implementations developed here are similar to those

developed for direct summation, where the atom and charge data

are copied into the constant memory space, and the threads are

assigned to particular lattice points. One major difference is that

the use of a cutoff potential requires a branch within the inner

loop.

For the implementations tested here, the multilevel summa-

tion parameters are fixed as h 5 2 Å, a 5 12 Å,

UðnÞ ¼
ð1� jnjÞ 1þ jnj � 3

2
n2

� �
; for jnj � 1;

� 1

2
ðjnj � 1Þð2� jnjÞ2; for 1 � jnj � 2;

0; otherwise;

8>>>>><
>>>>>:

(17)

cðqÞ ¼
15

8
� 5

4
q2 þ 3

8
q4; q � 1;

1=q; q � 1;

8<
: (18)

where F is the linear blending of quadratic interpolating polyno-

mials, providing C1 continuity for the interpolant and where the

softened part of c is the first three terms in the truncated Taylor

expansion of s21/2 about s 5 1, providing C2 continuity for the

functions that are interpolated. We note that compared with

other parameters investigated for multilevel summation,35 these

choices for F and c exhibit higher performance but lower accu-

racy. The accuracy generally provides about 2.5 digits of preci-

sion for calculation of the Coulomb potentials, which appears to

be sufficient for use in ion placement, since the lattice minima

determined by the approximation generally agree with those

from direct summation. As noted earlier, improved accuracy can

be achieved by higher order interpolation. Also, since continuous

forces are not computed, it is unnecessary to maintain a continu-

ously differentiable F. For this particular case, F could be

obtained directly from a cubic interpolating polynomial, which

would increase the order of accuracy by one degree, i.e.,

increasing p in eq. (9) by one, without affecting performance.

Performance testing has been conducted for N 5 200,000

atoms, assigned random charges and positions within a box of

length 192 Å. The Coulombic lattice spacing is 0.5 Å, giving M
5 3843 points. These dimensions are comparable to the size of

the ion placement problem solved for the STMV genome, dis-

cussed later in the article. Table 4 gives the timings of this sys-

tem for an efficient and highly-tuned sequential version of multi-

level summation, built using the Intel compiler with SSE options

enabled. Special care was taken to compile vectorized inner

loops for the short-range kernel.

Four CUDA implementations have been developed for com-

puting the short-range part. The operational workload for each

CUDA kernel invocation is chosen as subcubes of 483 points

from the Coulombic lattice, intended to provide sufficient com-

putational work for a domain that is a multiple of the a 5 12 Å

cutoff distance. The grid cell size for the geometric hashing is

kept coarse at 24 Å, matching the dimensions of the subcube

blocks, with the grid cell tiling offset by 12 Å in each dimen-

sion, so that the subcube block plus a 12-Å cutoff margin is

exactly contained by a cube of eight grid cells. The thread block

dimension has been carefully chosen to be 4 3 4 3 12 (modi-

fied to 4 3 4 3 8 for the MShort-Unroll3z kernel), with the

intention to reduce the effects of branch divergence by mapping

a 32-thread warp onto a lattice subblock of smallest surface

area. An illustration of the domain decomposition and thread

block mapping is shown in Figure 5.

Table 5 compares the performance benchmarking of the

CUDA implementations, with speedups normalized to the atom

evaluation rate of the CPU implementation. The benchmarks

were run with the same hardware configuration as used for the

previous section. The MShort-Basic kernel has a well-optimized

floating point operation count and attempts to minimize register

Figure 5. Domain decomposition for short-range computation of

multilevel Coulomb summation on the GPU.

2627Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

use by defining constants for method parameters and thread

block dimensions. However, this implementation is limited by

invoking the kernel to process only one grid cell of atoms at a

time. Given an atomic density of 1 atom per 10 Å3 for systems

of biomolecules, we would expect up to 243/10 5 1382.4 atoms

per grid cell, which is a little over one-third of the available

constant memory storage. The MShort-Cluster implementation

uses the same kernel as MShort-Basic but has the CPU buffer as

many grid cells as possible before each kernel invocation. The

difference in performance demonstrates the overhead involved

with kernel invocation and copying memory to the GPU.

Much better performance is achieved by combining the

MShort-Cluster kernel invocation strategy with unrolling the

loops along the Z-direction. Each thread accumulates two Cou-

lombic lattice points in MShort-Unroll2z and three points in

MShort-Unroll3z. Like the previous kernels, the thread assign-

ment for the unrolling maintains the warp assignments together

in adjacent 4 3 4 3 2 blocks of lattice points. These kernels

have improved performance but lower GFLOPS due to comput-

ing fewer operations. Unfortunately, attempting to unroll a

fourth time decreases performance due to the increased register

usage.

Although the six-fold speedup for the short-range part

improves the runtime considerably, Amdahl’s Law limits the

speedup for the entire multilevel summation to just 2.4 due

to the remaining sequential long-range part. Performance is

improved by running the short-range GPU-accelerated part con-

currently with the sequential long-range part using two threads

on a multicore CPU, which effectively hides the short-range

computation and makes the long-range computation the rate-lim-

iting part. Looking back at Table 4, the lattice cutoff step could

be parallelized next, followed by the interpolation step, and so

on. Even though the algorithmic steps for the long-range part

permit concurrency, applying the GPU to each algorithmic step

offers diminished performance improvement to the upper lattice

levels due to the geometrically decreasing computational work

available. The alternative is to devise a kernel that computes the

entire long-range part.

Figure 6 compares the performance of multilevel Coulomb

summation implementations (using the MShort-Unroll3z kernel)

with direct Coulomb summation enhanced by GPU acceleration

(using the CUDA-Unroll4x kernel). The number of atoms N is

varied, using positions assigned from a random uniform distribu-

tion of points from a cubic 10N Å3 volume of space to provide

the expected atomic density for a biomolecular system. The size

M of the lattice is chosen so as to provide a 0.5-Å spacing with

a 10-Å border around the cube of atoms, which is typical for

use with ion placement, i.e.,

M ¼ 2ðð10NÞ1=3 þ 20Þ
l m3

: (19)

The logarithmic plots illustrate the linear algorithmic behavior

of multilevel summation as lines with slope �1, as compared

with the quadratic behavior with slope �2 lines of direct sum-

mation. The flat plots for N \ 1,000 of the GPU accelerated

implementations reveal the overhead incurred by the use of

GPUs. The multithreaded GPU-accelerated implementation of

multilevel summation performs better than GPU-accelerated

direct summation starting around N 5 10,000. The sequential

CPU multilevel summation begins outperforming the CPU direct

summation by N 5 800 and the 3-GPU direct summation by N 5
250,000.

Molecular Dynamics Force Evaluation

The preceding methods for evaluating the Coulombic potential

surrounding a molecule are used in the preparation of biomolec-

ular simulations. GPU acceleration allows more accurate meth-

ods, leading to better initial conditions for the simulation. It is,

however, the calculation of the molecular dynamics trajectory

that consumes nearly all of the computational resources for such

work. For this reason we now turn to the most expensive part of

a molecular dynamics (MD) simulation: the evaluation of intera-

tomic forces.

Detailed Description

Classical molecular dynamics simulations of biomolecular sys-

tems require millions of timesteps to simulate even a few nano-

seconds. Each timestep requires the calculation of the net force

Fi on every atom, followed by an explicit integration step to

update velocities vi and positions ri. The force on each atom is

Table 5. Multilevel Coulomb Summation, Short-Range Kernel

Performance Results.

Kernel

Time

(s)

Normalized

performance

vs. CPU

Atom

evals per

second GFLOPS

MShort-CPU-icc 50.30 1.0 0.214 billion 5.62

MShort-Basic 12.31 4.1 0.876 billion 103

MShort-Cluster 11.69 4.3 0.922 billion 108

MShort-Unroll2z 8.44 6.0 1.28 billion 107

MShort-Unroll3z 7.40 6.8 1.46 billion 105

Figure 6. Comparing performance of multilevel and direct Coulomb

summation.

2628 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

the negative gradient of a potential function U(r1, . . . , rN). A

typical simulation of proteins, lipids, and/or nucleic acids in a

box of water molecules comprises 10,000–1,000,000 atoms. To

avoid edge effects from a water-vacuum interface, periodic

boundary conditions are used to simulate an infinite sea of iden-

tical neighbors.

The common potential functions for biomolecular simulation

are the sum of bonded terms, describing energies due to covalent

bonds within molecules, and nonbonded terms, describing Cou-

lombic and van der Waals interactions both between and within

molecules. Bonded terms involve two to four nearby atoms in

the same molecule and are rapidly calculated. Nonbonded terms

involve every pair of atoms in the simulation and form the bulk

of the calculation. In practice, nonbonded terms are restricted to

pairs of atoms within a cutoff distance rc, reducing N2/2 pairs to
4
3
pr3cqN/2 where q is the number of atoms per unit volume

(about 0.1 Å23). The long-range portion of the periodic Cou-

lomb potential can be evaluated in O(N log N) time by the parti-

cle-mesh Ewald (PME) method,32,33 allowing practical cutoff

distances of 8–12 Å for typical simulations.

The functional form of the nonbonded potential is

Unb ¼
X
i

X
j<i

4eij
rij
rij

� �12

� rij
rij

� �6
" #

þ qiqj
4pe0rij

 !
: (20)

The parameters eij and rij are calculated from the combining

rules eij ¼ ffiffiffiffiffiffiffi
eiej

p
and rij ¼ 1

2
ðri þ rjÞ (some force fields useffiffiffiffiffiffiffiffi

rirj
p

instead); ei and ri are the same for all atoms of the same

type, i.e., of the same element in a similar chemical environ-

ment. The partial charges qi are assigned independently of atom

type and capture the effects of both ionization (formal charge)

and electronegativity (preferential attraction of the shared elec-

trons of a bond to some nuclei over others).

In practical simulations the above nonbonded potential is

modified in several ways for accuracy and efficiency. The most

significant change is neglect of all pairs beyond the cutoff dis-

tance, as mentioned earlier. Atoms crossing the cutoff boundary

will cause sharp jumps in the reported energy of the simulation.

Since conservation of energy is one measure of simulation accu-

racy, the potential is modified by a ‘‘switching function’’ sw(r)
that brings the potential smoothly to zero at the cutoff distance.

The bonded terms of the potential are parameterized to cap-

ture the complete interaction between atoms covalently bonded

to each other or to a common atom (i.e., separated by two

bonds); such pairs of atoms are ‘‘excluded’’ from the normal

nonbonded interaction. The number of excluded pairs is small,

about one per bonded term, leading one to consider evaluating

the nonbonded forces for all pairs and then subtracting the

forces due to excluded pairs in a quick second pass. However,

the small separations (close enough to share electrons) of

excluded pairs would lead to enormous nonbonded forces, over-

whelming any significant digits of the true interaction and leav-

ing only random noise.

When the particle-mesh Ewald method is used to evaluate

the Coulomb potential over all pairs and periodic images, the

result is scaled by erf (brij) (where b is chosen such that erf(brc)

�1). Hence, the Coulomb term in the nonbonded calculation

must be scaled by 1 2 erf (brij) : erfc(brij), while the Ewald

forces due to excluded pairs must be subtracted off. Note that,

unlike the common graphics operation rsqrt() implemented

in hardware on all GPUs and many CPUs, erfc() is imple-

mented in software and is therefore much more expensive. For

this reason many molecular dynamics codes use interpolation

tables to quickly approximate either erfc() or the entire Cou-

lomb potential.

CUDA Implementation

Having presented the full complexity of the nonbonded poten-

tial, we now refactor the potential into distance-dependent func-

tions and atom-dependent parameters as

Unb ¼
X
i

X
j<i

0 rij > rc

eij r12ij aðrijÞ þ r6ijbðrijÞ
h i

þ qiqjcðrijÞ normal

qiqjdðrijÞ excluded

8>>>>><
>>>>>:

(21)

where a(r) 5 4 sw(r)/r12, b(r) 5 24 sw(r)/r6, c(r) 5 erfc(br)/
4pe0r, d(r) 5 2erf(br)/4pe0r, eij 5

ffiffiffiffi
ei

p ffiffiffiffi
ej

p
, and rij ¼ 1

2
ri þ 1

2
rj.

Thus, to calculate the potential between two atoms requires only

r, e, r, and q for each atom, four common functions of r, and a

means of checking if the pair is excluded.

In a biomolecular simulation, the order of atoms in the input

file follows the order of residues in the peptide or nucleic acid

chain. Thus, with the exception of rare cross-links such as disul-

phide bonds, all of the exclusions for a given atom i may be

confined to an exclusion range [i 2 ei, i þ ei] where ei � N.
This allows the exclusion status of any pair of atoms to be

checked in O(1) time by testing first |j 2 i| � ei and, if true, ele-
ment j 2 i þ ei of an exclusion array fi[0. . .2ei] of boolean val-

ues. We further note that due to the small number of building

blocks of biomolecular systems (20 amino acids, four nucleic

acid bases, water, ions, a few types of lipids), the number of

unique exclusion arrays will be much less than N and largely in-

dependent of system size. For example, a 1,000,000-atom virus

simulation and a 100,000-atom lipoprotein simulation both have

only 700–800 unique exclusion arrays. In addition, the exclusion

arrays for hydrogens bonded to a common atom differ only by

an index shift and hence may be combined. When stored as sin-

gle bits, the unique exclusion arrays for most atoms in a simula-

tion will fit in the 8-kB dedicated constant cache of the G80

GPU, with the rest automatically loaded on demand. Thus,

exclusion checking for a pair of atoms requires only the two

atom indices and the exclusion range and array index for either

atom. While four bytes are required for the atom index, the

exclusion range and array index can be stored as two-byte

values. Counting also r, e, r, and q, we see that a total of 32

bytes of data per atom is required to evaluate the nonbonded

potential.

In a molecular dynamics simulation, energies are used only

as diagnostic information. The equations of motion require only

2629Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

the calculation of forces. Taking 2!iUnb yields a force on

atom i of

Fnb
i ¼

X
j6¼i

rj � ri

rij

0 rij > rc

eij½r12ij a0ðrijÞ þ r6ijb
0ðrijÞ�

þ qiqjc
0ðrijÞ normal

qiqjd
0ðrijÞ excluded

8>>>><
>>>>:

(22)

and we note that each atom pair requires only a single force

evaluation since Fnb
ij 5 2Fnb

ji .

We now seek further simplifications to increase performance.

Since the sqrt() required to calculate rij is actually imple-

mented on the G80 GPU as rsqrt() followed by recip(),
we can save one special function call by using only r�1

ij . To

eliminate rij, define A(r21) 5 a0(r)/r, B(r21) 5 b0(r)/r, C(r21) 5
c0(r)/r, and D(r21) 5 d0(r)/r. Our final formula for efficient non-

bonded force evaluation is therefore

Fnb
i ¼

X
j6¼i

ðrj � riÞ

0 r2ij > r2c

eij r12ij Aðr�1
ij Þ þ r6ijBðr�1

ij Þ
h i

þ qiqjC r�1
ij

� �
normal

qiqjD r�1
ij

� �
excluded:

8>>>>>>><
>>>>>>>:

(23)

Let A(s) be interpolated linearly in s from its values Ak along

evenly spaced points sk 2 [r�1
c , d21] (and similarly for B, C,

and D). For s [d21 (corresponding to r \ d), let A(s) 5
A(d21), etc., yielding forces proportional to r over r 2 [0, d].
Forces for r 2 [s�1

k , s21
k21] will take the form r(ar21 þ b), which

simplifies to the linear form a þ rb. Thus, linear interpolation in

r21 of A(r21) etc. is equivalent to linear interpolation in r of the
entire force. The greatest density of interpolation points, and

hence the greatest accuracy, is found for d � r � rc. If d is cho-

sen as the closest physically possible distance between two

atoms, then the region of greatest accuracy corresponds to the

region of greatest force magnitude and gradient. We also

observe that the accuracy of the simulation may be improved by

adjusting Ak etc. such that at each interpolation point the integral

of the interpolated force exactly matches the energy.

The G80 implements linear interpolation of textures in hard-

ware, which is a perfect fit for efficiently evaluating the dis-

tance-dependent functions A, B, C, and D. To use this feature,

the texture coordinate r21 must be normalized to [0, 1], which

can be accomplished for our purposes by scaling r21 by d. We

observe that choosing d 5 1 Å saves a multiply and a valuable

register. The texture hardware can also clamp out-of-range coor-

dinates to [0, 1], resulting in the desired behavior for r\ d. The
dedicated 8-kB texture cache can hold 512 four-component ele-

ments (2048 single-precision floating-point values), which is suf-

ficient for force interpolation.

A strategy for mapping the nonbonded force calculation now

takes shape. The texture unit and cache will be dedicated to

force interpolation and the constant cache to exclusion arrays.

At this point 16 kB of shared memory and 32 kB of registers

remain unused. (Registers hold all scalar automatic variables for

a thread and are the largest low-latency memory available on

the GPU.)

One of the standard strategies of CUDA programming is

minimizing registers-per-thread and shared-memory-per-block to

allow more threads and blocks to run simultaneously, thus hid-

ing the latency of global memory accesses. In the present case,

however, the number of force evaluations that can be performed

between global memory transfers is proportional to the square of

the number of atoms that fit in registers and/or shared memory.

We must ensure, of course, that we simultaneously load only

atoms that are likely to be within the cutoff distance of each

other. This can be accomplished by presorting the atoms into

bins based on their coordinates, with each bin corresponding to

a cubic domain of dimensions equal to the cutoff distance. All

atoms in nonneighboring bins will be outside the cutoff distance,

and thus only atoms in neighboring bins need to be loaded

simultaneously. Given a cutoff of 12 Å and an atom density of

0.1 Å23, each bin will hold an average of 173 atoms. Loading

two such bins of atoms would require minimally 11 kB of mem-

ory, plus some allowance for bins with larger numbers of atoms

and the accumulated forces on each atom.

In our implementation of the nonbonded force calculation,

each block has enough threads that a bin of atoms has at most

one atom per thread. A bin of atoms for which forces are to be

accumulated is read into registers. The atoms of a second, neigh-

boring bin are read and copied to shared memory. Each thread

then simultaneously iterates over the atoms in shared memory,

calculating the force on the atom in its registers. The code for

this inner loop is shown in Figure 7. This process may be

repeated by the same block for all neighboring bins before stor-

ing the total accumulated forces, or a separate block and output

Figure 7. CUDA source code for nonbonded force evaluation inner

loop.

2630 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

array may be assigned to each pair of neighboring bins and the

forces summed in a separate kernel. Accuracy for large simula-

tions is enhanced by storing the atomic coordinates relative to

the centers of the bins and shifting one set of atoms by the bin-

bin offset vector when they are loaded.

Performance

For performance evaluation, we have constructed a test harness

to generate input sets with each bin containing the average num-

ber of atoms, randomly located within the cube. While calculat-

ing forces, the implementation also counts the number of atoms

within the cutoff distance for each atom, ensuring that the

proper amount of work is being done. Performance in this har-

ness is summarized in Table 6. There is a 30% performance

drop for the 8-Å cutoff case at a bin size of 11 Å, which corre-

sponds to 160 threads per block. At 160 threads per block, the

26 registers per thread needed by the nonbonded force kernel

consume more than half of the 8192 registers available. Thus,

the observed performance drop corresponds to the point beyond

which the hardware cannot hide latency by coscheduling multi-

ple blocks. For larger bin sizes, performance does not degrade

despite the additional number of distance comparisons, suggest-

ing that the reduced number of blocks compensates for the

increased thread and iteration counts.

We have incorporated the current CUDA implementation of

nonbonded forces into NAMD,11 a popular, highly-tuned parallel

MD program for simulations of large biomolecular systems.

Since the NAMD parallelization scheme is based on distributing

pairs of neighboring bins to processors, the above GPU algo-

rithm was readily adapted. The primary challenge was that the

number of atoms per bin, over 640 for the standard apoa1

benchmark, exceeded the number of threads allowed per block.

This was addressed first by having each thread calculate forces

for two atoms, and then by splitting bins along one dimension, a

standard NAMD method for scaling to large processor counts.

The beta implementation of the CUDA runtime used not only

blocks the calling process on the CPU but also consumes CPU

time while the GPU runs, making overlap of CPU and GPU

computation impractical. (This deficiency is corrected in the cur-

rent release of CUDA.) The performance of CUDA-accelerated

NAMD is shown in Table 7. Observed parallel scaling is limited

by overhead, memory contention within the quad-core processor

(on two and three cores) and by gigabit ethernet bandwidth (on

six cores). While the performance of a single GPU-accelerated

workstation does not approach that of the clusters and supercom-

puters typically used for NAMD simulations, a GPU-accelerated

cluster with an InfiniBand or other high-performance network

should provide a highly cost-effective platform for even the larg-

est simulations.

In our implementation the force Fij between a pair of atoms

is calculated for both atom i and atom j. This redundancy sug-

gests that performance could be doubled by accumulating forces

for the atoms in shared memory as well as those in registers.

The simplest method of doing this is for each thread to iterate

over the atoms in shared memory starting at a different index.

For iteration k, thread i accesses atom (i þ k) mod n from

shared memory. Even after substantial tuning (e.g., replacing the

expensive general j mod n operation with ‘‘if j � n then j 5
j 2 n’’), we observed that performance with this reciprocal-

forces method was lower than for redundant forces. We attribute

this to the _syncthreads() call required between itera-

tions, the extra instructions required to accumulate the force into

shared memory, and reduced warp coherency during the cutoff

test.

Another inefficiency in our implementation is that, even with

bin size exactly equal to the cutoff distance, only 15.5% of

atoms in the 27 bins that must be checked are actually within

the cutoff distance. On a traditional CPU, the number of failed

cutoff checks is reduced by building a pairlist of all atoms

within the cutoff distance plus a small margin and then reusing

the list until an atom has moved more than half the margin dis-

Table 7. Performance of CUDA-Accelerated NAMD.

Cores/GPUs 1 2 3 6

GPU-accelerated performance

Nonbonded (GPU) time 0.20 s 0.11 s 0.078 s 0.047 s

Other (CPU) time 0.16 s 0.11 s 0.08 s 0.06 s

Total time 0.36 s 0.22 s 0.16 s 0.11 s

Unaccelerated performance

Nonbonded time 1.78 s 0.95 s 0.70 s 0.50 s

Other time 0.16 s 0.11 s 0.08 s 0.06 s

Total time 1.94 s 1.06 s 0.78 s 0.56 s

Speedup from GPU acceleration

Nonbonded only 8.9 3 8.6 3 9.0 3 10.6 3
Total 5.4 3 4.8 3 4.9 3 5.1 3

Runtime per step was measured on a pair of workstations, each with one

Intel Core 2 quad-core 2.66 GHz processor and three NVIDIA GeForce

8800 GTX boards. Nonbonded GPU time is the maximum (across all

processes), which on six GPUs is 50% higher than the average. Other

CPU time is the difference between nonbonded and total time and is

assumed to be the same with or without GPU acceleration. The apoal

benchmark used has 92,224 atoms with a 12-Å cutoff, 16-Å bins, and

PME full-electrostatics evaluated every step. The three-GPU runtime of

0.16 s/step corresponds to 0.54 ns/day given a 1-fs timestep.

Table 6. GPU Performance for Nonbonded Force Calculation in Test

Harness.

Bin size

Time per 100,000 atoms

8 Å (214)a 10 Å (419)a 12 Å (724)a

8 Å 51 atoms 47 ms X X

9 Å 72 atoms 64 ms X X

10 Å 100 atoms 66 ms 76 ms X

11 Å 133 atoms 93 ms 107 ms X

12 Å 172 atoms 91 ms 104 ms 121 ms

13 Å 219 atoms 95 ms 107 ms 123 ms

Kernel execution time was measured on a single NVIDIA GeForce 8800

GTX and normalized to 100,000 atoms. For comparison, NAMD11 run-

ning serially requires about 1.9 s to execute a nonbonded force evalua-

tion for 100,000 atoms with a 12-Å cutoff and 16-Å bins.
aCutoff distance (forces per atom).

2631Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

tance. Exclusion checking is required only when building the

list, providing a further reduction in work during the force eval-

uation. Building a pairlist for every pair of bins would result in

a large range of list sizes and substantial warp divergence as

some threads completed their work much earlier than others. Ev-

ery atom’s complete pairlist should include similar numbers of

atoms (around 1030 for a 13.5-Å list), reducing warp divergence

if each thread iterates over the complete list for a single atom.

The way to efficiently access this number of atoms in ran-

dom order is to use the texture unit. The required atomic data

can be reduced to 16 bytes by storing the charge qi in 16-bit

fixed-point format and the atom type rather than ei and ri. Accu-
racy can be preserved without bin-relative coordinates by storing

coordinates in 32-bit fixed-point format. The G80 texture unit

supports indexed access to arrays of arbitrary size (limited by

device memory) and can load 16 bytes (a complete atom) per

fetch. Since nearby atoms will have many pairlist elements in

common, the same spatial bins described above are used to max-

imize the impact of the texture cache. The 8-kB texture cache

will be more effective for smaller cutoff distances, for it will

hold all of the atoms in a single 10-Å pairlist but only half the

elements in a 13.5-Å pairlist.

The lists themselves are read from device memory in a regu-

lar pattern (one element per thread per iteration) that can be coa-

lesced by the hardware into a single, efficient data transfer per

iteration. If the list read is started immediately after the previous

element is consumed then read latency can be hidden by the

force computation. At 4 bytes per element, the lists will require

4 MB per atom of device memory, limiting simulations to

around 150,000 atoms per GPU. In our experiments, force evalu-

ation with a 13.5-Å list was twice the speed of the bin method

with a 12-Å cutoff but this did not include the cost of creating

the lists on the CPU or transferring the lists across the PCI

Express bus (over 100 ms for 100,000 atoms given a maximum

data transfer rate of 4 GB/s). We have not yet explored list crea-

tion on the G80, but the ability in CUDA for threads to write to

multiple, arbitrary locations in device memory makes this option

feasible, which it was not in previous GPUs.

This pairlist-based algorithm does not use the shared memory

found on the G80 and is therefore similar to previous GPU

implementations of molecular dynamics.9,41,42 Of these, the

implementation in ref. 42 updates the pairlist only every few

hundred steps, and that in ref. 9 does not update the pairlist dur-

ing the entire simulation. The pairlists for these simulations

must be small enough to store in the on-board memory of the

GPU, limiting the simulation to a few hundred thousand atoms.

Folding@Home simulations43 use small proteins and often do

not contain explicit water atoms, resulting in a very small num-

ber of atoms with wide variation in the number of neighbors per

atom. Therefore, the Folding@Home GPU kernel described in

ref. 8 does a complete O(N2) all-to-all force calculation, drop-

ping the pairlist described in ref. 41.

Our spatial bin method does not require the CPU to build

pairlists or check exclusions and uses minimal GPU memory

and bandwidth. Spatial bins map well to spatial decomposition

for GPU-accelerated clusters. Spatial bins also allow us to dedi-

cate the texture unit to force interpolation, supporting complex

or expensive functional forms for nonbonded forces.

Other molecular dynamics calculations that could be ported

to the G80 include nonbonded energy evaluation (a trivial exten-

sion to the force routine), the particle-mesh Ewald reciprocal

sum for long-range electrostatics, bonded force and energy cal-

culations, and finally integration of positions and velocities

based on the calculated forces. Since these operations are cur-

rently handled efficiently by the CPU in an amount of time com-

parable to the nonbonded force calculation on the GPU, our next

priorities are to modify NAMD to run CPU and GPU calcula-

tions simultaneously and to dynamically balance both CPU and

GPU load.

Sample Applications

We consider two applications of GPU acceleration to biomolecu-

lar simulations. We begin with the usage of GPUs to place ions

around a solvated system and continue with the calculation of

time-averaged Coulomb potentials in the vicinity of a simulated

system. These two applications, although conceptually fairly

simple, provide representative examples of the types of calcula-

tions in biomolecular modeling that may be greatly accelerated

through the use of GPUs.

All benchmarks were run on a system containing a 2.6-GHz

Intel Core 2 Extreme QX6700 quad core CPU, running 32-bit

Red Hat Enterprise Linux version 4 update 4, unless otherwise

stated. Single-threaded CPU-based calculations were performed

on one core of this system, whereas multithreaded CPU-based

calculations used all four cores. GPU-accelerated calculations

were performed on the same system as the CPU calculations,

using three cores and three NVIDIA GeForce 8800GTX GPUs

for direct summation, or two cores and one GPU for multilevel

summation calculations.

General Remarks on Ion Placement

Given the ubiquitous presence of electrostatic interactions in

biopolymer dynamics, the presence and placement of ions in

molecular modeling is of great practical importance. Approaches

for selecting the initial ion positions in MD simulations include

random placement of ions corresponding to a specified salt con-

centration,44 sequential placement of ions in Coulomb energy

minima,45,46 optimization of ion positions via Brownian dynam-

ics,47 docking of ions with energetic optimization,48 placement

of ions according to the Debye-Hückel distribution with Monte

Carlo refinement,49 and placement in a Poisson-Boltzmann

potential with grand canonical Monte Carlo steps.50 In all of

these cases, the primary goals are to provide an ion distribution

for simulations that matches the desired physiological condi-

tions, which provides a realistic enough starting state avoiding

simulation artifacts caused by the placement, and that can be

performed quickly.

Ion placement is particularly important for systems involving

nucleic acids, as the presence of divalent counterions is known

to be important to proper folding of ribozymes,51–54 protein-

RNA binding,55 and the activity of enzymes with nucleotide

substrates.56 Recent computational studies have also demon-

strated the importance of divalent cations to RNA structural sta-

bility.57 Treatment of cation binding to nucleic acids is difficult

2632 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

due to the presence of both site-bound (dehydrated) and diffu-

sively bound ions.58 It has been shown that diffusively bound

ions play the primary role in stabilizing the folded structure of

the studied RNA molecules and interact with the overall electro-

static environment of RNA.53 Proper treatment of site-bound

ions requires consideration of the removal of the ion’s hydration

shell and its direct interaction with the binding site.59

The currently used methods for ion placement are computa-

tionally too expensive for practical use with large systems. Since

MD simulations of very large systems are becoming increasingly

common,2,3 the development of efficient ion-placement methods

is highly desirable. Thus, we developed the program cionize,
which iteratively places ions at Coulomb potential minima and

takes full advantage of CUDA. cionize calculates the Cou-

lomb potential generated by the structure on a lattice, places an

ion at the potential global minimum, updates the potential, and

then repeats the procedure for the next ion to be placed. The com-

putation is highly parallelizable, since the calculation of the poten-

tial at each lattice point is independent from calculations at all the

other points; therefore, this computation is well suited for CUDA

acceleration. An important aspect of cionize is that it can read

in an external potential energy map to begin placements, rather

than calculating the Coulomb potential. For example, cionize
can be used to place ions in the potential obtained from a Poisson-

Boltzmann solver by writing a potential map from that solver and

using it as input for cionize; the potential will then undergo

Coulomb-based updates as ions are placed.

To compare the accuracy and performance of a representative

set of ion placements, four different ion placement protocols

were applied to a set of RNA-containing test systems. The ion

placement protocols used are detailed below, followed by a

description of the specific software implementations.

For Coulomb placement, the Coulomb potential at each point

on a lattice with spacing of 0.5 Å was calculated for the volume

occupied by the biomolecule and 10 Å of padding around it and

ions placed at the available point of lowest potential energy.

The lattice was updated with the effects of each new ion after

placement. In this and all subsequent placement protocols, place-

ment of ions closer than 5 Å to either the solute or any other

ions was not allowed unless otherwise noted. Partial atomic

charges were assigned based on the CHARMM27 force field.60

In Coulomb placement with a distance-dependent dielectric

(DDD), calculations were performed as described above for

Coulomb placement, but with the presence of a distance-depend-

ent dielectric coefficient of e(r) 5 3r, with r the distance be-

tween interacting points in Å [see eq. (1)].

For iterative Poisson-Boltzmann placement, the electrostatic

potential was calculated by solving the linearized Poisson-

Boltzmann equation around the protein/RNA system of interest

prior to ion placement. Ions were then placed one at a time at

the global potential energy minimum, and a new continuum

electrostatic calculation was performed after each ion was

placed. CHARMM2760 charges and atomic radii were used for

all atoms, and dielectric constants of 78.54 and 4.0 were used

for the solvent and biomolecule, respectively. In addition to any

explicitly present ions from previous placements, univalent mo-

bile ions were assumed to be present in the system at a concen-

tration of 0.150 M. The potential was calculated on a cubic lat-

tice, including a region 8 Å away from the maximal extents of

the solute in each direction. A lattice spacing of no more than

1.0 Å was used.

Hybrid Poisson-Boltzmann/Coulomb placement is a modifica-

tion of the previous method where full continuum electrostatics

calculations were performed prior to the initial placement and

again after every five ion placements, as described in the previ-

ous paragraph. Between each of these calculations, a set of five

ions was placed sequentially at the global energy minimum,

with the lattice updated through Coulomb potential calculation

after each individual ion was placed. A dielectric constant of 40

was assumed during the potential update for each ion (using

dielectric constants of 20 and 80 yielded similar results). All

previously placed ions were included in subsequent continuum

electrostatics calculations.

All continuum electrostatics calculations were performed

using version 0.5 of the APBS software package,61 compiled

with GCC 3.4.6 using the default build flags distributed with the

software. Coulomb potential calculations and ion placements

were performed using the cionize tool described above. For

the Poisson-Boltzmann and hybrid protocols, potential lattices

generated using APBS were read into cionize and used as a

basis for ion placement. cionize includes single-threaded,

multithreaded, and GPU-accelerated implementations of the

direct Coulomb summation and multilevel Coulomb summation.

For the benchmarks below, a single-threaded version compiled

with GCC 3.4.6 was used for all serial CPU-based calculations

(unless otherwise noted), a multithreaded, vectorized version

compiled with ICC 9.0 was used for multithreaded CPU-based

calculations, and the GPU version (compiled with GCC 3.4.6

and NVCC 0.8) was used where GPU acceleration is noted.

cionize is distributed free of charge with source code within

the molecular visualization program VMD.10 A single-threaded,

optimized version compiled with ICC 9.0 was used where

noted for CPU-based direct and multilevel summation bench-

marks.

Ion Placement for tRNA and Ribozymes

The ion placement protocols described above were applied to

three cases where a number of cation-binding sites were re-

solved in an RNA or protein-RNA crystal structure: Ile-tRNAIle

synthetase complexed with tRNAIle (PDB code 1FFY62), the

P4–P6 ribozyme domain (PDB code 1GID63), and the hepatitis

delta virus ribozyme (PDB code 1CX064). In each case, the pro-

tein and nucleic acid portions of the structure were isolated,

charges assigned based on the CHARMM27 force field,60,65 and

then ions placed using the methods described previously. In all

cases, a number of Mg2þ ions equal to the number of cations in

the initial crystal structure were placed (in the case of 1FFY the

crystal structure contains 10 Mg2þ ions, 2 Zn2þ ions, and one

Kþ ion, but 13 Mg2þ ions were placed for the sake of consis-

tency with the other test cases).

Comparisons of the ion placements obtained by different

methods are shown in Figure 8. As can be seen, while none of

the methods tested precisely matched the locations of crystal

ions, qualitatively similar distributions are obtained in all cases.

The lack of precise matches indicates that these methods are not

2633Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

suitable for identifying the locations of site-bound ions (where

desolvation effects play an important role), but the methods

should be sufficient for assigning the locations of diffusively-

bound ions, particularly for use in simulations.

Timing information for the different ion placement methods

is given in Table 8. Even for the modestly-sized structures used

in this study, the Poisson-Boltzmann and Coulomb ion place-

ment methods require significant amounts of time. Unlike the

other methods, GPU-accelerated cionize calculations showed

very little increase in time requirement with system size, as the

potential calculation is so fast that it is no longer the rate-limit-

ing step. For all four of these test cases, GPU-accelerated direct

summation is faster than GPU-accelerated multilevel summation;

the same does not hold for the larger systems used in later

sections.

Serial, parallel, multilevel summation, and GPU-accelerated

Coulomb placement methods yield identical ion placement

results for the four small test cases, although as discussed below,

the calculated potential lattice is not identical in the multilevel

summation case.

Ion Placement for the Sarcin-Ricin Loop

Hermann and Westhof developed a Brownian-dynamics method

for predicting ion-binding sites near RNA and applied this

method both to RNA crystal structures with ions resolved and to

RNA NMR structures with unknown binding sites.47 One such

structure, that of the sarcin-ricin loop of the eukaryotic 28S

rRNA (PDB code 1SCL66), was chosen for the application of

the ion placement methods used in this study, and the results

Figure 8. Comparison of ion placement test cases used in this study with crystal ions. Structures are

arranged in columns, from left to right, hepatitis delta virus ribozyme (1CX0), tRNA-Ile/synthetase

(1FFY), and P4-P6 ribozyme domain (1GID). The crystal structure is shown at the top of each column,

followed by placement with the APBS, Hybrid, Coulomb, and DDD methods (see Table 8 for abbrevi-

ations). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.

com.]

2634 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

compared with theoretical predictions. While the target data in

this case is theoretical and not experimental, it should be noted

that the authors of the study47 predicted the locations of crystal

ions in many other structures to 0.3–2.7-Å accuracy.

A comparison of the placements obtained using our protocols

with those predicted by Hermann and Westhof is shown in Fig-

ure 9. While none of the ion placements used here precisely

match the predicted cation-binding sites, ions 1, 2, 5, 6, and 7

appear to be well placed in all cases. Ion 4 is also placed prop-

erly in all but the distance-dependent dielectric case, whereas

ion 3 is missed in each case in favor of a placement near G10

(see Fig. 9). As in the other test cases, the approaches used in

this study do not exactly match the target placements but pro-

vide a good approximation using an approach that is both gen-

eral and quite fast. Timing information for the methods applied

to this system is included in Table 8.

Ion Placement for Large Structures

As noted previously, many ion placement protocols become

unfeasible when applied to large structures. Here we present two

examples where MD simulations were performed on RNA-

containing systems larger than one million atoms and compare

CPU- and GPU-based Coulomb ion placement for these cases.

STMV Capsid and Genome

Satellite tobacco mosaic virus (STMV) is a small icosahedral

plant virus that has previously been studied using all-atom MD.3

The virus includes a 1063-base single-stranded RNA genome, of

which 949 bases are included in the modeled structure. Given

the importance of divalent cations in stabilizing the structure of

viruses,67,68 placing some set of counterions near the RNA is an

important step in generating a suitable structure of the virus for

MD simulations. Initial MD studies of STMV used Mg2þ ions

randomly placed within 7 Å of the viral RNA3 but for newer

simulations (to be described elsewhere) the Coulomb ion place-

ment strategy was used.

The combined structure of the complete protein and RNA

consists of 179,606 atoms; the net charge of the RNA plus the

N-terminal tails which partially neutralize it69 is 2348 e. To

provide a proper ionic environment immediately surrounding the

viral RNA, 174 Mg2þ ions were placed with cionize using

the Coulomb ion placement method described previously, but

with a lattice spacing of 0.2 Å and minimum ion-solute distance

of 2.5 Å. The performance of CPU and GPU-based calculation

of the potential lattice required for ion placement is shown in

Table 9. Initial calculation of the Coulomb potential lattice was

performed on 18 1.5 GHz Intel Itanium 2 processors of an SGI

Altix and required 21927.0 s, or 109.6 CPU-hours (note that the

Itanium version of cionize was compiled with ICC 9.0). An

equivalent calculation using three GPUs took 1593.6 s, or 79.68

GPU-minutes (in this case the lattice was calculated as two sep-

arate halves because it was too large for the physical memory of

the test machine). Calculation of the same potential lattice using

multilevel summation required 670.6 s on one CPU or 145.6 s

on one GPU; however, the potential lattice differed slightly from

the exact solution, as discussed below.

Bacterial Ribosome

Here we present a final example of ion placement that greatly

benefited from GPU acceleration. The ribosome is a very com-

plex macromolecular machine responsible for protein synthesis in

every cell. The bacterial ribosome has an approximate mass of

2.6–2.8 MDa and a diameter of 200–250 Å.70 Two-thirds of its

mass is composed of RNA, the rest corresponding to around 50

ribosomal proteins. The largest MD simulation reported to date

was performed on this system.2 We developed an all-atom model

based on a crystal structure of the Thermus thermophilus ribo-

some at 2.8-Å resolution (PDB codes 2J00/2J0171) and performed

a 2.8-million-atom MD simulation using NAMD 2.6.11 Details on

the modeling and simulation will be presented elsewhere.

An important step of system preparation was ion placement.

This crystal structure has many (741) Mg2þ ions resolved. After

model building, the system had 260,790 atoms and a net charge

of 22616 e. Therefore, we placed 1308 diffusively-bound Mg2þ

ions with cionize to neutralize the system, using a lattice

spacing of 0.5 Å, padding the system by 10 Å in each direction,

and enforcing a minimum ion-ion and ion-solute distance of

5 Å. Atomic partial charges were assigned based on the

Table 8. Ion Placement in Test Structures.

Structure Atoms Ions APBS Hybrid APBS

Coulomb ML

DDD GCCGCC ICCa GPUa ICC GPUa

1CX0 3887 12 359 89 232 5 2 4 3 135

1GID 10166 24 2411 500 1746 39 6 12 10 907

1FFY 17006 13 1457 336 3292 59 7 15 10 1662

1SCL 939 7 186 54 16 1 1 1 1 14

System size, number of ions placed, and timing information for the three crystal structures considered in this study

and the sarcin-ricin loop. All times are for complete calculation of ion placements and are given in seconds of wall-

clock time. Iterative Poisson-Boltzmann ion placement is abbreviated APBS, hybrid Poisson-Boltzmann/Coulomb

placement as Hybrid, direct Coulomb summation ion placement as Coulomb, Coulomb placement using the multile-

vel summation approximation as ML, and Coulomb-based ion placement with a distance-dependent dielectric as

DDD.
aA multithreaded calculation; all others were single threaded.

2635Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

Figure 10. Differences between potentials calculated through direct Coulomb summation and multile-

vel summation; in each case, the difference is shown above in units of kT/e, and below as a percentage

of each particular lattice point. (A) Potential differences for the tRNA-Ile synthetase system (PDB

code 1FFY). (B) Potential differences for the ribosome system.

Figure 9. Comparisons of ion placements for the sarcin-ricin loop with the predictions in Fig. 7 of

ref. 47. Hermann and Westhof’s predictions are shown at left, with arbitrary ion numbering as in their

figure; the other methods, from left to right, are APBS, Hybrid, Coulomb, and DDD placement. Abbre-

viations for ion placement methods are given in the caption of Table 8.

2636 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

CHARMM27 force field.60 The ion placement was performed

using 141 1.5 GHz Intel Itanium 2 processors on an SGI Altix,

where the initial lattice calculation took 1065.8 s, or 41.7 CPU-

hours (note that the Itanium version of cionize was com-

piled with ICC 9.0). The same calculation took only 456.9 s on

three GPUs, or 22.8 GPU-minutes. For comparative purposes,

the same initial lattice calculation using multilevel summation

required 154.7 s on 1 CPU, but yielded slightly different results,

as discussed in the following section. A GPU-accelerated multi-

level summation calculation required 64.3 s on 1 GPU, indicat-

ing that a structure of this size is significantly past the break-

even points for the usage of both GPU acceleration and multilevel

summation. These results are summarized in Table 9.

Performance and Accuracy of Multilevel Summation

As seen in Tables 8 and 9, the multilevel summation approxima-

tion provides a level of performance on a single CPU similar to

that obtained from GPU acceleration of the direct summation

algorithm for smaller systems and for large systems (the virus

and ribosome) shows better performance than the GPU-acceler-

ated direct summation due to the favorable scaling of the algo-

rithm. GPU-accelerated versions of multilevel summation

showed higher performance than the equivalent CPU calcula-

tions, but the effects of GPU acceleration are not as significant

as in the direct sum cases, as only the short-range part of the

calculation currently runs on the GPU.

In the four test cases shown in Table 8, the multilevel sum-

mation method yielded identical results to direct summation for

ion placement, although small differences were observed in the

calculated potential. Figure 10A shows the potential differences

along a cross-section of the 1FFY structure. For this structure,

the average difference in potential between the multilevel and

direct sum calculations was 0.383 kT
e , an average difference of

0.037% of the potential from the direct sum, with a maximum

difference of 0.086%. The multilevel summation method was

also applied to ion placement in the ribosome; in this case,

1,082 ions were placed identically, and of the remainder, 153 of

the ions placed by multilevel summation were within 5 Å of a

matching ion from the direct summation placement. The devia-

tion between the potential maps in this case is similar to the

smaller 1FFY test case: an average deviation of 1.07 kT
e , or

0.025% of the direct summation potential, with a maximum dif-

ference of 0.053%. A map of the difference in calculated poten-

tial between the direct and multilevel summations for the ribo-

some is shown in Figure 10B. The fact that differing ion place-

ments result from relatively small differences in calculated

potential appears to arise from the presence of several closely-

spaced local minima at some stages of the placement process.

Although the number of placements that are appreciably differ-

ent between the two methods is quite small, the discrepancies

(at least for ion placement) could be further masked by identify-

ing a cluster of low lying potential points at each ion placement

step and evaluating the direct Coulomb sum in some neighbor-

hood around each of those points to make the final placement.

Time-Averaged Electrostatic Potential

Ensemble-averaged electrostatic potentials of biomolecules pro-

vide a more useful description than potentials calculated from

static structures by avoiding overemphasis of certain conforma-

tions.72,73 For example, a potential averaged over relevant time-

scales is much more realistic for regions where ions bind transi-

ently, compared to a static picture that would either overestimate

or underestimate the ionic contribution.59 Time-averaged electro-

static potentials have been calculated from MD trajectories

before, providing good agreement with experimental estimates.73

A promising application of time-averaged electrostatic potentials

is to provide a mean-field description of part of the system that

can be incorporated in an MD simulation, reducing the number

of degrees of freedom and thus allowing longer timescales to be

reached.

As mentioned previously, a time-averaged electrostatic poten-

tial can be calculated from an MD trajectory. One possible

approach to perform this calculation, available in VMD,10 is to

use the particle-mesh Ewald method33 to calculate a smoothed

electrostatic potential for each frame of a trajectory, and then av-

erage them.73 This approach weakens short-range interactions,

which, in principle, could be added to the calculation. But the

most important shortcoming is the requirement of periodic bound-

ary conditions, which can introduce artifacts if the center of mass

of the system moves considerably throughout the simulation.

Even in the absence of large center of mass motion, one may

want to calculate the electrostatic potential experienced by a sub-

system in the simulation, which requires that every frame is fitted

to a reference structure with respect to the subsystem. However,

such fitting is not possible if one is to employ periodic boundary

conditions. The use of direct Coulomb summation eliminates this

shortcoming, but it is prohibitively expensive to calculate time-

averaged electrostatic potentials using CPUs; calculation on

GPUs makes the use of direct Coulomb summation feasible.

GPU-accelerated direct Coulomb summation was applied to

calculate a time-averaged electrostatic potential from a large

MD simulation—the aforementioned 2.8-million-atom MD simu-

lation of a bacterial ribosome. All frames were least-square fitted

to the initial structure with respect to backbone atoms. For each

frame, all atoms within 5 Å of the ribosome were selected

(around 580,000 atoms) and the Coulomb potential calculated

using partial charges assigned from the CHARMM27 force

field.60 A lattice encompassing the selected structure with a pad-

ding of 10 Å was created using a lattice spacing of 1.0 Å. A

time-averaged potential from a 1-ns portion of the trajectory,

Table 9. Potential Calculation Performance.

Calculation ICC

GPU ML ML-GPU

Time Speedup Time Speedup Time Speedup

STMV 109.6 1.33 82.5 0.186 588 0.040 2710

Ribosome 41.7 0.38 110 0.043 970 0.018 2085

Comparison of CPU-based and GPU-based calculation of Coulomb

potential lattices for different tasks. Time required for each calculation

(in CPU-hours or GPU-hours) and the relative speedup of the GPU over

the ICC calculation are shown. Abbreviations are defined in Table 8.

2637Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

with a frame selected every picosecond, was calculated; the

results of the calculation are shown in Figure 11.

For one frame, the vectorized potential calculation code com-

piled with ICC 9.0 within the volumetric data framework of

VMD10 took 18,852 s running on one core, or 5.24 CPU-hours.

The same calculation running on one GPU was performed in

529 s, or 0.147 GPU-hours, corresponding to a 36-fold speedup.

The time-averaged Coulomb potential calculation for the 1-ns

portion of the MD simulation used 3 GPUs and took 1000 3 178

seconds, or 49 hours. The same calculation would have taken

0.60 years running on 1 CPU or 0.23 years running on three

CPUs (see Table 10). The scaling efficiency results in Table 10

illustrate the detrimental effects of multiple CPU cores compet-

ing for a fixed amount of cache and memory bandwidth. Since

each GPU contains its own independent on-board memory sys-

tem, bandwidth scales with the number of GPUs and scaling ef-

ficiency remains close to 100%. Although the GPUs share the

host PCI-Express bus, host bus bandwidth was not a perform-

ance-limiting factor for the benchmark system. A multilevel

summation calculation (using cionize, since this code is not yet
implemented in VMD) on a single frame required 74.3 s on one

CPU or 67 s (0.0187 GPU-hours) on one GPU and shows an av-

erage deviation of 0.025% from the direct summation.

Discussion

We have tested GPU implementations of both Coulomb potential

calculations and nonbonded force evaluation for molecular dy-

namics, both of which are common and time-consuming steps in

molecular modeling calculations. While the current generation

of GPUs provides an architecture much more suitable for gen-

eral purpose computing than its predecessors, some room for

improvement still exists, as discussed below. The results of our

calculations also illustrate the types of calculations in molecular

modeling that may be suited for GPU acceleration. Finally, we

consider a number of similar applications that may also benefit

from this approach.

Current GPU Hardware Restrictions

With CUDA, NVIDIA has enabled the scatter memory-access

pattern on GPUs. The utility of this pattern is restricted, how-

ever, by the lack of synchronization primitives (such as mutual

exclusion locks) between threads in different blocks. In molecu-

lar dynamics force calculation, for example, multiple blocks in a

grid calculate forces for the same atoms. These forces must cur-

rently be written to 27 separate output buffers in device memory

that are summed by a separate kernel. This separate invocation

could be avoided if each block held a lock while updating the

output buffer for a bin of atoms. An alternative to locks would

be the implementation of scatter-add operations,74 allowing

a[i] þ5 b to occur atomically rather than as separate load,

add, and store instructions. Scatter-add to shared memory would

be particularly useful, allowing efficient histogram construction

without the numerous _syncthreads() calls currently

needed to detect and resolve conflicts. Either locks or scatter-

add to device memory would then allow the partial histograms

generated by each block to be combined into a single output

buffer, rather than requiring memory for a separate output buffer

per block.

Applications to Molecular Modeling

Although the placement of ions in a Coulomb potential is a sim-

ple and specific task, our results illustrate the acceleration that is

possible for other common molecular modeling tasks through

the use of GPUs. GPU-accelerated calculations were typically

10–100 times faster than equivalent CPU-based calculations for

ion placement tasks and yielded identical results. The multilevel

summation method to calculate the initial Coulomb potential

allowed ion placement with high speed, albeit with a slight loss

of accuracy; multilevel summation also proved to be amenable

to GPU acceleration. Refinement of ion placement through the

use of Monte Carlo or Brownian dynamics steps and more so-

phisticated ion–ion interactions may improve placement accu-

Figure 11. Time-averaged Coulomb potential calculated from 1 ns

of an MD simulation of the T. Thermophilus ribosome. The potential

was calculated every picosecond using three GPUs (see text for

details). In the color scale used, red corresponds to potential values

smaller than 22500 kT/e, and blue corresponds to values larger than

21800 kT/e, with T 5 298.15 K. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Table 10. Scaling Efficiency of the Coulomb Potential Calculation Code

Implemented in VMD.

Number of CPUs/GPUs (efficiency)

1 2 3 4

ICC 18852 s (100 %) 9619 s (98 %) 7099 s (88 %) 6178 s (76 %)

GPU 529 s (100 %) 265 s (100 %) 178 s (99 %) n/a

Time required for the calculation of the Coulomb potential from one

frame of the ribosome MD trajectory (see text for details) and scaling ef-

ficiency are presented.

2638 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

racy,47,50 and should also be suitable for GPU acceleration.75

The Coulomb potential calculation used for ion placement can

also be applied to the calculation of average electrostatic poten-

tials from MD trajectories. GPU acceleration of this calculation

provided a hundredfold speedup over CPU implementations for

the examples presented.

Nonbonded force evaluation for molecular dynamics, with

cutoffs, exclusion checking, and long-range PME force correc-

tion, has been implemented efficiently on the G80 GPU without

the use of CPU-generated pairlists. As future generations of

GPUs outpace CPU performance growth, the overall perform-

ance of the simulation will be limited by the fraction of compu-

tation remaining on the CPU and, for parallel runs, by the speed

of internode communication.

Aside from the applications to electrostatic potentials and

nonbonded force evaluation for MD introduced here, a wide va-

riety of other tasks in molecular modeling are well suited to

GPU acceleration. The efficiency and ease of such implementa-

tions depends largely on the level of data parallelism present in

the target task; GPU acceleration is best suited to algorithms

where the same calculation may be carried out independently on

many separate inputs. Tasks where some calculation is per-

formed independently at every point on a lattice are a clear

example; the Coulomb potential calculations presented above

fall into this category, along with, for example, scoring grid cal-

culation for docking76,77 and calculation of volumetric accessi-

bility maps.78 In addition, GPU acceleration should be applica-

ble to tasks such as molecular dynamics trajectory analysis,

where statistics such as pairwise root mean square deviations

and alignments between trajectory frames, contact maps on indi-

vidual frames, and volumetric time-averaged occupancy maps

can be calculated parallelizing by frame or by pairs of frames.

Some simulation methodologies may also be well suited to GPU

acceleration, including ligand docking, where multiple confor-

mations may be generated and evaluated in parallel, and biomo-

lecular Monte Carlo simulations, where both trial step generation

and scoring for acceptance may be performed in parallel. Bioin-

formatics queries on broad databases are also likely candidates

for GPU acceleration, and indeed, an initial GPU implementa-

tion of the Hidden Markov Model-based hmmsearch algorithm

has already been developed.7 A wide variety of computationally

intensive tasks in biomolecular modeling and analysis are simi-

larly suited to GPU acceleration, and adoption of this technology

should enable previously unfeasible calculations in a variety of

related areas on commodity GPU hardware.

While GPU acceleration provides a method for accelerating

many common and time-consuming calculations that are required

in molecular modeling, it must be stressed that GPUs should be

viewed as an additional resource that may be useful for some

types of calculations, and not as a universally applicable solution.

As noted above, GPU acceleration is best suited to data-parallel

tasks. Obtaining peak performance from the GPU typically

requires a different optimization strategy than for CPU-based

algorithms. The current generation of GPU hardware is limited to

single-precision operations, which excludes some applications in

molecular modeling; GPUs that include native double-precision

calculations are expected by the end of 2007, but even with this

additional capability single-precision calculations will likely be

faster and should be favored when sufficient. While it is attrac-

tive to consider clusters of nodes performing GPU-accelerated

calculations, the speed of floating-point operations on GPUs is so

high that bottlenecks in internode communication will become

even more significant for such a cluster, likely limiting the total

number of nodes that can be usefully applied to a single task

(although the high per-node speed will still allow small GPU-

accelerated clusters to outperform much larger traditional clusters

on suitable applications). Within these limitations, GPU accelera-

tion promises to provide a powerful new technique for accelerat-

ing many molecular modeling applications.

Conclusion

We have presented a review of recent advances in GPU hard-

ware and software development and demonstrated the feasibility

of accelerating molecular modeling applications with GPUs.

Three target algorithms along with details on their implementa-

tion using NVIDIA’s CUDA software architecture were dis-

cussed, namely direct Coulomb summation, multilevel Coulomb

summation, and molecular dynamics nonbonded force calcula-

tion. The use of GPU-accelerated electrostatic potential calcula-

tion was illustrated by two concrete cases: ion placement for

MD simulation and average electrostatic potential calculation

from an MD trajectory. These examples provide a flavor of the

impact that the use of GPUs may have on molecular modeling

applications in the near future. Widespread usage of GPU accel-

eration may eventually make it possible to perform many tasks

that currently require specialized computational resources using

comparatively inexpensive desktop computers running commod-

ity GPUs.

Acknowledgments

The authors thank Professors Wen-mei Hwu and David Kirk for

organizing the CUDA programming class and explicitly inviting

the direct participation of many research groups at the Univer-

sity of Illinois at Urbana-Champaign. The authors also acknowl-

edge the direct support provided by NVIDIA, in particular,

David Kirk and Mark Harris for their consultation and advice

during the development of our GPU algorithms. Professor

Nathan A. Baker provided valuable input and suggestions for

the implementation of ion placement techniques. Professor Rob-

ert D. Skeel has imparted to the authors much insight concerning

the multilevel summation method. Computer time at the

National Center for Supercomputing Applications was provided

through LRAC grant MCA93S028.

References

1. McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature 1977, 267, 585.

2. Sanbonmatsu, K. Y.; Joseph, S.; Tung, C. S. Proc Natl Acad Sci

USA 2005, 102, 15854.

3. Freddolino, P. L.; Arkhipov, A. S.; Larson, S. B.; McPherson, A.;

Schulten, K. Structure 2006, 14, 437.

4. Yeh, I.; Hummer, G. J Am Chem Soc 2002, 124, 6563.

5. Duan, Y.; Kollman, P. Science 1998, 282, 740.

6. Adcock, S. A.; McCammon, J. A. Chem Rev 2006, 106, 1589.

2639Accelerating Molecular Modeling Applications with Graphics Processors

Journal of Computational Chemistry DOI 10.1002/jcc

7. Horn, D. R.; Houston, M.; Hanrahan, P. In Proceedings of the 2005

ACM/IEEE Conference on Supercomputing. Washington, DC, 2005;

IEEE Computer Society; p. 11.

8. Elsen, E.; Houston, M.; Vishal, V.; Darve, E.; Hanrahan, P.; Pande,

V. In SC06 Proceedings; IEEE Computer Society, 2006.

9. Yang, J.; Wang, Y.; Chen, Y. J Comput Phys 2007, 221, 799.

10. Humphrey, W.; Dalke, A.; Schulten, K. J Mol Graphics 1996, 14, 33.

11. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.;

Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J Comp

Chem 2005, 26, 1781.

12. Beetem, J.; Denneau, M.; Weingarten, D. SIGARCH Comput Archit

News 1985, 13(3), 108.

13. Blank, T. In Compcon Spring ’90. ‘Intellectual Leverage’. Digest of

Papers. Thirty-Fifth IEEE Computer Society International Confer-

ence. San Francisco, CA, 1990; IEEE Computer Society; pp. 20–24.

14. Tucker, L. W.; Robertson, G. G. Computer 1988, 21, 26.

15. Ungerer, T.; Robic, B.; Silc, J. ACM Comput Surv 2003, 35, 29.

16. Allen, J. D.; Schimmel, D. E. IEEE Trans Parallel Distrib Syst

1996, 7, 818.

17. Weems, C. In Proceedings of the 1997 Computer Architectures for

Machine Perception (CAMP, ’97), Washington, DC, 1997; IEEE

Computer Society; p. 235.

18. NVIDIA CUDA Compute Unified Device Architecture Programming

Guide; NVIDIA: Santa Clara, CA, 2007.

19. He, Y.; Ding, C. H. Q. In ICS ’00: Proceedings of the 14th Interna-

tional Conference on Supercomputing; ACM Press: New York, 2000;

pp. 225–234.

20. Bailey, D. H. Computing in Science and Engineering 2005, 07, 54.

21. Kirk, D.; Hwu, W. University of Illinois at Urbana-champaign, ECE

498 AL Lecture Notes, 2007.

22. Buck, I.; Foley, T.; Horn, D.; Sugerman, J.; Fatahalian, K.; Houston,

M.; Hanrahan, P. In SIGGRAPH ’04: ACM SIGGRAPH 2004

Papers; ACM Press: New York, 2004; pp. 777–786.

23. Buck, I. Stream Computing on Graphics Hardware, PhD Thesis,

Stanford University, Stanford, CA, 2005.

24. Charalambous, M.; Trancoso, P.; Stamatakis, A. In Panhellenic Con-

ference on Informatics, 2005, pages 415–425.

25. Owens, J. D.; Luebke, D.; Govindaraju, N.; Harris, M.; Krger, J.;

Lefohn, A. E.; Purcell, T. J. Computer Graphics Forum 2007, 26, 80.

26. Barnes, J.; Hut, P. Nature 1986, 324, 446.

27. Greengard, L.; Rokhlin, V. J Comp Phys 1987, 73, 325.

28. Board, J. A., Jr.; Causey, J. W.; Leathrum, J. F., Jr.; Windemuth, A.;

Schulten, K. Chem Phys Lett 1992, 198, 89.

29. Cheng, H.; Greengard, L.; Rokhlin, V. J Chem Phys 1999, 155, 468.

30. Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Par-

ticles; McGraw-Hill: New York, 1981.

31. Pollock, E. L.; Glosli, J. Comput Phys Commun 1996, 95, 93.

32. Darden, T.; York, D.; Pedersen, L. J Chem Phys 1993, 98, 10089.

33. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;

Pedersen, L. G. J Chem Phys 1995, 103, 8577.

34. Skeel, R. D.; Tezcan, I.; Hardy, D. J. J Comp Chem 2002, 23, 673.

35. Hardy, D. J. Multilevel Summation for the Fast Evaluation of Forces

for the Simulation of Biomolecules, PhD Thesis, University of Illi-

nois at Urbana-Champaign, 2006.

36. Brandt, A.; Lubrecht, A. A. J Comput Phys 1990, 90, 348.

37. Sandak, B. J Comp Chem 2001, 22, 717.

38. Brandt, A. In Proc. IMACS 1st Int. Conf. on Comp. Phys. Boulder,

CO, 1991.

39. Skeel, R. D.; Biesiadecki, J. J. Ann Numer Math 1994, 1, 191.

40. Fox, G. C.; Johnson, M. A.; Lyzenga, G. A.; Otto, S. W.; Salmon, J. K.;

Walker, D. W. Solving Problems on Concurrent Processors, vol. 1;

Prentice Hall: Englewood Cliffs, NJ, 1988.

41. Buck, I. In IEEE Visualization 2004 GPGPU Tutorial. IEEE Com-

puter Society, 2004.

42. Kupka, S. In Central European Seminar on Computer Graphics

2006, 2006.

43. Snow, C. D.; Nguyen, H.; Pande, V. S.; Gruebele, M. Nature 2002,

420, 102.

44. Sotomayor, M.; Schulten, K. Biophys J 2004, 87, 3050.

45. Auffinger, P.; Westhof, E. J Mol Biol 1999, 269, 326.

46. Walser, R.; Hünenberger, P. H.; van Gunsteren, W. F. Proteins:

Struct Func Gen 2001, 43, 509.

47. Hermann, T.; Westhof, E. Structure 1998, 6, 1303.

48. Soares, C. M.; Teixeira, V. H.; Baptista, A. M. Biophys J 2003, 84,

1628.

49. Grubmüller, H. SOLVATE 1.0 manual, 1996.

50. Vitalis, A.; Baker, N. A.; McCammon, J. Mol Sim 2004, 30, 45.

51. Wang, N.; Butler, J. P.; Ingber, D. E. Science 1993, 260, 1124.

52. Tinoco, I., Jr.; Kieft, J. S. Nat Struct Biol 1997, 4, 509.

53. Misra, V. K.; Draper, D. E. Biopolymers 1999, 48, 113.

54. Klein, D. J.; Moore, P. M.; Steitz, T. A. RNA 2004, 10, 1366.

55. Cusack, S. Curr Opin Struct Biol 1999, 9, 66.

56. Vianna, A. L. Biochim Biophys Acta 1975, 410, 389.

57. Réblová, K.; Špačková, N.; Koča, J.; Leontis, N. B.; Šponer, J. Bio-

phys J 2004, 87, 3397.

58. Misra, V. K.; Draper, D. E. J Mol Biol 2000, 299, 813.

59. Misra, V. K.; Draper, D. E. Proc Natl Acad Sci USA 2001, 98,

12456.

60. Foloppe, N.; MacKerrell, A. D., Jr.; J Comp Chem 2000, 21, 86.

61. Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A.

Proc Natl Acad Sci USA 2001, 98, 10037.

62. Silvian, L. F.; Wang, J.; Seitz, T. A. Science 1999, 285, 1074.

63. Cate, J. H.; Gooding, A. R.; Podell, E.; Zhou, K.; Golden, B. L.; Kun-

drot, C. E.; Cech, T. R.; Doudna, J. A. Science 1996, 273, 1678.

64. Ferré-D’Amaré, A. R.; Zhou, K.; Doudna, J. A. Nature 1998, 395,

567.

65. MacKerell, Jr., A. D.; Brooks, B.; Brooks, III, C. L.; Nilsson, L.;

Roux, B.; Won, Y.; Karplus, M. In The Encyclopedia of Computa-

tional Chemistry, Schleyer, P. et al., Eds.; John Wiley: Chichester,

1998; pp. 271–277.

66. Fitzpatrick, P. A.; Steinmetz, A. C. U.; Ringe, D.; Klibanov, A. M.

Proc Natl Acad Sci USA 1993, 90, 8653.

67. Lucas, R. W.; Larson, S. B.; McPherson, A. J Mol Biol 2002, 317, 95.

68. Eecen, H. G.; Dierendonck, J. H. V.; Pleij, C. W. A.; Mandel, M.;

Bosch, L. Biochemistry 1985, 24, 3610.

69. Larson, S. B.; McPherson, A. Curr Opin Struct Biol 2001, 11, 59.

70. Blaha, G. In Protein Synthesis and Ribosome Structure; Nierhaus,

K. H.; Wilson, D. H., Eds.; Wiley-VCH: Weinheim, Germany,

2004; pp. 53–84.

71. Selmer, M.; Dunham, C. M.; Murphy, F. V., IV; Weixlbaumer, A.;

Petry, S.; Kelley, A. C.; Weir, J. R.; Ramakrishnan, V. Science

2006, 313, 1935.

72. You, T. J.; Bashford, D. Biophys J 1995, 69, 1721.

73. Aksimentiev, A.; Schulten, K. Biophys J 2005, 88, 3745.

74. Ahn, J. H.; Erez, M.; Dally, W. In HPCA-11. 11th International

Symposium on High-Performance Computer Architecture, IEEE

Computer Society, 2005. pp. 132–142.

75. Tomov, S.; McGuigan, M.; Bennett, R.; Smith, G.; Spiletic, J. Comp

and Graph 2005, 29, 71.

76. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.;

Belew, R. K.; Olson, A. J. J CompChem 1998, 19, 1639.

77. Zou, X.; Sun, Y.; Kuntz, I. D. J Am Chem Soc 1999, 121, 8033.

78. Cohen, J.; Kim, K.; King, P.; Seibert, M.; Schulten, K. Structure

2005, 13, 1321.

2640 Stone et al. • Vol. 28, No. 16 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

